

ORIGINAL PAPER

$\begin{array}{c} {\rm Antimycobacterial}\\ {\rm 3-phenyl-4-thioxo-2\it H-1,3-benzoxazine-2(3\it H)-ones}\\ {\rm and 3-phenyl-2\it H-1,3-benzoxazine-2,4(3\it H)-dithiones}\\ {\rm substituted on phenyl and benzoxazine moiety in position 6} \end{array}$

^aEva Petrlíková^{*}, ^aKarel Waisser, ^bRafael Doležal, ^aPavel Holý, ^aJiří Gregor, ^aJiří Kuneš, ^cJarmila Kaustová

^aDepartment of Inorganic and Organic Chemistry, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, CZ-50003 Hradec Králové, Czech Republic

^b Faculty of Science, University of Hradec Králové, Rokitanského 62, CZ-50003 Hradec Králové, Czech Republic

^cRegional Institute of Public Health, Partyzánské náměstí 7, CZ-70200 Ostrava, Czech Republic

Received 13 October 2010; Revised 16 January 2011; Accepted 23 January 2011

A series of forty-five derivatives of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and forty-five derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones was synthesised. The compounds exhibited in-vitro activity against Mycobacterium tuberculosis, M. kansasii (two strains), and M. avium. The most active derivatives were more active than isonicotinhydrazide (INH). The quantitative relationships between the structure and antimycobacterial activity were calculated. The activity against M. tuberculosis increased with the lipophilicity of the substituents. © 2011 Institute of Chemistry, Slovak Academy of Sciences

Keywords: benzoxazine, thioxo group, tuberculostatics, QSAR, antimycobacterial activity

Introduction

The prognosis that, following the millennium, tuberculosis would no longer occur in the developed world was wrong (O'Brien & Nunn, 2001). The emergence of multi-drug resistant (MDR-TB) and extensively-drug resistant (XDR-TB) strains of *Mycobacterium tuberculosis* is a serious problem and tuberculosis remains one of the leading infectious diseases worldwide (Dye, 2009). This unfavourable state is also being influenced by an increase in AIDS, which is often accompanied by the mycobacterial diseases and with the low standard of living of displaced persons (Aaron et al., 2004; Naidoo et al., 2011). New mycobacterial diseases are occurring which, until recently, were considered non-transferable to humans (Tortoli, 2009).

From the perspective of pharmaceutical treatment, N-benzylsalicylamides, salicylanilides, and their cyclic derivatives, benzoxazinediones, are promising classes of compounds (Matyk et al., 2005; Nemeček et al., 2009; Petrlíková et al., 2011, 2010; Waisser et al., 2006). This study is oriented towards the derivatives of benzoxazinediones in which one or both oxo groups were replaced by the thioxo group. Since the compounds are cyclic derivatives of salicylanilides, they can be expected to serve as bacterial two-component system inhibitors (Hlasta et al., 1998; Macielag et al., 1998). Benzoxazine derivatives could also target the biosynthesis of menaquinone, a polyisoprenylated naphtoquinone, that plays an important role in the mycobacterial electron transport chain (Li et al., 2010). Both types of mechanism of action are very promising since the consequent antibacterial effects

^{*}Corresponding author, e-mail: eva.petrlikova@faf.cuni.cz

are probably different from the effects of other antibacterial drugs (Schroeder et al., 2002; van den Boogaard et al., 2009).

Theoretical

Regressions were calculated using Microsoft Excel Multireg programs. The values of the substituent π and σ constants were taken from the literature (Hansch & Leo, 1979). The stability of the QSAR models was evaluated by cross-validation (leave-one-out procedure) (Gupta et al., 2009; Golbraikh & Tropsha, 2002) in Matlab 7.0 program. The Free–Wilson method (Free & Wilson, 1964) modified by Fujita–Ban (Fujita & Ban, 1971) was used to investigate the activity contribution in the case of sulphur derivatives. Since the MIC values after 14 d and 21 d incubation correlated with each other, only the MICs after 14 d evaluation were taken for the calculations.

Experimental

Materials and methods

The melting points were determined using the Kofler apparatus (C. Reichert, Vienna, Austria) and the temperature data were corrected. The samples for analyses and antimycobacterial tests were dried over P_2O_5 at 61 °C and 66 Pa for 24 h. The elemental analyses (C, H, N, S) were performed on a CHNS-O CE elemental analyzer (Fisions EA 1110, Milan, Italy) and were within ± 0.4 % of the theoretical values. The IR spectra of KBr pellets were measured on a Nicolet Impact 400 apparatus (Nicolet, Madison, WI, USA); the wavenumbers are given in cm^{-1} . The purity of the compounds was verified by TLC on silica gel plates pre-coated with a fluorescent indicator Silufol UV 254 + 366 (Kavalier Votice, Czech Republic) and hexaneacetone mixture ($\varphi_r = 3:1$) as the mobile phase. The ¹H NMR and ¹³C NMR spectra of new compounds were recorded in DMSO- d_6 solutions at ambient temperature on a Varian Mercury-Vx BB 300 spectrometer (Varian Inc., Palo Alto, CA, USA) operating at 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR. Chemical shifts were recorded as δ values and indirectly referenced to tetramethylsilane via the solvent signal (DMSO) (2.5 for ¹H or 39.5 for ¹³C).

General procedure for the preparation of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)ones (I-V) and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones (VI-X)

The derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-diones (4 mmol) underwent fusion with P₄S₁₀ (10 mmol) for 45 min (180–210 °C). After cooling to room temperature, a 10 % potassium carbonate solution was poured into the reaction mixture; the crude product was removed by filtration, and dissolved in toluene (p.a., a maximum of 40 mL). Column chromatography using silica gel provided substituted derivatives of 3-phenyl-4-thioxo-2H-1,3benzoxazine-2(3H)-one (I–V) and substituted derivatives of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithione (VI–X) as orange-yellow and red solids, respectively. Recrystallisation from ethanol was necessary.

Antimycobacterial susceptibility testing

For the in-vitro evaluation of the antimycobacterial activity of the substances, the following strains were used: M. tuberculosis CNCTC My 331/88 (identical with H37RV and ATCC 27294), M. kansasii CNCTC My 235/80 (identical with ATCC 12 478), M. avium CNCTC My 330/88 (identical with ATCC 25291), obtained from the Czech National Collection of Type Cultures (CNCTC), National Institute of Public Health, Prague, and a clinical isolate of M. kansasii 6509/96. The antimycobacterial activity of the compounds was determined in the Šula semisynthetic medium (SEVAC, Prague). In order to control the sterility of the inoculum and its growth, a Petri dish containing the Löwenstein–Jensen medium was inoculated with each strain. The compounds were added to the medium dissolved in DMSO. The final concentrations were 1000 μ mol L⁻¹, 500 μ mol L⁻¹,

Fig. 1. Synthesis of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones.

E. Petrlíková et al./Chemical Papers 65 (3) 352–366 (2011)

Table 1. Overview and characteristics of 3-phenyl-4-thioxo-2H-1, 3-benzoxazine-2(3H)-ones

G	D1	$w_i(\text{calc.})/\text{mass \%} = w_i(\text{found})/\text{mass \%}$				Yield	M.p.	$\tilde{\nu}$ (CO)			
Comp.	R	R²	Formula	M_{r}	С	Н	Ν	S	%	°C	$\rm cm^{-1}$
Ia	Br	4-H	$\rm C_{14}H_8BrNO_2S$	334.2	50.32	2.41	4.19	9.59	38	240-242	1764
Ib	Br	$4\text{-}\mathrm{CH}_3$	$\mathrm{C_{15}H_{10}BrNO_{2}S}$	348.2	51.74	2.45	4.02	9.32 9.21	36	259 - 260.5	1759
Ic	Br	4-Cl	$\rm C_{14}H_7BrClNO_2S$	368.6	45.61	1.91	3.80 2.52	9.11 8.70	31	$283 - 284^{a}$	1759
Id	Br	3-Cl	$\rm C_{14}H_7BrClNO_2S$	368.6	45.61 45.20	1.99 1.91 2.01	3.80 3.62	8.70 8.35	33	199–200	1759
Ie	Br	$3,4-Cl_2$	$\rm C_{14}H_6BrCl_2NO_2S$	403.1	41.72 41.42	1.50 1.85	3.47 3.32	7.96	30	220-222	1961
If	Br	4-Br	$\mathrm{C}_{14}\mathrm{H}_{7}\mathrm{Br}_{2}\mathrm{NO}_{2}\mathrm{S}$	413.1	40.71 40.43	1.71 1.65	3.39 3.15	7.76 7.51	37	$260 - 262^{b}$	1771
Ig	Br	4-F	$\rm C_{14}H_7BrFNO_2S$	352.2	47.75 47.56	2.00 2.32	3.98 3.63	9.10 8.83	30	290-291	1763
Ih	Br	3-F	$\rm C_{14}H_7BrFNO_2S$	352.2	$47.75 \\ 47.67$	$2.00 \\ 1.88$	3.98 3.68	$9.10 \\ 8.79$	39	227-228	1764
Ii	Br	$4\text{-}\mathrm{CF}_3$	$\rm C_{15}H_7BrF_3NO_2S$	402.2	$44.80 \\ 44.63$	$1.75 \\ 2.01$	$3.48 \\ 3.16$	$7.97 \\ 7.68$	35	247 - 248	1751
IIa	CH_3	4-H	$\mathrm{C_{15}H_{11}NO_{2}S}$	269.3	$66.89 \\ 66.51$	$4.12 \\ 4,44$	$5.20 \\ 4.98$	$\begin{array}{c} 11.91 \\ 11.63 \end{array}$	34	217-219	1756
IIb	CH_3	$4\text{-}\mathrm{CH}_3$	$\mathrm{C_{16}H_{13}NO_{2}S}$	283.3	$67.82 \\ 67.53$	$\begin{array}{c} 4.62 \\ 4.84 \end{array}$	$4.94 \\ 4.75$	$11.32 \\ 11.21$	30	218–219.5	1755
IIc	CH_3	4-Cl	$\mathrm{C_{15}H_{10}ClNO_{2}S}$	303.8	$59.31 \\ 58.95$	$3.32 \\ 3.65$	$4.61 \\ 4.43$	$\begin{array}{c} 10.56 \\ 10.37 \end{array}$	32	201 - 203	1755
IId	CH_3	3-Cl	$\mathrm{C_{15}H_{10}ClNO_{2}S}$	303.8	$59.31 \\ 59.63$	$3.32 \\ 3.70$	$4.61 \\ 4.68$	$\begin{array}{c} 10.56 \\ 10.25 \end{array}$	31	175 - 177	1756
IIe	CH_3	$3,4-Cl_2$	$\mathrm{C_{15}H_9Cl_2NO_2S}$	338.2	$53.27 \\ 53.52$	$2.68 \\ 2,87$	$4.14 \\ 4.53$	$9.48 \\ 9.21$	37	185–188	1754
IIf	CH_3	4-Br	$\mathrm{C_{15}H_{10}BrNO_{2}S}$	348.2	$51.74 \\ 51.52$	$2.89 \\ 2.68$	$4.02 \\ 5.21$	$9.21 \\ 8.94$	36	207-209	1759
IIg	CH_3	4-F	$\mathrm{C_{15}H_{10}FNO_{2}S}$	287.3	$62.71 \\ 62.43$	$3.51 \\ 3.79$	$4.88 \\ 4.52$	$\begin{array}{c} 11.16 \\ 10.83 \end{array}$	31	206 - 207	1757
IIh	CH_3	3-F	$\mathrm{C_{15}H_{10}FNO_{2}S}$	287.3	$62.71 \\ 62.64$	$3.51 \\ 3.32$	$4.88 \\ 4.65$	$11.16 \\ 11.45$	38	189–199	1758
IIi	CH_3	$4\text{-}\mathrm{CF}_3$	$\mathrm{C_{16}H_{10}F_3NO_2S}$	337.3	$56.97 \\ 56.64$	$2.99 \\ 3.26$	$4.15 \\ 3.95$	$9.51 \\ 9.28$	35	237-238	1760
IIIa	$\rm CH_3O$	4-H	$\mathrm{C}_{15}\mathrm{H}_{11}\mathrm{NO}_{3}\mathrm{S}$	285.3	$63.14 \\ 62.85$	$3.89 \\ 4.01$	$4.91 \\ 4.73$	$11.24 \\ 11,55$	32	233-235	1754
IIIb	$\rm CH_3O$	$4\text{-}\mathrm{CH}_3$	$\mathrm{C}_{16}\mathrm{H}_{13}\mathrm{NO}_{3}\mathrm{S}$	299.3	$64.20 \\ 63.98$	$4.38 \\ 4.56$	$4.68 \\ 4.52$	$\begin{array}{c} 10.71 \\ 10.49 \end{array}$	31	194 - 195.5	1757
IIIc	$\rm CH_3O$	4-Cl	$\mathrm{C_{15}H_{10}ClNO_{3}S}$	319.8	$56.34 \\ 56.01$	$3.15 \\ 3.36$	$4.38 \\ 3.99$	$\begin{array}{c} 10.03 \\ 9.85 \end{array}$	35	227-228	1755
IIId	$\rm CH_3O$	3-Cl	$\mathrm{C}_{15}\mathrm{H}_{10}\mathrm{ClNO}_{3}\mathrm{S}$	319.8	$56.34 \\ 56.22$	$3.15 \\ 2.99$	$\begin{array}{c} 4.38\\ 4.10\end{array}$	$10.03 \\ 9.99$	31	234 - 235	1755
IIIe	$\rm CH_3O$	$3,4-Cl_2$	$\rm C_{15}H_9Cl_2NO_3S$	354.2	$50.86 \\ 51.08$	$2.56 \\ 2.83$	$3.95 \\ 3.74$	$9.05 \\ 8.87$	38	211-213	1754
IIIf	$\rm CH_3O$	4-Br	$\mathrm{C_{15}H_{10}BrNO_{3}S}$	364.2	$49.47 \\ 49.76$	$2.77 \\ 3.05$	$3.85 \\ 3.68$	$8.80 \\ 8.45$	36	219-220	1750
IIIg	$\rm CH_3O$	4-F	$\mathrm{C_{15}H_{10}FNO_{3}S}$	303.3	$59.40 \\ 59.21$	$3.32 \\ 3.64$	$4.62 \\ 4.28$	$\begin{array}{c} 10.57 \\ 10.26 \end{array}$	32	223-224	1759
IIIh	CH_3O	3-F	$\mathrm{C_{15}H_{10}FNO_{3}S}$	303.3	$59.40 \\ 59.01$	$3.32 \\ 3.72$	$4.62 \\ 4.39$	$10.57 \\ 10.39$	36	245-246	1763
IIIi	CH_3O	$4\text{-}\mathrm{CF}_3$	$\mathrm{C_{16}H_{10}F_3NO_3S}$	353.3	$54.39 \\ 54.22$	$2.85 \\ 3.24$	$3.96 \\ 4.01$	$9.08 \\ 8.86$	34	202	1751
IVa	F	Н	$C_{14}H_8FNO_2S$	273.3	$61.53 \\ 61.34$	$2.95 \\ 3.28$	$5.13 \\ 4.78$	$11.73 \\ 11.93$	30	228-229	1762
IVb	F	4-CH ₃	$\mathrm{C_{15}H_{10}NO_{2}S}$	287.3	$62.71 \\ 62.59$	$3.51 \\ 3.83$	4.88 4.64	$\begin{array}{c} 11.16 \\ 10.98 \end{array}$	32	211-213	1756

