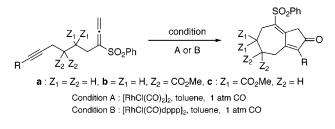
Rh(I)-Catalyzed Intramolecular Allenic Pauson–Khand Reaction: Construction of a Bicyclo[5.3.0]dec-1,7-dien-9-one Skeleton

ORGANIC LETTERS 2002 Vol. 4, No. 10 1755–1758


Chisato Mukai,* Izumi Nomura, Kei Yamanishi, and Miyoji Hanaoka

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920-0934, Japan

cmukai@kenroku.kanazawa-u.ac.jp

Received March 6, 2002

ABSTRACT

1-Phenylsulfonylallenes possessing a hexynyl appendage in refluxing toluene in the presence of catalytic amount of rhodium(l) catalyst under a carbon monoxide atmosphere underwent regioselective formal [2 + 2 + 1]-cycloaddition to produce the corresponding bicyclo[5.3.0]dec-1,7-dien-9-one derivatives in acceptable yields.

The $Co_2(CO)_8$ -mediated Pauson-Khand reaction (PKR) is a formal [2 + 2 + 1]-cyclization of an alkene, an alkyne, and carbon monoxide moieties.¹ The intramolecular version of this intriguing cyclization has been well recognized as one of the most powerful and reliable tools for constructing cyclopentenone-fused bicyclic derivatives. Thus, both bicyclo-[3.3.0]octenone **1** and bicyclo[4.3.0]nonenone **2** frameworks² can be efficiently synthesized from the corresponding enyne derivatives. In sharp contrast, the application of this intramo-

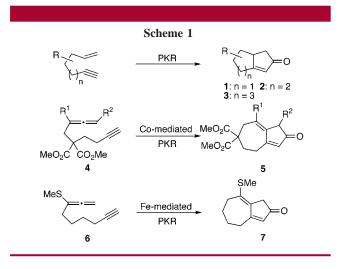
10.1021/ol020051w CCC: \$22.00 © 2002 American Chemical Society Published on Web 04/17/2002

lecular Co₂(CO)₈-mediated PKR to the synthesis of bicyclo-[5.3.0]decenone derivatives $3^{2e,3}$ has not yet been realized, except for the synthesis of azabicyclo[5.3.0]decenone derivatives⁴ and medium-sized oxabicyclic compounds^{5,6} from enynes with an aromatic ring as a template. On the other hand, the alkyne derivative **4** with an allenyl functionality⁷⁻¹⁰

(5) (a) Kraft, M. E.; Fu, Z.; Boñaga, V. R. *Tetrahedron Lett.* **2001**, *42*, 1427. (b) Lovely, C. J.; Seshadri, H.; Wayland, B. R.; Cordes, A. W. Org. Lett. **2001**, *3*, 2607.

(6) Zr-mediated PKR for the preparation of medium-sized rings with an aromatic ring was also reported. Barluenga, J.; Sanz, R.; Fañanás, F. J. *Chem. Eur. J.* **1997**, *3*, 1324.

(7) Co-mediated PKR of alleynes: (a) Ahmar, M.; Antras, F.; Cazes, B. *Tetrahedron Lett.* **1995**, *36*, 4417. (b) Ahmar, M.; Chabanis, O.; Gauthier, J.; Cazes, B. *Tetrahedron Lett.* **1997**, *38*, 5277. (c) Ahmar, M.; Locatelli, C.; Colombier, D.; Cazes B. *Tetrahedron Lett.* **1997**, *38*, 5281. (d)


For leading reviews, see: (a) Schore, N. E. Org. React. **1991**, 40, 1.
 (b) Schore, N. E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, p 1037. (c) Frühauf, H.-W. Chem. Rev. **1997**, 97, 523. (d) Jeong, N. Transition Met. Org. Synth. **1998**, 1, 560. (e)
 Geis, O.; Schmalz, H.-G. Angew. Chem., Int. Ed. **1998**, 37, 911. (f)
 Brummond, K. M.; Kent, J. L. Tetrahedron **2000**, 56, 3263.