Table 1. (continued)

Comp	R ¹	\mathbf{R}^2	Formula	М		$w_i(ext{calc.}) \ w_i(ext{found})$	/mass %)/mass %		Yield	M.p.	$\tilde{\nu}$ (CO)
Comp.	10	п	Formula	Wr	С	Н	Ν	S	%	$^{\circ}\mathrm{C}$	cm^{-1}
IVc	F	4-Cl	$\rm C_{14}H_7ClFNO_2S$	307.7	$54.64 \\ 54.37$	$\begin{array}{c} 2.29 \\ 2.48 \end{array}$	$4.55 \\ 4.37$	$10.42 \\ 10.17$	33	211-213	1756
IVd	F	3-Cl	$\rm C_{14}H_7ClFNO_2S$	307.7	$54.64 \\ 54.24$	$2.29 \\ 2.52$	$4.55 \\ 4.43$	$\begin{array}{c} 10.42 \\ 10.36 \end{array}$	34	184 - 185	1756
IVe	F	$3,4-Cl_2$	$\mathrm{C}_{14}\mathrm{H}_{6}\mathrm{Cl}_{2}\mathrm{FNO}_{2}\mathrm{S}$	347.2	$\begin{array}{c} 49.14\\ 48.86\end{array}$	$\begin{array}{c} 1.77 \\ 2.01 \end{array}$	$4.09 \\ 3.98$	$9.37 \\ 8.09$	30	203-205	1756
IVf	F	4-Br	$\rm C_{14}H_7BrFNO_2S$	352.2	$47.75 \\ 42.56$	$2.00 \\ 2.26$	$3.98 \\ 3.69$	$9.10 \\ 8.85$	31	230-231	1755
IVg	F	4-F	$\mathrm{C}_{14}\mathrm{H}_{7}\mathrm{F}_{2}\mathrm{NO}_{2}\mathrm{S}$	291.3	$57.73 \\ 58.01$	$2.42 \\ 2.73$	$4.81 \\ 4.32$	$\begin{array}{c} 11.01 \\ 10.83 \end{array}$	32	175 - 178	1768
IVh	F	3-F	$\mathrm{C}_{14}\mathrm{H}_{7}\mathrm{F}_{2}\mathrm{NO}_{2}\mathrm{S}$	291.3	$57.73 \\ 57.56$	$2.42 \\ 2.68$	$\begin{array}{c} 4.81\\ 4.46\end{array}$	$\begin{array}{c} 11.01 \\ 10.69 \end{array}$	31	172 - 174	1755
IVi	F	$4\text{-}\mathrm{CF}_3$	$\mathrm{C_{15}H_7F_4NO_2S}$	341.3	$52.79 \\ 53.05$	$2.07 \\ 2.38$	$4.10 \\ 3.85$	$9.40 \\ 9.73$	33	207-208	1765
Vg	Cl	4-F	$C_{14}H_7ClFNO_2S$	307.7	$54.64 \\ 54.48$	$2.29 \\ 2.56$	$4.55 \\ 4.24$	$\begin{array}{c} 10.42 \\ 10.27 \end{array}$	34	276 - 277	1764
Vh	Cl	3-F	$\rm C_{14}H_7ClFNO_2S$	307.7	$54.64 \\ 54.28$	$2.29 \\ 2.63$	$4.55 \\ 4.19$	$\begin{array}{c} 10.42 \\ 10.18 \end{array}$	30	209–210	1766
Vi	Cl	$4-CF_3$	$\rm C_{15}H_7ClF_3NO_2S$	352.7	$50.36 \\ 50.16$	$1.97 \\ 2.35$	$3.92 \\ 3.66$	$8.96 \\ 8.68$	32	235-236	1754

a) 280–281 °C (Wagner et al., 1966); b) 256–258 °C (Wagner et al., 1966).

Table 2. Overview and	characteristics	of 3-phenyl-2H-	1,3-benzoxazine-2,4	(3H))-dithiones
-----------------------	-----------------	-----------------	---------------------	------	-------------

Comp	р1	5 2	Formula	М	$w_i({ m calc.})/{ m mass}~\% \ w_i({ m found})/{ m mass}~\%$				Yield	M.p.
Comp.	n	n	Formula	<i>W</i> _r	С	Н	Ν	\mathbf{S}	%	°C
VIa	Br	4-H	$\rm C_{14}H_8BrNOS_2$	350.3	$48.01 \\ 47.86$	$2.30 \\ 2.45$	$4.00 \\ 3.82$	$18.31 \\ 18.26$	32	244-245
VIb	Br	$4\text{-}\mathrm{CH}_3$	$\mathrm{C}_{15}\mathrm{H}_{10}\mathrm{BrNOS}_{2}$	364.3	$49.46 \\ 49.23$	$2.77 \\ 2.96$	$3.85 \\ 3.62$	$17.60 \\ 17.32$	31	246-248
VIc	Br	4-Cl	$\rm C_{15}H_7BrClNOS_2$	384.7	$43.71 \\ 43.48$	$\begin{array}{c} 1.83 \\ 2.03 \end{array}$	$3.64 \\ 3.23$	$16.67 \\ 16.29$	33	256-258
VId	Br	3-Cl	$\rm C_{15}H_7BrClNOS_2$	384.7	$43.71 \\ 43.51$	$1.83 \\ 1.99$	$3.64 \\ 3.46$	$16.67 \\ 16.55$	31	190–192
VIe	Br	$3,4-Cl_2$	$\rm C_{14}H_6BrCl_2NOS_2$	419.1	$40.12 \\ 39.87$	$\begin{array}{c} 1.44 \\ 1.79 \end{array}$	$3.34 \\ 2.98$	$15.30 \\ 14.98$	30	203-205
VIf	Br	4-Br	$\mathrm{C}_{14}\mathrm{H}_{7}\mathrm{Br}_{2}\mathrm{NOS}_{2}$	429.2	$39.18 \\ 38.96$	$\begin{array}{c} 1.64 \\ 1.91 \end{array}$	$3.26 \\ 3.01$	$\begin{array}{c} 14.94 \\ 15.02 \end{array}$	33	248-251
VIg	Br	4-F	$\rm C_{15}H_7BrFNOS_2$	368.2	$45.66 \\ 45.83$	$1.92 \\ 2.30$	$3.80 \\ 3.64$	$17.42 \\ 17.67$	32	224-226
VIh	\mathbf{Br}	3-F	$\rm C_{14}H_7BrFNOS_2$	368.2	$45.66 \\ 45.24$	$\begin{array}{c} 1.92 \\ 2.14 \end{array}$	$3.80 \\ 3.51$	$17.42 \\ 17.23$	35	231-232
VIi	Br	$4\text{-}\mathrm{CF}_3$	$\rm C_{15}H_7BrF_3NOS_2$	418.3	$43.07 \\ 42.89$	$1.69 \\ 201$	$3.35 \\ 3.71$	$15.33 \\ 15.58$	32	182-184
VIIa	CH_3	4-H	$\mathrm{C}_{16}\mathrm{H}_{13}\mathrm{NOS}_{2}$	285.4	$63.13 \\ 62.84$	$3.89 \\ 3.73$	$4.91 \\ 5.21$	$22.47 \\ 22.28$	30	198-199
VIIb	CH_3	$4\text{-}\mathrm{CH}_3$	$\mathrm{C}_{16}\mathrm{H}_{13}\mathrm{NOS}_{2}$	299.4	$64.18 \\ 63.82$	$4.38 \\ 4.32$	$4.68 \\ 5.01$	$21.42 \\ 21.26$	32	225-22'
VIIc	CH_3	4-Cl	$\mathrm{C_{15}H_{10}ClNOS_2}$	319.8	$56.33 \\ 55.99$	$3.15 \\ 2.87$	$4.38 \\ 4.01$	$20.05 \\ 19.76$	33	192–193
VIId	CH_3	3-Cl	$\mathrm{C_{15}H_{10}ClNOS_2}$	319.8	$56.33 \\ 56.20$	$3.15 \\ 3.38$	$4.38 \\ 4.25$	20.05 20.36	31	185-18
VIIe	CH_3	$3,4-Cl_2$	$\mathrm{C_{15}H_9Cl_2NOS_2}$	354.3	$50.85 \\ 51.17$	$2.56 \\ 2.83$	$3.95 \\ 3.95$	$18.10 \\ 17.79$	32	175-17

Table 2. (continued)

Comp	\mathbb{R}^1	\mathbf{P}^2	Formula	М		$w_i(ext{calc.}), w_i(ext{found})$	/mass %)/mass %		Yield	M.p.
Comp.	Comp. It		rormula	<i>m</i> r	С	Н	Ν	S	%	°C
VIIf	CH_3	4-Br	$\rm C_{15}H_{10}CBrNOS_2$	364.3	49.46 49.17	2.77 3.01	$3.85 \\ 3.63$	17.60 17.43	30	218–219
VIIg	CH_3	4-F	$\rm C_{15}H_{10}FNOS_2$	303.4	59.39 59.18	3.32 3.17	4.62 4.24	21.14 20.89	33	184–185
VIIh	CH_3	3-F	$\mathrm{C_{15}H_{10}FNOS_2}$	303.4	$59.39 \\ 59.17$	$3.32 \\ 3.63$	$\begin{array}{c} 4.62 \\ 4.27 \end{array}$	$21.14 \\ 20.78$	31	193–194
VIIi	CH_3	$4\text{-}\mathrm{CF}_3$	$\mathrm{C}_{16}\mathrm{H}_{10}\mathrm{F}_{3}\mathrm{NOS}_{2}$	353.3	$54.38 \\ 54.23$	$2.85 \\ 3.12$	$3.96 \\ 3.73$	$18.15 \\ 17.96$	31	194 - 195
VIIIa	$\rm CH_3O$	4 - H	$\mathrm{C_{15}H_{11}NO_2S_3}$	301.4	$59.78 \\ 59.66$	$3.68 \\ 3.97$	$\begin{array}{c} 4.65 \\ 4.27 \end{array}$	$21.28 \\ 20.12$	32	259-260
VIIIb	$\rm CH_3O$	$4\text{-}\mathrm{CH}_3$	$\mathrm{C_{16}H_{13}NO_2S_2}$	315.4	$60.93 \\ 60.68$	$\begin{array}{c} 4.15\\ 4.48\end{array}$	$4.44 \\ 4.23$	$20.33 \\ 20.17$	30	190–191
VIIIc	$\rm CH_3O$	4-Cl	$\mathrm{C_{15}H_{10}ClNO_2S_2}$	335.8	$53.65 \\ 53.28$	$3.00 \\ 3.38$	$4.17 \\ 3.82$	$\begin{array}{c} 19.10\\ 18.78 \end{array}$	32	181–183
VIIId	$\rm CH_3O$	3-Cl	$\mathrm{C_{15}H_{10}ClNO_2S_2}$	335.8	$53.65 \\ 53.36$	$3.00 \\ 3.27$	$4.17 \\ 3.96$	$\begin{array}{c} 19.10\\ 18.84 \end{array}$	33	219-220
VIIIe	$\rm CH_3O$	$3,4-Cl_2$	$\mathrm{C}_{15}\mathrm{H}_{9}\mathrm{Cl}_{2}\mathrm{NO}_{2}\mathrm{S}_{2}$	370.3	$48.66 \\ 48.24$	$2.45 \\ 2.63$	$3.78 \\ 3.63$	$17.32 \\ 17.12$	30	170 - 172
VIIIf	$\rm CH_3O$	4-Br	$\mathrm{C_{15}H_{10}BrNO_2S_2}$	380.3	$47.38 \\ 47.16$	$2.65 \\ 2.87$	$3.68 \\ 3.37$	$16.86 \\ 16.73$	31	171–173
VIIIg	$\rm CH_3O$	4 - F	$\mathrm{C_{15}H_{10}FNO_2S_2}$	319.4	$56.41 \\ 56.23$	$3.16 \\ 3.24$	$4.39 \\ 4.16$	$20.08 \\ 19.89$	32	211-212
VIIIh	$\rm CH_3O$	3-F	$\mathrm{C_{15}H_{10}FNO_2S_2}$	319.4	$56.41 \\ 56.28$	$3.16 \\ 3.36$	$4.39 \\ 4.23$	$20.08 \\ 20.15$	30	278–279
VIIIi	CH_3O	$4-CF_3$	$\mathrm{C}_{16}\mathrm{H}_{10}\mathrm{F}_{3}\mathrm{NO}_{1}\mathrm{S}_{2}$	369.4	$52.03 \\ 51.96$	$2.73 \\ 2.98$	$3.79 \\ 3.56$	$17.36 \\ 17.15$	33	195 - 196
IXa	\mathbf{F}	Н	$C_{14}H_8FNO_2S_2$	289.4	$58.11 \\ 57.86$	$2.79 \\ 2.93$	$4.84 \\ 4.53$	$22.16 \\ 21.96$	30	166 - 167
IXb	\mathbf{F}	4-CH ₃	$\mathrm{C}_{15}\mathrm{H}_{10}\mathrm{NOS}_{2}$	303.4	$59.39 \\ 59.19$	$3.32 \\ 3.54$	$\begin{array}{c} 4.62 \\ 4.36 \end{array}$	$21.14 \\ 20.83$	32	187–189
IXc	F	4-Cl	$C_{14}H_7ClFNOS_2$	323.8	$51.93 \\ 51.77$	$2.18 \\ 2.34$	$4.33 \\ 4.14$	$\begin{array}{c} 19.81 \\ 19.76 \end{array}$	31	166 - 168
IXd	F	3-Cl	$C_{14}H_7ClFNOS_2$	323.8	$51.93 \\ 51.68$	$2.18 \\ 2.42$	$4.33 \\ 4.57$	$19.81 \\ 19.53$	33	166 - 168
IXe	F	$3,4-Cl_2$	$C_{14}H_6Cl_2FNOS_2$	358.2	$\begin{array}{c} 46.94 \\ 46.62 \end{array}$	$\begin{array}{c} 1.69 \\ 2.01 \end{array}$	$3.91 \\ 3.58$	$17.90 \\ 17.65$	32	162–164
IXf	F	4-Br	$C_{14}H_7BrFNOS_2$	368.2	$\begin{array}{c} 45.66 \\ 46.38 \end{array}$	$1.92 \\ 2.37$	$3.80 \\ 3.52$	$17.42 \\ 17.27$	32	177–178
IXg	F	4-F	$C_{14}H_7F_2NOS_2$	307.3	$54.71 \\ 54.83$	$2.30 \\ 2.44$	$4.56 \\ 4.16$	$20.87 \\ 20.93$	30	180–182
IXh	F	3-F	$C_{14}H_7F_2NOS_2$	307.3	$54.71 \\ 54.64$	$2.30 \\ 2.63$	$4.56 \\ 4.27$	$20.87 \\ 20.74$	33	189–191
IXi	\mathbf{F}	$4\text{-}\mathrm{CF}_3$	$C_{15}H_7F_4NOS_2$	357.4	$50.42 \\ 50.77$	$1.97 \\ 2.23$	$3.92 \\ 3.68$	$17.95 \\ 17.86$	31	178–179
Xg	Cl	4-F	$C_{14}H_7ClFNOS_2$	323.8	$51.93 \\ 51.58$	$2.18 \\ 2.14$	$4.33 \\ 4.22$	$\begin{array}{c} 19.81 \\ 19.99 \end{array}$	32	203–204
Xh	Cl	3-F	$C_{14}H_7ClFNOS_2$	323.8	$51.93 \\ 51.88$	$2.18 \\ 1.96$	$4.33 \\ 4.61$	$\begin{array}{c} 19.81 \\ 20.02 \end{array}$	31	213
Xi	Cl	4-CF ₃	$C_{15}H_7ClF_3NOS_2$	373.8	48.20 47.85	$1.89 \\ 2.17$	$4.28 \\ 3.91$	$17.16 \\ 17.38$	30	175–176

250 μ mol L⁻¹, 125 μ mol L⁻¹, 62.5 μ mol L⁻¹, 32 μ mol L⁻¹, 16 μ mol L⁻¹, 8 μ mol L⁻¹, 4 μ mol L⁻¹, 2 μ mol L⁻¹, 1 μ mol L⁻¹, and 0.5 μ mol L⁻¹. The minimum inhibitory concentrations (MIC) were determined after incubation at 37 °C for 14 days and 21 days, respec-

tively. The tests were repeated three times.