^{(2) (}a) Mukai, C.; Uchiyama, M.; Sakamoto, S.; Hanaoka, M. *Tetrahedron Lett.* **1995**, *36*, 5761. (b) Mukai, C.; Kim, J. S.; Uchiyama, M.; Sakamoto, S. Hanaoka, M. *J. Chem. Soc., Perkin Trans. 1* **1998**, 2903. (c) Mukai, C.; Kim, J. S.; Uchiyama, M.; Hanaoka, M. *Tetrahedron Lett.* **1998**, *39*, 7909. (d) Mukai, C.; Kim, J. S.; Sonobe, H.; Hanaoka, M. *J. Org. Chem.* **1999**, *64*, 6822. (e) Mukai, C.; Sonobe, H.; Kim, J. S.; Hanaoka, M. *J. Org. Chem.* **2000**, *65*, 6654.

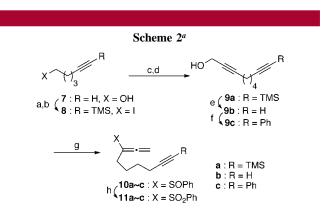
⁽³⁾ A bicyclo[5.3.0]decenone framework with an oxygen-bridged structure was constructed in 29% yield by the zirconocene-mediated PKR. See: Wender, P. A.; McDonald, F. E. *Tetrahedron Lett.* **1990**, *31*, 3691. However, this structure can be regarded as an oxabicyclo[4.3.0]nonenone skeleton. In addition, an attempt at $Co_2(CO)_8$ -mediated PKR was unsuccessful.

⁽⁴⁾ Pérez-Serrano, L.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. J. Chem. Soc., Chem. Commun. 2001, 2602.

instead of an olefin group produced the bicyclo[5.3.0]dec-1,7-dien-9-one 5^{7c} under Co₂(CO)₈-mediated PKR conditions, although the chemical yields were rather low (10-25%). Fe-(CO)₄(NMe₃)⁹ was also found to promote the Pauson-Khand-type [2 + 2 + 1]-cyclization of an allenyne **6**, resulting in the formation of the bicyclo[5.3.0]dec-1,7-dien-9-one derivative **7** in 15% yield (Scheme 1).

Many bioactive natural products have a bicyclo[5.3.0]decane skeleton¹¹ as a basic carbon framework. Therefore, the straightforward and efficient preparation of a bicyclo-[5.3.0]decane ring system under PKR conditions with an acceptable yield could become an alternative and useful method for the synthesis of these natural products. Recent reports from Jeong¹² and Narasaka¹³ independently disclosed that rhodium(I) catalysts are effective in the PKR of enynes. To develop a reliable as well as straightforward procedure for preparing the bicyclo[5.3.0]decane framework by a Pauson–Khand-type reaction, we sought to combine these rhodium catalysts with allenyne derivatives. We paid much attention to allenynes having a sulfinyl or sulfonyl group as a starting material for this investigation, because these allenynes could be easily prepared from the corresponding

(8) Mo-mediated PKR of alleynes: (a) Kent, J. L.; Wan, H.; Brummond, K. M. *Tetrahedron Lett.* **1995**, *36*, 2407. (b) Brummond, K. M.; Wan, H. *Tetrahedron Lett.* **1998**, *39*, 931. (c) Brummond, K. M.; Wan, H.; Kent, J. L. J. Org. Chem. **1998**, *63*, 6535. (d) Brummond, K. M.; Lu, J. J. Am. Chem. Soc. **1999**, *121*, 5087. (e) Brummond, K. M.; Lu, J.; Petersen, J. J. Am. Chem. Soc. **2000**, *122*, 4915. (f) Xiong, H.; Hsung, R. P.; Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell, B. Org. Lett. **2000**, *2*, 2869.