Results and discussion

3- Phenyl-4-thioxo-2 H-1, 3-benzoxazine-2 (3 H)-ones

 Table 3. NMR spectral data of newly prepared compounds

Comp.	NMR spectral data ^{a}
Ia	¹ H NMR (300 MHz, CDCl ₃), δ : 8.54 (d, 1H, $J = 2.35$ Hz, H-5), 7.80 (dd, 1H, $J = 8.66$ Hz, $J = 2.35$ Hz, H-7), 7.61–7.50 (m, 3H, H-3', H-4', H-5'), 7.28–7.19 (m, 3-H, H-8, H-2', H-6') ¹³ C NMR (75 MHz, CDCl ₃), δ : 189.9, 148.3, 144.5, 138.8, 138.4, 134.3, 129.9, 129.3, 127.7, 122.0, 118.8, 118.4
Ib	¹ H NMR (300 MHz, CDCl ₃), δ : 8.54 (d, 1H, $J = 2.45$ Hz, H-5), 7.80 (dd, 1H, $J = 8.52$ Hz, $J = 2.45$ Hz, H-7), 7.40–7.34 (m, AA', BB', 2-H, H-2', H-6'), 7.20 (d, 1H, $J = 8.52$ Hz, H-8), 7.16–7.11 (m, AA', BB', 2-H, H-3', H-5'), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, CDCl ₃), δ : 190.0, 148.2, 144.6, 139.5, 138.4, 136.2, 134.3, 130.6, 127.3, 122.0, 118.8, 118.4, 21.5
Ic	¹ H NMR (300 MHz, CDCl ₃), δ : 8.53 (d, 1H, $J = 2.40$ Hz, H-5), 7.81 (dd, 1H, $J = 8.82$ Hz, $J = 2.40$ Hz, H-7), 7.56–7.49 (m, AA', BB', 2-H, H-2', H-6'), 7.21 (d, overlapped, 1H, $J = 8.82$ Hz, H-8), 7.24–7.16 (m, AA', BB', 2-H, H-3', H-5')
Id	¹³ C NMR (75 MHz, CDCl ₃), δ : 189.7, 148.2, 144.4, 138.6, 137.1, 135.4, 134.3, 130.2, 129.2, 121.9, 119.0, 118.5 ¹ H NMR (300 MHz, CDCl ₃), δ : 8.51 (d, 1H, $J = 2.41$ Hz, H-5), 7.81 (dd, 1H, $J = 8.83$ Hz, $J = 2.41$ Hz, H-7), 7.51–7.47 (m, 2-H, H-2', H-4'), 7.28–7.25 (m, 1-H, H-6'), 7.21 (d, 1H, $J = 8.83$ Hz, H-8), 7.18–7.12 (m, 1-H, H-5') ¹³ C NMR (75 MHz, CDCl ₃), δ : 189.5, 148.2, 144.2, 139.5, 138.6, 135.3, 134.2, 130.8, 129.7, 128.3, 126.2, 121.9, 119.0, 118.4
Ie	¹ H NMR (300 MHz, CDCl ₃), δ : 8.51 (d, 1H, $J = 2.48$ Hz, H-5), 7.82 (dd, 1H, $J = 8.71$ Hz, $J = 2.48$ Hz, H-7), 7.63 (d, 1H, $J = 8.51$ Hz, H-5'), 7.37 (d, 1H, $J = 2.42$ Hz, H-2'), 7.21 (d, 1H, $J = 8.71$ Hz, H-8), 7.11 (dd, 1H, $J = 8.51$ Hz, $J = 2.42$ Hz, H-6') ¹³ C NMR (75 MHz, CDCl ₃), δ : 189.4, 148.1, 144.2, 138.8, 137.5, 134.2, 133.9, 133.9, 131.5, 130.1, 127.4, 121.8, 119.1, 118.5
If	^{115,1,110,5} ¹ H NMR (300 MHz, CDCl ₃), δ : 8.52 (d, 1H, $J = 2.42$ Hz, H-5), 7.81 (dd, 1H, $J = 8.80$ Hz, $J = 2.42$ Hz, H-7), 7.71–7.65 (m, AA', BB', 2-H, H-2', H-6'), 7.21 (d, 1H, $J = 8.80$ Hz, H-8), 7.16–7.09 (m, AA', BB', 2-H, H-3', H-5') ¹³ C NMR (75 MHz, CDCl ₃), δ : 189.6, 148.2, 144.3, 138.6, 137.6, 134.2, 133.2, 129.5, 123.5, 121.9, 119.0, 118.5
Ig	¹ H NMR (300 MHz, CDCl ₃), δ : 8.53 (d, 1H, $J = 2.47$ Hz, H-5), 7.81 (dd, 1H, $J = 8.79$ Hz, $J = 2.47$ Hz, H-7), 7.25–7.19 (m, 4-H, H-2', H-3', H-5', H-6'), 7.21 (d, overlapped, 1H, $J = 8.79$ Hz, H-8) ¹³ C NMR (75 MHz, CDCl ₃), δ : 190.2, 162.7 (d, $J = 249.9$ Hz), 148.4, 144.7, 138.7, 134.7 (d, $J = 3.4$ Hz), 134.4, 129.8 (d, $J = 8.9$ Hz), 122.1, 119.0, 118.5, 117.1 (d, $J = 23.2$ Hz)
Ih	^{125.5} (d, $J = 0.5$ Hz), ^{122.1} , ^{115.6} , ^{116.5} , ^{111.1} (d, $J = 2.47$ Hz, ^{115.6}) ¹ H NMR (300 MHz, CDCl ₃), δ : 8.52 (d, 1H, $J = 2.47$ Hz, H-5), 7.81 (dd, 1H, $J = 8.79$ Hz, $J = 2.47$ Hz, H-7), ^{7.58–7.49} (m, 1H, H-6'), ^{7.27–7.21} (m, 1H, H-2'), ^{7.21} (d, overlapped, 1H, $J = 8.79$ Hz, H-8), ^{7.09–7.03} (m, 1H, H-5'), ^{7.00} (dt, 1H, $J = 8.79$ Hz, $J = 2.20$ Hz, H-4') ¹³ C NMR (75 MHz, CDCl ₃), δ : 189.7, 163.3 (d, $J = 248.8$ Hz), 148.3, 144.4, 139.8 (d, $J = 10.0$ Hz), 138.7, 134.3, 131.1 ($J = 8.9$ Hz), 123.8 (d, $J = 3.47$ Hz), 122.0, 119.1, 118.5, 116.7 (d, $J = 20.9$ Hz), 115.9 (d, $J = 23.8$ Hz)
Ii	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.36 (d, 1H, $J = 2.47$ Hz, H-5), 8.06 (dd, 1H, $J = 8.79$ Hz, $J = 2.47$ Hz, H-7), 7.96–7.90 (m, AA', BB', 2-H, H-3', H-5'), 7.69–7.62 (m, AA', BB', 2-H, H-2', H-6'), 7.52 (d, 1H, $J = 8.79$ Hz, H-8) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.2, 149.2, 144.3, 143.5, 138.9, 132.8, 129.7, 129.5 (q, $J = 32.1$ Hz), 127.0 (q, J = 3.7 Hz), 124.2 (q, $J = 272.6$ Hz), 122.5, 119.5, 117.6
IIa	¹ H NMR (300 MHz, (CD ₃) ₂ CO), δ : 8.22 (d, 1H, $J = 1.78$ Hz, H-5), 7.60–7.47 (m, 4H, H-7, H-3', H-4', H-5'), 7.29–7.24 (m, 2H, H-2', H-6'), 7.20 (d, 1H, $J = 8.24$ Hz, H-8), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, (CD ₃) ₂ CO), δ : 192.1, 147.6, 145.3, 139.2, 137.1, 135.9, 131.8, 129.8, 129.2, 127.9, 120.5, 116.3, 20.8
IIb	¹ H MMR (300 MHz, (CD ₃) ₂ CO), δ : 8.22 (d, 1H, $J = 1.92$ Hz, H-5), 7.52 (dd, 1H, $J = 8.24$ Hz, $J = 1.92$ Hz, H-7), 7.40–7.33 (m, AA', BB', 2H, H-2', H-6'), 7.20 (d, 1H, $J = 8.24$ Hz, H-8), 7.17–7.12 (m, AA', BB', 2H, H-3', H-5'), 2.45 (bs, 6H, CH ₃) ¹³ C NMR (75 MHz, (CD ₃) ₂ CO), δ : 192.2, 147.6, 145.4, 139.3, 137.0, 136.6, 135.9, 131.8, 130.6, 127.5, 120.5, 116.3,
IIc	^{21.4, 20.8} ¹ H NMR (300 MHz, (CD ₃) ₂ CO), δ : 8.20 (d, 1H, $J = 1.62$ Hz, H-5), 7.57–7.49 (m, 3H, H-7, H-2', H-6'), 7.24–7.16 (m, 3H, H-8, H-3', H-5'), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, (CD ₃) ₂ CO), δ : 191.9, 147.5, 145.1, 137.5, 137.2, 136.1, 135.2, 131.7, 130.1, 129.4, 120.4, 116.3, 20.8
IId	¹ H NMR (300 MHz, (CD ₃) ₂ CO), δ : 8.21–8.18 (m, 1H, H-5), 7.54 (ddd, 1H, $J = 8.24$ Hz, $J = 2.20$ Hz, $J = 0.57$ Hz, H-7), 7.50–7.45 (m, 2H, H-2', H-6'), 7.29–7.27 (m, 1H, H-5'), 7.20 (d, overlapped, 1H, $J = 8.24$ Hz, H-8), 7.20–7.14 (m, 1H, H-4'), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, (CD ₃) ₂ CO), δ : 191.7, 147.5, 145.0, 140.0, 137.3, 136.1, 135.3, 131.7, 130.7, 129.6, 128.5, 126.4, 120.3, 116.3, 20.8
IIe	¹ H NMR (300 MHz, (CD ₃) ₂ CO), δ : 8.20–8.17 (m, 1H, H-5), 7.62 (d, 1H, $J = 8.52$ Hz, H-5'), 7.54 (dd, 1H, $J = 8.52$ Hz, $J = 2.20$ Hz, H-7), 7.38 (d, 1H, $J = 2.47$ Hz, H-2'), 7.20 (d, 1H, $J = 8.52$ Hz, H-8), 7.12 (dd, 1H, $J = 8.52$ Hz, $J = 2.47$ Hz, H-6'), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, (CD ₃) ₂ CO), δ : 191.6, 147.5, 145.0, 138.0, 137.4, 136.2, 133.8, 131.7, 131.5, 130.3, 127.6, 120.3, 116.4, 20.8

Table 3. (continued)