(9) Fe-mediated PKR of allenynes: Shibata, T.; Koga, Y.; Narasaka, K. Bull. Chem. Soc. Jpn. **1995**, 68, 911.

(10) For Zr-mediated PKR of alleynes, see: refs 8b and 8c

(12) (a) Jeong, N.; Lee, S.; Sung, B. K. Organometallics 1998, 17, 3642.
(b) Jeong, N.; Sung, B. K.; Choi, Y. K. J. Am. Chem. Soc. 2000, 122, 6771.

propargyl alcohols and chemical transformation of these sulfur-containing groups to other functionalities was already reported. This Letter deals with our preliminary results regarding the efficient rhodium(I)-catalyzed PKR of allenynes¹⁴ for the construction of 2-phenylsulfonylbicyclo-[5.3.0]dec-1,7-dien-9-one derivatives.

The simple precursors **11** for the cyclization in this investigation were readily prepared from 5-hexyn-1-ol (**7**) (Scheme 2). Protection of the acetylenic terminus of **7** with

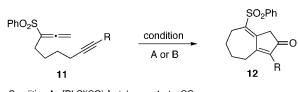
^{*a*} Reaction conditions: (a) (i) BuLi, TMSCl, THF, (ii) 10% HCl; (b) I₂, PPh₃, imid., CH₂Cl₂; (c) LiC≡CCH₂OTBS, THF−DMPU; (d) 10% HCl, MeOH, **9a** (54%), **9b** (16%); (e) TBAF, THF, (96%); (f) Phl, PdCl₂(PPh₃)₂, iPr₂NH, CuI, THF, (68%); (g) PhSCl, Et₃N, THF; (h) *m*CPBA, CH₂Cl₂, **11a** (78%), **11b** (69%), **11c** (69%).

a silyl group was followed by iodination to give **8**. The iodo compound **8** was then coupled with the acetylide, derived from the *O*-protected propargyl alcohol, to afford the diyne derivative, which was hydrolyzed under acidic conditions to give **9a** in 54% overall yield along with **9b** (16%). Desilylation of **9a** was easily performed with TBAF to give **9b** in 96% yield. Palladium-mediated Sonogashira coupling¹⁵ of **9b** with iodobenzene proceeded under standard conditions to give **9c** in 68% yield. The three propargyl alcohols **9a**–**c** were independently exposed to benzenesulfenyl chloride¹⁶ in the presence of Et₃N to give the corresponding sulfoxides, which were directly oxidized with *m*CPBA to furnish the allenyl sulfones **11** in yields of 69–78%.

For the initial evaluation of the rhodium-catalyzed PKR of the resulting allenynes, we first attempted the cyclization of compound **11b**.¹⁷ A solution of **11b** in toluene was refluxed in the presence of 5 mol % of $[RhCl(CO)_2]_2^{13}$ under an atmosphere of carbon monoxide (condition A) for 1 h to give the bicyclo[5.3.0]dec-1,7-dien-9-one **12b** in 58% yield as a sole isolable product (Table 1, entry 3). Reducing the amount of the catalyst to 2.5 mol % of [RhCl(CO)-gave a lower yield (41%). When 5 mol % of [RhCl(CO)-gave a lower yield (41%).

Pagenkopf, B. L.; Belanger, D. B.; O'Mahony, D. J. R.; Livinghouse, T. *Synthesis* **2000**, 1009. (e) Antras, F.; Ahmar, M.; Cazes, B. *Tetrahedron Lett.* **2001**, *42*, 8153. (f) Antras, F.; Ahmar, M.; Cazes, B. *Tetrahedron Lett.* **2001**, *42*, 8157.

⁽¹¹⁾ For example: (a) Herz, H.; Santhanam, P. S. J. Org. Chem. 1965, 30, 4340. (b) Lansburg, P. T.; Hangauer, D. G., Jr.; Vacca, J. P. J. Am. Chem. Soc. 1980, 102, 3964. (c) Heathcock, C. H.; DelMar, E. G.; Graham, S. L. J. Am. Chem. Soc. 1982, 104, 1907. (d) Grieco, P. A.; Majetich, G. F.; Ohfune, Y. J. Am. Chem. Soc. 1982, 104, 4226. (e) Heathcock, C. H.; Tice, C. M.; Germroth, T. C. J. Am. Chem. Soc. 1982, 104, 6081.


 ^{(13) (}a) Koga, Y.; Kobayashi, T.; Narasaka, K. *Chem. Lett.* **1998**, 249.
 (b) Kobayashi, T.; Koga, Y.; Narasaka, K. *J. Organomet. Chem.* **2001**, 624, 73.

⁽¹⁴⁾ During this investigation, the Rh(I)-catalyzed PKR of an allenyne leading to formation of the bicyclo[4.3.0]non-1,6-dien-8-one derivative in 61% yield was reported. See ref 13b.

⁽¹⁵⁾ Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.

⁽¹⁶⁾ Horner, L.; Binder, V. Ann. Chem. 1972, 37, 757.

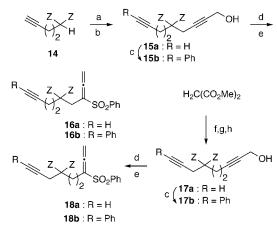
⁽¹⁷⁾ Rh(I)-catalyzed PKR of the sulfoxide derivative **10b** was examined under conditions A and B; however, no reaction took place and the starting sulfoxide was completely recovered intact.

Condition A : [RhCl(CO)₂]₂, toluene, 1 atm CO Condition B : [RhCl(CO)dppp]₂, toluene, 1 atm CO

13

a : R = TMS, b

entry	allene	R	condition	mol %	product	yield (%)
1	11a	TMS	А	5	12a	45
2	11a	TMS	В	5	12a	7 ^a
3	11b	Н	Α	5	12b	58^{b}
4	11b	Н	В	5	12b	75 ^c
5	11c	Ph	Α	2.5	12c	51
6	11c	Ph	В	2.5	12c	84


^{*a*} The starting material **11b** was recovered in 45% yield. ^{*b*} The cyclized product **12b** was obtained in 41% yield when 2.5 mol % of [RhCl(CO)₂]₂ was used. ^{*c*} The cyclized product **12b** was obtained in 56% yield when 2.5 mol % of [RhCl(CO)dppp]₂ was used.

 $dppp_{2}^{12}$ (condition B) was used instead of $[RhCl(CO)_{2}]_{2}$, the ring-closed product 12b was formed in a higher yield (75%, entry 4). Similar treatment of the phenyl derivative 11c under both conditions A and B gave the corresponding bicyclo[5.3.0]dec-1,7-dien-9-one 12c in respective yields of 51% and 84% (entries 5 and 6). Upon exposure to condition A, 11a gave 12a in 45% yield (entry 1). However, condition B gave 12a in only 7% yield along with recovery of the starting material 11a in 45% yield (entry 2). These results are summarized in Table 1. Several points deserve comment. (i) The bicyclo[5.3.0] skeleton was constructed in acceptable vields compared to those in previous works.7c,9 (ii) Complete chemoselectivity was observed in the formal [2 + 2 +1]-cycloaddition, leading to the exclusive construction of the bicyclo[5.3.0]dec-1,7-dien-9-one framework 12, while the corresponding bicyclo[4.3.0]nonenone derivative 13 was not detected in the reaction mixture.

Our next step was to see whether conditions A and B could be applied to other allenynes. Therefore, we investigated the rhodium-catalyzed PKR of four additional alleynes **16a,b** and **18a,b**. The allenynes required for the cyclization were prepared as depicted in Scheme 3. Treatment of the malonate **14** with the iodobutyne derivative was followed by desilylation to give **15a** in 80% yield. According to the procedure described for the transformation of **9** into **11**, **15a** was easily converted through [2,3]-sigmatropic rearrangement¹⁶ to the corresponding alleyne **16a** in 78% yield. The Sonogashira coupling¹⁵ of **15a** with iodobenzene produced **15b**, which was subsequently converted to the phenyl congener **16b**. The two other starting allenynes **18a,b** could also be easily obtained from dimethyl malonate by conventional means (Scheme 3).