Comp.	NMR spectral data ^{a}
IIf	¹ H NMR (300 MHz, (CD ₃) ₂ CO), δ : 8.21–8.19 (m, 1H, H-5), 7.71–7.64 (m, AA', BB', 2H, H-2', H-6'), 7.54 (m, 1H, H-7), 7.20 (d, 1H, $J = 8.24$ Hz, H-8), 7.17–7.11 (m, AA', BB', 2H, H3', H5'), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, (CD ₃) ₂ CO), δ : 191.8, 147.5, 145.1, 138.1, 137.3, 136.1, 133.1, 131.7, 129.7, 123.3, 120.4, 116.3, 20.8
IIg	¹ H NMR (300 MHz, (CDCl ₃), δ : 8.20 (d, 1H, $J = 2.20$ Hz, H-5), 7.53 (dd, 1H, $J = 8.24$ Hz, $J = 2.20$ Hz, H-7), 7.25–7.22 (m, 4H, H-2' H-3', H-5', H-6'), 7.20 (d, 1H, $J = 8.24$ Hz, H-8), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, CDCl ₃), δ : 192.1, 162.6 (d, $J = 249.4$ Hz), 147.5, 145.3, 137.2, 136.0, 135.0 (d, $J = 3.5$ Hz), 131.8, 129.9 (d, $J = 8.8$ Hz), 120.4, 117.0 (d, $J = 23.2$ Hz), 116.3, 20.8
IIh	¹ H NMR (300 MHz, (CDCl ₃), δ : 8.22–8.19 (m, 1H, H-5), 7.57–7.48 (m, 2H, H-7, H-6'), 7.25–7.17 (m, 1H, H-2'), 7.20 (d, overlapped, 1H, $J = 8.52$ Hz, H-8), 7.09–7.04 (m, 1H, H-5'), 7.01 (dd, 1H, $J = 8.79$ Hz, $J = 2.19$ Hz, H-4'), 2.45 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, CDCl ₃), δ : 191.7, 163.2 (d, $J = 248.8$ Hz), 147.5, 145.0, 140.2 (d, $J = 10.3$ Hz), 137.2, 136.1, 131.7, 131.0 (d, $J = 8.9$ Hz), 123.9 (d, $J = 3.4$ Hz), 120.4, 116.5 (d, $J = 20.9$ Hz), 115.9 (d, $J = 23.8$ Hz), 20.8
IIi	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.13–8.08 (m, 1H, H-5), 7.96–7.88 (m, AA', BB', 2H, H-3', H-5'), 7.70–7.62 (m, AA', BB' overlapped, 2H, H-2', H-6'), 7.70 (dd, overlapped, 1H, $J = 8.52$ Hz, $J = 2.20$ Hz, H-7), 7.40 (d, 1H, $J = 8.51$ Hz, H-8), 2.41 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.7, 148.1, 144.8, 143.8, 137.6, 135.5, 130.8, 129.8, 129.3 (q, $J = 31.8$ Hz), 126.8 (q, $J = 3.8$ Hz), 124.2 (q, $J = 272.6$ Hz), 120.6, 116.7, 20.5
IIIa	¹ H NMR (300 MHz, CDCl ₃), δ : 7.83 (d, 1H, $J = 2.74$ Hz, H-5), 7.64–7.45 (m, 3H, H-7, H-2', H-6'), 7.37–7.19 (m, 4H, H-8, H-3', H-4', H-5'), 3.90 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, CDCl ₃), δ : 191.7, 157.1, 143.9, 139.3, 130.0, 129.9, 129.3, 127.9, 125.3, 125.0, 117.9, 112.5, 56.0
IIIb	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.74–7.70 (m, 1H, H-5), 7.56–7.35 (m, 3H, H-7, H-2', H-6'), 7.33–7.20 (m, 3H, H-8, H-3', H-5'), 3.83 (s, 3H, OCH ₃), 2.36 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.5, 156.5, 144.3, 138.2, 137.8, 130.0, 129.5, 128.1, 124.4, 121.3, 118.3, 112.6, 56.1, 21.0
IIIc	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.72–7.70 (m, 1H, H5), 7.64–7.55 (m, AA', BB', 2H, H-2', H-6'), 7.49–7.39 (m, 4H, H-7, H-8, H-3', H-5'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.4, 156.5, 144.8, 144.3, 139.2, 133.5, 130.5, 129.7, 124.6, 121.9, 118.3, 112.5, 56.1
IIId	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.73–7.69 (m, 1H, H5), 7.59–7.50 (m, 3H, H-7, H-2', H-6'), 7.48–7.38 (m, 3H, H-8, H-4', H-5'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.3, 156.6, 144.8, 144.2, 141.5, 133.5, 131.2, 129.0, 128.6, 127.6, 124.6, 121.3, 118.3, 112.5, 56.1
IIIe	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.83 (d, 1H, $J = 8.52$ Hz, H-5'), 7.79 (d, 1H, $J = 2.20$ Hz, H-5), 7.72–7.70 (m, 1H, H-2'), 7.50–7.43 (m, 3H, H-7, H-8, H-6'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.3, 156.6, 144.7, 144.2, 140.0, 131.8, 131.8, 131.7, 130.8, 129.4, 124.7, 121.2, 118.4, 112.4, 56.1
IIIf	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.75–7.69 (m, 3H, H-5, H-2', H-6'), 7.47–7.44 (m, 2H, H-7, H-8), 7.40–7.34 (m, 2H, H-3', H-5'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.4, 156.5, 144.8, 144.3, 139.6, 132.7, 130.8, 124.6, 122.1, 121.3, 118.3, 112.5, 56.1
IIIg	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.71 (dd, 1H, $J = 2.47$ Hz, $J = 0.82$ Hz, H-5), 7.50–7.41 (m, 4H, H-7, H-8, H-2', H-6'), 7.40–7.31 (m, 2H, H-3', H-5'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 193.1, 162.4 (d, $J = 245.1$ Hz), 157.0, 145.4, 144.7, 137.0 (d, $J = 3.2$ Hz), 131.2 (d, $J = 8.9$ Hz), 125.0, 121.8, 118.9, 117.0 (d, $J = 23.2$ Hz), 113.1, 56.6
IIIh	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.73–7.70 (m, 1H, H-5), 7.62–7.42 (m, 3H, H-7, H-2', H-6'), 7.38–7.24 (m, 3H, H-8, H-4', H-5'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.3, 162.6 (d, $J = 244.0$ Hz), 156.6, 144.7, 144.2, 141.5 (d, $J = 10.9$ Hz), 131.2 (d, $J = 8.9$ Hz), 125.0, 124.6, 121.3, 118.3, 116.0 (d, $J = 22.3$ Hz), 112.5, 56.1
IIIi	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.98–7.88 (m, AA', BB', 2H, H-3', H-5'), 7.74–7.70 (m, 1H, H-5), 7.70–7.64 (m, AA', BB', 2H, H-2', H-6'), 7.49–7.46 (m, 2H, H-7, H-8), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 192.3, 156.6, 144.8, 144.3, 143.9, 129.8, 129.3 (q, $J = 32.1$ Hz), 126.8 (q, $J = 3.8$ Hz), 124.7, 124.2 (q, $J = 272.3$ Hz), 121.3, 118.4, 112.4, 56.1
IVa	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.97 (dd, 1H, $J = 9.1$ Hz, $J = 3.0$ Hz, H-5), 7.80–7.71 (m, 1H, H-7), 7.60–7.53 (m, 1H, H-8), 7.53–7.47 (m, 2H, H-2', H-6'), 7.47–7.40 (m, 1H, H-4'), 7.40–7.34 (m, 2H, H-3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.5 (d, $J = 3.2$ Hz), 158.8 (d, $J = 241.6$ Hz), 146.3 (d, $J = 1.7$ Hz), 144.6, 140.0, 129.6, 129.0, 128.3, 123.8 (d, $J = 24.9$ Hz), 122.0 (d, $J = 8.9$ Hz), 119.4 (d, $J = 8.6$ Hz), 116.2 (d, $J = 26.6$ Hz)

 Table 3. (continued)

Comp.	NMR spectral data ^{a}
IVb	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.96 (dd, 1H, $J = 9.2$ Hz, $J = 3.0$ Hz, H-5), 7.78–7.69 (m, 1H, H-7), 7.54 (dd, 1H, $J = 9.2$ Hz, $J = 4.4$ Hz, H-8), 7.33–7.27 (m, AA', BB', 2H, H-2', H-6'), 7.26–7.21 (m, AA', BB', 2H, H-3', H-5'), 2.36 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.5 (d, $J = 2.9$ Hz), 158.7 (d, $J = 241.9$ Hz), 146.2 (d, $J = 1.7$ Hz), 144.7, 138.4, 137.5, 130.1, 127.9, 123.8 (d, $J = 24.9$ Hz), 122.0 (d, $J = 8.9$ Hz), 119.3 (d, $J = 8.3$ Hz), 116.2 (d, $J = 26.6$ Hz) 21.2
IVc	¹¹²⁾ , ^{21.2} ¹ H NMR (300 MHz, DMSO- d_6), δ : 7.97 (dd, 1H, $J = 9.1$ Hz, $J = 3.0$ Hz, H-5), 7.80–7.71 (m, 1H, H-7), 7.62–7.53 (m, 3H, H-8, H-2', H-6'), 7.46–7.39 (m, 2H, AA', BB', H3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.5 (d, $J = 3.1$ Hz), 158.8 (d, $J = 242.2$ Hz), 146.2 (d, $J = 1.4$ Hz), 144.5, 138.9, 133.6, 130.3, 129.8, 123.9 (d, $J = 24.6$ Hz), 121.9 (d, $J = 8.8$ Hz), 119.4 (d, $J = 8.3$ Hz), 116.2 (d, $J = 26.6$ Hz)
IVd	^{11D} ¹ H NMR (300 MHz, DMSO- d_6), δ : 7.97 (dd, 1H, $J = 9.1$ Hz, $J = 3.0$ Hz, H-5), 7.81–7.72 (m, 1H, H-7), 7.62–7.50 (m, 4H, H-8, H-2', H-5', H-6'), 7.42–7.36 (m, 1H, H-4') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.4 (d, $J = 2.9$ Hz), 158.8 (d, $J = 242.2$ Hz), 146.2 (d, $J = 1.7$ Hz), 144.5, 141.2, 133.5, 131.3, 129.2, 128.4, 127.4, 124.0 (d, $J = 24.7$ Hz), 121.9 (d, $J = 8.9$ Hz), 119.4 (d, $J = 8.3$ Hz), 116.2 (d, $J = 26.6$ Hz)
IVe	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.98 (dd, 1H, $J = 9.1$ Hz, $J = 3.0$ Hz, H-5), 7.82 (d, 1H, $J = 8.7$ Hz, H-5'), 7.81–7.73 (m, 2H, H-7, H-2'), 7.59 (dd, 1H, $J = 9.1$ Hz, $J = 4.4$ Hz, H8), 7.44 (dd, 1H, $J = 8.7$ Hz, $J = 2.2$ Hz, H-6') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.4 (d, $J = 3.1$ Hz), 158.8 (d, $J = 242.5$ Hz), 146.2 (d, $J = 1.4$ Hz), 144.4, 139.7, 132.0, 131.8, 131.7, 130.6, 129.2, 124.2 (d, $J = 24.9$ Hz), 121.9 (d, $J = 8.9$ Hz), 119.5 (d, $J = 8.3$ Hz), 116.1 (d, $J = 26.6$ Hz)
IVf	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.97 (dd, 1H, $J = 9.1$ Hz, $J = 3.3$ Hz, H-5), 7.81–7.68 (m, 3H, H-7, H-2', H-6'), 7.57 (dd, 1H, $J = 9.1$ Hz, $J = 4.4$ Hz, H-8), 7.39–7.33 (m, AA', BB', 2H, H-3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.4 (d, $J = 3.2$ Hz), 158.8 (d, $J = 241.9$ Hz), 146.2 (d, $J = 1.7$ Hz), 144.5, 139.3, 132.7, 130.6, 124.0 (d, $J = 24.6$ Hz), 122.2, 121.9 (d, $J = 8.8$ Hz), 119.4 (d, $J = 8.6$ Hz), 116.2 (d, $J = 26.6$ Hz)
IVg	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.98 (dd, 1H, $J = 9.07$ Hz, $J = 3.02$ Hz, H-5), 7.82–7.73 (m, 1H, H-7), 7.59 (dd, 1H, $J = 9.06$ Hz, $J = 4.39$ Hz, H-8), 7.50–740 (m, 2H, H-2', H-6'), 7.40–7.30 (m, 2H, H-3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.9, 162.0 (d, $J = 245.1$ Hz), 158.8 (d, $J = 242.2$ Hz), 146.3 (d, $J = 3.2$ Hz), 144.7 (d, $J = 2.0$ Hz), 136.3 (d, $J = 3.2$ Hz), 130.6 (d, $J = 9.2$ Hz), 123.9 (d, $J = 24.6$ Hz), 122.0 (d, $J = 8.9$ Hz), 119.4 (d, $J = 8.6$ Hz), 116.6 (d, $J = 23.2$ Hz), 116.2 (d, $J = 26.3$ Hz)
IVh	¹ H NMR (300 MHz, CDCl ₃), δ : 8.00 (dd, 1H, $J = 8.52$ Hz, $J = 3.02$ Hz, H-5), 7.58–7.40 (m, 2H, H-7, H-6'), 7.31 (dd, 1H, $J = 9.07$ Hz, $J = 4.12$ Hz, H-8), 7.22 (ddd, 1H, $J = 8.52$ Hz, $J = 2.47$ Hz, $J = 0.82$ Hz, H-2'), 7.09–7.04 (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 7.01 (dt, 1H, $J = 8.51$ Hz, $J = 2.20$ Hz, H-4') (m, 1H, H-5'), 12.17 (d, $J = 2.9$ Hz), 118.7 (d, $J = 8.3$ Hz), 117.4 (d, $J = 26.6$ Hz), 116.7 (d, $J = 20.9$ Hz), 115.9 (d, $J = 23.7$ Hz)
IVi	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.99 (dd, 1H, $J = 9.07$ Hz, $J = 3.30$ Hz, H-5), 7.96–7.90 (m, AA', BB', 2H, H-3', H-5'), 7.84–7.75 (m, 1H, H-7), 7.70–7.64 (m, AA', BB', 2H, H-2', H-6'), 7.62 (dd, 1H, $J = 9.06$ Hz, $J = 4.39$ Hz, H-8) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.6 (d, $J = 3.1$ Hz), 158.9 (d, $J = 242.5$ Hz), 146.4 (d, $J = 1.7$ Hz), 144.5, 143.7, 129.7, 129.4 (q, $J = 32.1$ Hz), 126.9 (d, $J = 4.0$ Hz), 124.2 (q, $J = 272.6$ Hz), 124.1 (d, $J = 24.9$ Hz), 122.0 (d, $J = 8.9$ Hz), 119.5 (d, $J = 8.6$ Hz), 116.1 (d, $J = 26.6$ Hz)
Vg	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.24–8.21 (m, 1H, H-5), 7.97–7.91 (m, 1H, H-7), 7.64–7.52 (m, 1H, H-8), 7.38–7.23 (m, 4H, H-2', H-3', H-5', H-6') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.6, 162.0 (d, $J = 245.1$ Hz), 148.7, 144.5, 136.2 (d, $J = 3.1$ Hz), 136.0, 130.6 (d, $J = 8.9$ Hz), 130.0, 129.8, 122.2, 119.3, 116.6 (d, $J = 23.2$ Hz)
Vh	(d, $J = 0.5$ Hz), 160.6, 122.2, 113.6, 110.6 (d, $J = 26.2$ Hz) ¹ H NMR (300 MHz, DMSO- d_6), δ : 8.24 (m, 1H, H5), 7.96–7.91 (m, 1H, H-7), 7.65–7.53 (m, 2H, H-2', H-6'), 7.39–7.23 (m, 3H, H-8, H-4', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.2, 162 (d, $J = 244.2$ Hz), 148.6, 144.3, 141.2 (d, $J = 10.9$ Hz), 136.1, 131.3
Vi	(d, $J = 8.8$ Hz), 129.9, 124.8 (d, $J = 3.2$ Hz), 122.1, 119.3, 116.2 (d, $J = 20.7$ Hz), 115.8 (d, $J = 23.8$ Hz) ¹ H NMR (300 MHz, DMSO- d_6), δ : 8.24–8.22 (m, 1H, H-5), 7.97–7.91 (m, 3H, H-7, H-3', H-5'), 7.70–7.62 (m, 2H, H-2', H-6'), 7.59 (d, 1H, $J = 8.79$ Hz, H-8) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 191.3, 148.7, 144.3, 143.5, 136.1, 129.9, 129.8, 129.7, 129.5 (q, $J = 32.1$ Hz), 126.9 (d, $J = 3.8$ Hz), 124.2 (q, $J = 272.3$ Hz), 122.1, 119.3
VIa	¹ H NMR (300 MHz, CDCl ₃), δ : 8.45 (d, 1H, $J = 2.51$ Hz, H-5), 7.81 (dd, 1H, $J = 8.82$ Hz, $J = 2.51$ Hz, H-7), 7.61–7.48 (m, 3H, H-3', H-4', H-5'), 7.29–7.18 (m, 3H, H-8, H-2', H-6') ¹³ C NMR (75 MHz, CDCl ₃), δ : 185.4, 176.9, 148.5, 143.0, 138.6, 134.2, 130.0, 129.1, 127.6, 123.3, 119.5, 118.0
VIb	¹ H NMR (300 MHz, CDCl ₃), δ : 8.45 (d, 1H, $J = 2.40$ Hz, H-5), 7.81 (dd, 1H, $J = 8.77$ Hz, $J = 2.40$ Hz, H-7), 7.39–7.34 (m, AA', BB', 2H, H-2', H-6'), 7.25 (d, 1H, $J = 8.77$ Hz, H-8), 7.12–7.06 (m, AA', BB', 2H, H-3', H-5'), 2.46 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, CDCl ₃), δ : 185.5, 177.0, 148.5, 140.5, 139.2, 138.6, 134.2, 130.7, 127.2, 123.3, 119.5, 118.0, 21.6

 Table 3. (continued)

Comp.	NMR spectral data ^{a}
VIc	¹ H NMR (300 MHz, CDCl ₃), δ : 8.44 (d, 1H, $J = 2.43$ Hz, H-5), 7.82 (dd, 1H, $J = 8.77$ Hz, $J = 2.43$ Hz, H-7),
	7.55–7.49 (m, 2H, H-2', H-6'), 7.26 (d, 1H, $J = 8.77$ Hz, H-8), 7.17–7.11 (m, 2H, H-3', H-5')
VIJ	¹⁰ C NMR (75 MHz, CDCl ₃), 6: 185.3, 170.7, 148.5, 141.3, 138.8, 135.1, 134.2, 130.4, 129.1, 123.2, 119.0, 118.1 11 NMD (200 MHz, CDCl ₃), 5: 8.42 (4, 111, $L = 2.42$ Hz, 115), 7.82 (44, 111, $L = 8.80$ Hz, $L = 2.42$ Hz, 117)
VIa	7.51-7.45 (m, 2H, H-2', H-4'), 7.25 (d, 1H, $J = 8.80$ Hz, H-8), 7.23-7.21 (m, 1H, H-6'), 7.14-7.08 (m, 1H, H-5')
	13 C NMR (75 MHz, CDCl ₃), δ : 185.1, 176.5, 148.4, 143.6, 138.8, 135.4, 134.1, 130.9, 129.4, 128.2, 126.1, 123.1,
	119.6, 118.1
VIe	¹ H NMR (300 MHz, CDCl ₃), δ : 8.43 (d, 1H, $J = 2.46$ Hz, H-5), 7.83 (dd, 1H, $J = 8.76$ Hz, $J = 2.46$ Hz, H-7), 7.62
	(d, 1H, J = 8.70 Hz, H-5'), 7.32 (d, 1H, J = 2.45 Hz, H-2'), 7.25 (d, 1H, J = 8.76 Hz, H-8), 7.06 (dd, 1H, J = 8.70 Hz, I-2.45 Hz, H-6')
	12 C NMR (75 MHz, CDCl ₃), δ : 185.1, 176.4, 148.4, 141.6, 138.9, 134.1, 134.0, 133.6, 131.7, 130.0, 127.4, 123.0,
	119.7, 118.1
VIf	¹ H NMR (300 MHz, CDCl ₃), δ : 8.44 (d, 1H, $J = 2.38$ Hz, H-5), 7.82 (dd, 1H, $J = 8.80$ Hz, $J = 2.38$ Hz, H-7),
	7.70-7.66 (m, AA', BB', 2H, H-2', H-6'), 7.25 (d, 1H, $J = 8.80$ Hz, H-8), $7.10-7.06$ (m, AA', BB', 2H, H-3', H-5') ^{13}C NMR (75 MHz, CDCl ₂) & 185.3, 176.6, 148.5, 141.8, 138.8, 134.2, 133.4, 130.0, 120.5, 123.2, 110.6, 118.1
VIa	¹ H NMR (300 MHz CDCl ₂) δ : 8 44 (d 1H $J = 2.47$ Hz H-5) 7 82 (dd 1H $J = 8.79$ Hz $J = 2.47$ Hz H-7)
, ig	7.29-7.13 (m, 5H, H-8, H-2' H-3', H-5', H-6')
	¹³ C NMR (75 MHz, CDCl ₃), δ : 185.7, 177.1, 162.5 (d, $J = 249.9$ Hz), 148.6, 138.9, 138.9, 134.3, 129.7 (d, $J = 8.9$
1.771	Hz), 123.3, 119.7, 118.1, 117.3 (d, $J = 23.5$ Hz)
VIh	¹ H NMR (300 MHz, $CDCl_3$), 6: 8.43 (d, 1H, $J = 2.47$ Hz, H-5), 7.82 (dd, 1H, $J = 8.79$ Hz, $J = 2.47$ Hz, H-7), 7.57–7.48 (m, 1H, H-6'), 7.26 (d, overlapped, 1H, $J = 8.79$ Hz, H-8), 7.25–7.17 (m, 1H, H-2'), 7.04–6.99 (m, 1H,
	H-5'), 6.96 (dt, 1H, $J = 8.52$ Hz, $J = 2.20$ Hz, H-4')
	¹³ C NMR (75 MHz, CDCl ₃), δ : 185.4, 176.7, 163.5 (d, $J = 248.8$ Hz), 148.6, 144.1 (d, $J = 10.3$ Hz), 138.9, 134.2,
VI:	131.3 (d, $J = 8.9$ Hz), 123.8 (d, $J = 3.4$ Hz), 123.3, 119.7, 118.2, 116.5 (d, $J = 20.9$ Hz), 115.8 (d, $J = 24.1$ Hz)
V 11	H NMR (300 MHZ, DMSO- a_6), o: 8.28 (d, 1H, $J = 2.47$ HZ, H-5), 8.09 (dd, 1H, $J = 8.79$ HZ, $J = 2.48$ HZ, H-7), 7.96–7.89 (m, AA', BB', 2H, H-3', H-5'), 7.65–7.59 (m, AA', BB' overlapped, 2H, H-2', H-6'), 7.60 (d, overlapped,
	1H, $J = 8.79$ Hz, H-8)
	13 C NMR (75 MHz, DMSO- d_6), δ : 186.9, 177.6, 149.2, 147.1, 139.2, 132.2, 129.5, 129.3 (q, $J = 32.1$ Hz), 127.2 (q, $L = 2.7$ Hz), 124.2 (q, $L = 278.6$ Hz), 124.0, 110.1, 118.7
VIIa	J = 5.7 Hz), 124.2 (q, $J = 278.0$ Hz), 124.0, 119.1, 116.7 ¹ H NMR (300 MHz CDCl ₂) $\delta \approx 8.16 - 8.13$ (m 1H H ₂ 5) 7.62-7.46 (m 4H H ₂ 7 H ₂ 3' H ₂ 4' H ₂ 5') 7.29-7.19 (m 3H
1110	H-8, H-2', H-6'), 2.45 (s, 3H, CH ₃)
	13 C NMR (75 MHz, CDCl ₃), δ : 187.6, 178.0, 148.0, 143.4, 137.2, 136.8, 131.6, 129.9, 129.0, 127.9, 121.9, 116.0, 20.9
VIIb	¹ H NMR (300 MHz, CDCl ₃), δ : 8.15–8.13 (m, 1H, H-5), 7.57–7.52 (m, 1H, H-7), 7.40–7.32 (m, AA', BB', 2H, H-2', H Cl) = 2.52 H = 1.62
	H-0), 7.20 (d, 1H, $J = 8.52$ Hz, H-8), 7.14–7.07 (m, AA, BB, 2H, H-3, H-5), 2.40 (s, 3H, CH3), 2.45 (s, 3H, CH3) 13 C NMR (75 MHz, CDCl ₃), δ : 187.7, 178.1, 148.0, 140.9, 139.1, 137.2, 136.7, 131.7, 130.7, 127.5, 121.9, 116.0, 21.4,
	20.9
VIIc	¹ H NMR (300 MHz, CDCl ₃), δ : 8.14–8.11 (m, 1H, H-5), 7.55 (dd, 1H, J = 8.52 Hz, J = 2.20 Hz, H-7), 7.54–7.49
	$(m, AA', BB', 2H, H-2', H-6'), 7.26 (d, 1H, J = 7.51 Hz, H-8), 7.18-7.12 (m, AA', BB', 2H, H-3', H-5'), 2.45 (s, 3H, CH_a)$
	¹³ C NMR (75 MHz, CDCl ₃), δ : 187.5, 177.8, 148.0, 141.7, 137.4, 136.9, 134.9, 131.6, 130.3, 129.4, 121.7, 116.0, 20.9
VIId	¹ H NMR (300 MHz, CDCl ₃), δ: 8.14–8.11 (m, 1H, H-5), 7.58–7.53 (m, 1H, H-7), 7.51–7.43 (m, 2H, H-2', H-6'), 7.26
	$(d, 1H, J = 8.51 \text{ Hz}, H-8), 7.25-7.22 \text{ (m, 1H, H-5')}, 7.15-7.10 \text{ (m, 1H, H-4')}, 2.45 \text{ (s, 3H, CH_3)}$
	19 C NMR (75 MHz, CDCl ₃), δ : 187.3, 177.6, 148.0, 144.0, 137.4, 136.9, 135.4, 131.6, 130.9, 129.3, 128.5, 126.4, 121.7, 116.1, 20.9
VIIe	¹ H NMR (300 MHz, CDCl ₃), δ : 8.12–8.10 (m, 1H, H-5), 7.61 (d, 1H, $J = 8.52$ Hz, H-5'), 7.59–7.54 (m, 1H, H-7),
	7.33 (d, 1H, J = 2.47 Hz, H-2'), 7.26 (d, 1H, J = 8.24 Hz, H-8), 7.08 (dd, 1H, J = 8.52 Hz, J = 2.47 Hz, H-6'), 2.45 (d, 1H, J = 8.52 Hz, J = 2.47 Hz, H-6'), 2.45 (d, 1H, J = 8.52 Hz, J = 2.47 Hz, H-6'), 2.45 (d, 1H, J = 8.52 Hz, J = 2.47 Hz, H-6'), 2.45 (d, 1H, J = 8.52 Hz, J = 2.47 Hz, H-6'), 2.45 (d, 1H, J = 8.52 Hz, J = 2.47 Hz, H-6'), 2.45 (d, 2H, J = 2.
	$(s, 3H, CH_3)$ 13C NMD (75 MHz, CDCL) S. 187.2, 177.5, 148.0, 142.1, 127.6, 127.1, 124.0, 122.5, 121.7, 121.6, 120.2, 127.7
	121.6, 116.1, 21.0
VIIf	¹ H NMR (300 MHz, CDCl ₃), δ: 8.14–8.11 (m, 1H, H-5), 7.71–7.64 (m, AA', BB', 2H, H-2', H-6'), 7.55 (ddd, 1H,
	J = 8.38 Hz, $J = 2.19$ Hz, $J = 0.55$ Hz, H-7), 7.26 (d, 1H, $J = 8.38$ Hz, H-8), 7.12–7.06 (m, AA', BB', 2H, H-3', D, C,
	H-5'), 2.45 (s, 3H, CH ₃) 13 C NMR (75 MHz CDCl ₂) δ · 187.4 177.7 148.0 142.2 137.4 136.9 133.3 131.6 129.7 123.1 121.8 116.1 21.0
VIIa	¹ H NMR (300 MHz, (CDCl ₃), δ : 8.14–8.11 (m, 1H, H5), 7.55 (ddd, 1H, $J = 8.52$ Hz, $J = 2.20$ Hz, $J = 0.50$ Hz,
5	H-7), 7.27–7.15 (m, 4H, H-2' H-3', H-5', H-6'), 7.25 (d, overlapped, 1H, $J = 8.52$ Hz, H-8), 2.45 (s, 3H, CH ₃)
	¹³ C NMR (75 MHz, CDCl ₃), δ : 187.7, 178.0, 162.4 (d, $J = 249.6$ Hz), 148.0, 139.2 (d, $J = 3.5$ Hz), 137.3, 136.9, 121.7, 120.8 (d, $J = 3.5$ Hz), 131.4, 147.4 (d, $J = 249.6$ Hz), 148.0, 139.2 (d, $J = 3.5$ Hz), 137.3, 136.9, 121.7, 120.8 (d, $J = 3.5$ Hz), 137.3, 136.9, 121.7, 120.8 (d, $J = 3.5$ Hz), 137.3, 136.9, 137.4 (d, $J = 3.5$ Hz), 137.4 (d, $J = 3.5$ Hz), 137.3, 136.9, 137.4 (d, $J = 3.5$ Hz), 137.4 (d, $J = 3.5$ Hz), 137.4 (d, $J = 3.5$ Hz), 137.3 (d, $J = 3.5$ Hz), 137.3 (d, $J = 3.5$ Hz), 137.4 (d, J = 3.5 Hz), 137.4 (d, J = 3
VIIL	$\begin{array}{l} 131.7, 129.8 \text{ (d, } J = 8.0 \text{ Hz}\text{)}, 121.8, 117.1 \text{ (d, } J = 23.2 \text{ Hz}\text{)}, 110.0, 20.9 \\ \end{array}$
v 11/l	H-8), 7.20 (tdd, 1H, $J = 8.24$ Hz, $J = 2.47$ Hz, $J = 0.82$ Hz, H-5'), 7.05–7.00 (m, 1H, H-7), 6.97 (dt, 1H, $J = 8.79$
	Hz, $J = 2.20$ Hz, H-4'), 2.45 (s, 3H, CH ₃)
	¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.3, 177.5, 163.5 (d, $J = 248.6$ Hz), 148.0, 144.2 (d, $J = 10.3$ Hz), 137.4, 136.9, 131.5, 131.1 (d, $J = 8.9$ Hz), 123.9 (d, $J = 3.1$ Hz), 121.7, 116.2 (d, $J = 26.0$ Hz), 116.1 (d, $J = 23.8$ Hz), 20.0
	101.0, 101.1 (u, v = 0.0 112), 120.0 (u, v = 0.1 112), 121.1, 110.2 (u, v = 20.0 112), 110.1 (u, v = 20.0 112), 20.9