The rhodium-catalyzed PKR of two allenynes **16a,b** proceeded under both two conditions A and B as expected

^{*a*} Reaction conditions: (a) NaH, ICH₂C=CCH₂OTBDPS, THF; (b) TBAF, THF, (80%); (c) Phl, PdCl₂(PPh₃)₂, ⁱPr₂NH, CuI, THF, **15b** (82%), **17b** (95%); (d) PhSCl, Et₃N, THF; (e) *m*CPBA, CH₂Cl₂, **16a** (78%), **16b** (80%), **18a** (77%), **18b** (80%); (f) NaH, DMF, I(CH₂)₂C=CCH₂OTHP; (g) NaH, BrCH₂C=CH, THF; (h) *p*-TsOH, MeOH, (56%).

to produce the bicyclo[5.3.0]dec-1,7-dien-9-one derivatives **17a,b** in good yields. A similar result was observed when alleynes **18a,b** were exposed to conditions A and B, although the yields with the latter compounds seemed to be somewhat lower. The results are shown in Table 2.

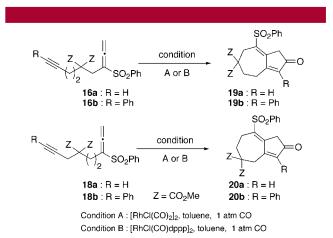
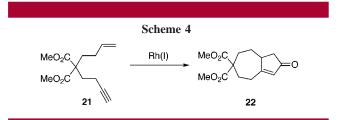



 Table 2. Ring Closure of Allene 16 and 18

entry	allene	R	condition	mol %	product	yield (%)
1	16a	Н	А	2.5	19a	84
2	16a	Н	В	2.5	19a	70
3	16b	Ph	Α	2.5	19b	70
4	16b	Ph	В	2.5	19b	71
5	18a	Н	Α	2.5	20a	58
6	18a	Н	В	2.5	20a	59
7	18b	Ph	Α	2.5	20b	40
8	18b	Ph	В	2.5	20b	69

We next examined the PKR of the enyne derivative **21** by applying conditions A and B, which effectively catalyzed

the PKR of allenynes. Thus, a solution of **21** in toluene was refluxed for a long time in the presence of catalytic amounts of rhodium catalyst under a carbon monoxide atmosphere. However, no cyclized product **22** could be detected in the reaction mixture, and the starting material **21** was completely recovered intact.

In summary, we have developed a reliable procedure for constructing a bicyclo[5.3.0]decane ring system by the rhodium-catalyzed PKR of allenynes with a sulfonyl group.¹⁸ Acceptable yields could be achieved through the proper choice of the rhodium catalyst ([RhCl(CO)₂]₂ or [RhCl(CO)-

dppp]₂) depending on the starting allenyne. The application of this rhodium-catalyzed PKR of allenynes to the construction of other ring systems, such as the bicyclo[6.3.0]undec-1,8-dien-10-one framework, is now in progress.

Acknowledgment. We wish to thank Professor Nakcheol Jeong, Korea University, Korea, for useful discussions on the rhodium(I) catalyst.

Supporting Information Available: Experimental procedures for ring closure and preparation of compound **16a** and spectral data and ¹H and ¹³C NMR spectra for **11a**–c, **12a–c**, **16a,b**, **18a,b**, **19a,b**, and **20a,b**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL020051W

⁽¹⁸⁾ Preliminary experiments revealed that the compound having a diethylphosphono group [PO(OEt)₂] at the C-1 position of an allenyl moiety instead of a sulfonyl group (e.g., **16a**), upon exposure to the Rh(I)-catalyzed cyclization conditions, produced the corresponding bicyclo[5.3.0]dec-1,7-dien-9-one skeleton. The details of these results will be reported later.