\mathbf{Ta}	ble	3.	(continued)
---------------	-----	----	-------------

Comp.	NMR spectral data ^{a}
VIIi	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.05–8.02 (m, 1H, H-5), 7.95–7.87 (m, AA', BB', 2H, H-3', H-5'), 7.74 (dd, 1H, $J = 8.38$ Hz, $J = 2.20$ Hz, H-7), 7.66–7.59 (m, AA', BB', 2H, H-2', H-6'), 7.49 (d, 1H, $J = 8.38$ Hz, H-8), 2.42 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 188.3, 178.1, 148.3, 147.3, 137.9, 136.7, 130.7, 129.7, 129.1 (q, $J = 32.1$ Hz), 127.1 (q, $J = 32.1$ Hz), 127.1 (q, $J = 3.8$ Hz) 124.2 (q, $J = 272.3$ Hz) 122.1, 116.3, 20.6
VIIIa	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.63 (d, 1H, $J = 2.74$ Hz, H-5), 7.57–7.46 (m, 4H, H-7, H-8, H-2', H-6'), 7.45–7.30 (m, 3H, H-3', H-4', H-5'), 3.84 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.9, 178.0, 157.3, 144.8, 144.1, 129.8, 128.8, 128.2, 124.9, 122.9, 118.2, 112.2, 56.2
VIIIb	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.61 (d, 1H, $J = 2.75$ Hz, H-5), 7.56–7.44 (m, 2H, H-7, H-8), 7.33–7.25 (m, AA', BB', 2H, H-2', H-6'), 7.23–7.15 (m, AA', BB', 2H, H-3', H-5'), 3.84 (s, 3H, OCH ₃), 2.36 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.9, 178.0, 157.3, 144.7, 141.6, 138.1, 130.4, 127.9, 124.9, 122.9, 118.1, 112.3, 56.1, 21.1
VIIIc	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.64–7.47 (m, 5H, H-5, H-7, H-8, H-2', H-6'), 7.42–7.36 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 188.0, 177.9, 157.3, 144.8, 142.9, 133.3, 130.4, 130.0, 125.0, 122.9, 118.2, 112.1, 56.2
VIIId	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.62 (d, 1H, $J = 2.75$ Hz, H5), 7.59–7.46 (m, 5H, H-7, H-8, H-2', H-5', H-6'), 7.39–7.33 (m, 1H, H-4'), 3.85 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.9, 177.9, 157.3, 145.1, 144.7, 133.7, 131.5, 128.9, 128.5, 127.4, 125.0, 122.9, 118.2, 112.1, 56.2
VIIIe	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.82 (d, 1H, $J = 8.79$ Hz, H-5'), 7.77 (d, 1H, $J = 2.19$ Hz, H-5), 7.62 (d, 1H, $J = 3.03$ Hz, H-2'), 7.58 (d, 1H, $J = 8.52$ Hz, H-8), 7.52 (dd, 1H, $J = 8.79$ Hz, $J = 3.02$ Hz, H-6'), 7.43 (dd, 1H, $J = 8.52$ Hz, $J = 2.20$ Hz, H-7), 3.85 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.9, 177.8, 157.4, 144.7, 143.6, 132.0, 131.9, 131.6, 130.7, 129.2, 125.1, 122.9, 118.2, 112.1, 56.2
VIIIf	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.75–7.69 (m, AA', BB, 2H, H-2', H-6'), 7.62 (d, 1H, $J = 2.75$ Hz, H-5), 7.56 (d, 1H, $J = 9.07$ Hz, $J = 0.55$ Hz, H-8), 7.50 (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3', H-5'), 3.85 (s, 3H, OCH ₃) (dd, 1H, $J = 9.06$ Hz, $J = 2.75$ Hz, H-7), 7.36–7.30 (m, AA', BB', 2H, H-3',
VIIIg	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.62 (d, 1H, $J = 3.02$ Hz, H5), 7.58–7.47 (m, 2H, H-2', H-6'), 7.44–7.32 (m, 4H, H-7, H-8, H-3', H-5'), 3.85 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 188.1, 178.1, 161.9 (d, $J = 245.3$ Hz), 157.3, 144.7, 140.4 (d, $J = 3.1$ Hz), 130.5 (d, $J = 8.9$ Hz), 125.0, 122.9, 118.2, 116.8 (d, $J = 23.2$ Hz), 112.2, 56.2
VIIIh	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.63 (d, 1H, $J = 3.03$ Hz, H-5), 7.61–7.54 (m, 2H, H-2', H-6'), 7.51 (dd, overlapped, 1H, $J = 9.07$ Hz, $J = 3.03$ Hz, H7), 7.36–7.20 (m, 3H, H-8, H-4', H-5'), 3.85 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.8, 177.8, 162.9 (d, $J = 243.9$ Hz), 157.3, 145.2 (d, $J = 11.2$ Hz), 144.7, 131.5 (d, $J = 8.8$ Hz), 124.9 (d, $J = 16.1$ Hz), 124.9, 122.9, 118.2, 116.0 (d, $J = 22.6$ Hz), 112.1, 56.2
VIIIi	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.95–7.88 (m, AA', BB', 2H, H-3', H-5'), 7.67–7.60 (m, AA', BB' overlapped, 2H, H-2', H-6'), 7.61 (d, overlapped, 1H, $J = 9.48$ Hz, H-8), 7.56 (bs, 1H, H-5), 7.52 (dd, 1H, $J = 9.48$ Hz, $J = 3.02$ Hz, H-7), 3.85 (s, 3H, OCH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 188.0, 177.8, 157.4, 147.4, 144.8, 129.7, 129.1 (q, $J = 31.8$ Hz), 127.1 (q, $J = 3.8$ Hz), 125.1, 124.2 (q, $J = 272.3$ Hz), 123.0, 118.2, 112.0, 56.2
IXa	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.97 (dd, 1H, $J = 8.8$ Hz, $J = 3.0$ Hz, H-5), 7.83–7.74 (m, 1H, H-7), 7.68–7.62 (m, 1H, H-8), 7.55–7.46 (m, 2H, H-2', H-6'), 7.45–7.37 (m, 1H, H-4'), 7.36–7.29 (m, 2H, H-3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.1 (d, $J = 3.1$ Hz), 177.8, 159.3 (d, $J = 243.4$ Hz), 146.5 (d, $J = 1.4$ Hz), 143.8, 129.9, 128.9, 128.1, 124.2 (d, $J = 24.9$ Hz), 123.6 (d, $J = 9.1$ Hz), 119.2 (d, $J = 8.5$ Hz), 116.2 (d, $J = 26.6$ Hz)
IXb	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.87 (dd, 1H, $J = 8.9$ Hz, $J = 3.0$ Hz, H-5), 7.81–7.72 (m, 1H, H-7), 7.63 (dd, 1H, $J = 8.9$ Hz, $J = 4.4$ Hz, H-8), 7.33–7.26 (m, AA', BB', 2H, H-2', H-6'), 7.21–7.15 (m, AA', BB', 2H, H-3', H-5'), 2.35 (s, 3H, CH ₃) ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.0 (d, $J = 3.2$ Hz), 177.8, 159.3 (d, $J = 243.4$ Hz), 146.4 (d, $J = 1.4$ Hz), 141.3, 138.3, 130.4, 127.7, 124.2 (d, $J = 24.9$ Hz), 123.5 (d, $J = 9.2$ Hz), 119.2 (d, $J = 8.3$ Hz), 116.3 (d, $J = 26.6$ Hz), 21.2
IXc	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.89 (dd, 1H, $J = 8.9$ Hz, $J = 3.0$ Hz, H-5), 7.83–7.75 (m, 1H, H-7), 7.66 (dd, 1H, $J = 8.9$ Hz, $J = 4.4$ Hz, H-8), 7.62–7.54 (m, AA', BB', 2H, H-2', H-6'), 7.42–7.33 (m, AA', BB', 2H, H-3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.1 (d, $J = 3.2$ Hz), 177.7, 159.3 (d, $J = 243.6$ Hz), 146.5 (d, $J = 1.4$ Hz), 142.6, 133.4, 130.2, 130.1, 124.3 (d, $J = 24.9$ Hz), 123.5 (d, $J = 9.1$ Hz), 119.2 (d, $J = 8.6$ Hz), 116.2 (d, $J = 26.6$ Hz)

Table 3. (continued)

Comp.	NMR spectral data ^{a}
IXd	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.90 (dd, 1H, $J = 9.0$ Hz, $J = 3.0$ Hz, H-5), 7.84–7.75 (m, 1H, H-7), 7.67 (dd, 1H, $J = 9.0$ Hz, $J = 4.4$ Hz, H-8), 7.60–7.46 (m, 3H, H-2', H-5', H-6'), 7.38–7.32 (1H, m, H-4') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.1 (d, $J = 3.2$ Hz), 177.7, 159.4 (d, $J = 243.6$ Hz), 146.5 (d, $J = 1.7$ Hz), 144.8, 133.8, 131.6, 129.1, 128.3, 127.3, 124.4 (d, $J = 25.2$ Hz), 123.5 (d, $J = 9.2$ Hz), 119.3 (d, $J = 8.6$ Hz), 116.2 (d, $J = 26.6$ Hz)
IXe	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.91 (dd, 1H, $J = 9.1$ Hz, $J = 2.8$ Hz, H-5), 7.86–7.77 (m, 2H, H-7, H-5'), 7.74 (d, 1H, $J = 2.3$ Hz, H-2'), 7.68 (dd, 1H, $J = 9.1$ Hz, $J = 4.4$ Hz, H-8), 7.41 (dd, 1H, $J = 8.5$ Hz, $J = 2.3$ Hz, H-6') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.1 (d, $J = 3.2$ Hz), 177.7, 159.4 (d, $J = 244.0$ Hz), 146.4 (d, $J = 1.4$ Hz), 143.3, 132.1, 132.0, 131.8, 130.5, 129.1, 124.5 (d, $J = 24.9$ Hz), 123.5 (d, $J = 9.1$ Hz), 119.3 (d, $J = 8.3$ Hz), 116.2 (d, $J = 26.6$ Hz)
IXf	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.89 (dd, 1H, $J = 8.9$ Hz, $J = 3.3$ Hz, H-5), 7.83–7.75 (m, 1H, H-7), 7.75–7.69 (m, AA', BB', 2H, H-2', H-6'), 7.66 (dd, 1H, $J = 8.9$ Hz, $J = 4.1$ Hz, H-8), 7.36–7.27 (m, AA', BB', 2H, H-3', H-5') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.0 (d, $J = 3.1$ Hz), 177.6, 159.3 (d, $J = 243.7$ Hz), 146.5 (d, $J = 1.4$ Hz), 143.1, 133.0, 130.5, 124.3 (d, $J = 24.9$ Hz), 123.5 (d, $J = 9.1$ Hz), 122.0, 119.2 (d, $J = 8.3$ Hz), 116.2 (d, $J = 26.6$ Hz)
IXg	¹ H NMR (300 MHz, CDCl ₃), δ : 8.00 (dd, 1H, $J = 8.52$ Hz, $J = 3.02$ Hz, H-5), 7.50–7.42 (m, 1H, H-7), 7.37 (dd, 1H, $J = 9.07$ Hz, $J = 4.40$ Hz, H-8), 7.28–7.14 (m, 4H, H-2', H-3', H-5', H-6') ¹³ C NMR (75 MHz, CDCl ₃), δ : 186.2 (d, $J = 3.2$ Hz), 177.3, 162.5 (d, $J = 249.9$ Hz), 160.0 (d, $J = 247.9$ Hz), 146.0, 139.0 (d, $J = 3.4$ Hz), 129.7 (d, $J = 8.8$ Hz), 123.8 (d, $J = 24.9$ Hz), 123.2 (d, $J = 8.8$ Hz), 118.5 (d, $J = 8.3$ Hz), 117.4 (d, $J = 26.6$ Hz), 117.3 (d, $J = 23.2$ Hz)
IXh	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.00 (dd, 1H, $J = 8.52$ Hz, $J = 3.02$ Hz, H-5), 7.57–7.42 (m, 2H, H-2', H-6'), 7.37 (dd, 1H, $J = 9.06$ Hz, $J = 4.40$ Hz, H-8), 7.21 (tdd, 1H, $J = 8.24$ Hz, $J = 2.47$ Hz, $J = 0.83$ Hz, H-5'), 7.04–6.99 (m, 1H, H-7), 6.96 (dt, 1H, $J = 8.24$ Hz, $J = 2.47$ Hz, H-4') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 185.8, 176.9, 163.6 (d, $J = 248.9$ Hz), 160.0 (d, $J = 247.7$ Hz), 146.0, 144.0 (d, $J = 10.3$ Hz), 131.3 (d, $J = 8.9$ Hz), 123.9 (d, $J = 20.1$, Hz), 123.7 (d, $J = 7.8$ Hz), 123.2 (d, $J = 9.1$ Hz), 118.5 (d, $J = 8.3$ Hz), 117.3 (d, $J = 26.6$ Hz), 116.5 (d, $J = 20.9$ Hz), 115.9 (d, $J = 24.1$ Hz)
IXi	¹ H NMR (300 MHz, DMSO- d_6), δ : 7.96–7.89 (m, AA', BB' overlapped, 3H, H-5, H-3', H-5'), 7.88–7.79 (m, 1H, H-7), 7.72 (dd, 1H, $J = 9.07$ Hz, $J = 4.40$ Hz, H-8), 7.66–7.60 (m, AA', BB', 2H, H-2', H-6') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.3 (d, $J = 3.2$ Hz), 177.8, 159.4 (d, $J = 244.2$ Hz), 147.3, 146.6 (d, $J = 1.7$ Hz), 129.6, 129.2 (q, $J = 31.8$ Hz), 127.2 (d, $J = 3.7$ Hz), 124.4 (d, $J = 25.2$ Hz), 124.2 (q, $J = 270.9$ Hz), 123.6 (d, $J = 9.2$ Hz), 119.3 (d, $J = 8.6$ Hz), 116.1 (d, $J = 26.6$ Hz)
Xg	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.10 (d, 1H, $J = 2.47$ Hz), 7.92 (dd, 1H, $J = 8.79$ Hz, $J = 2.47$ Hz, H-7), 7.62 (d, 1H, $J = 8.79$ Hz), 7.40–7.27 (m, 4H, H-2', H-3', H-5', H-6') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.2, 178.0, 161.9 (d, $J = 245.1$ Hz), 148.8, 140.1 (d, $J = 3.5$ Hz), 136.3, 130.8, 130.5 (d, $J = 8.9$ Hz), 130.0, 123.6, 119.0, 116.9 (d, $J = 23.2$ Hz)
Xh	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.14 (d, 1H, $J = 2.75$ Hz, H-5), 7.97 (dd, 1H, $J = 8.79$ Hz, $J = 2.74$ Hz, H-7), 7.66 (d, 1H, $J = 8.79$ Hz, H-8), 7.62–7.52 (m, 1H, H-6'), 7.34–7.25 (m, 2H, H-2', H-5'), 7.25–7.20 (m, 1H, H-4') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 186.8, 177.6, 162.9 (d, $J = 244.0$ Hz), 148.7, 144.8 (d, $J = 10.9$ Hz), 136.4, 131.6 (d, $J = 8.8$ Hz), 130.8, 129.9, 124.7 (d, $J = 2.9$ Hz), 123.5, 119.0, 116.1 (d, $J = 20.7$ Hz), 115.7 (d, $J = 24.1$ Hz)
Xi	¹ H NMR (300 MHz, DMSO- d_6), δ : 8.16–8.14 (m, 1H, H-5), 8.01–7.89 (m, 3H, H-7, H-3', H-5'), 7.68 (d, 1H, $J = 8.79$ Hz, H-8), 7.65–7.59 (m, 2H, H-2', H-6') ¹³ C NMR (75 MHz, DMSO- d_6), δ : 187.0, 177.6, 148.8, 147.2, 136.4, 130.9, 129.8, 129.5, 129.2 (q, $J = 32.1$ Hz), 127.2 (q, $J = 3.7$ Hz), 124.2 (q, $J = 272.3$ Hz), 123.6, 119.0
a) Atom n	numbering corresponds to the numbering in Fig. 1.

and 3-phenyl-2*H*-1,3-benzoxazine-2,4(3*H*)-dithiones were synthesised by treating 3-phenyl-2*H*-1,3-benzoxazine-2,4(3*H*)-diones with phosphorous pentasulphide (Fig. 1). The published methods include thionation using P_2S_5 and Lawesson's reagent (Wagner et al., 1966; Saeed & Ashraf, 2008). The starting 3-phenyl-2*H*-1,3-benzoxazine-2(3*H*)-diones are described in the literature (Waisser et al., 2001a, 2001b). An overview, characterisation, and spectral data of the compounds as prepared are summarised in Tables 1– 3. The structural evidence and the physical properties of compounds Va-Vf and Xa-Xf can be found in the literature (Waisser et al., 2000).

The in-vitro antimycobacterial activity of the

compounds was investigated against M. tuberculosis CNCTC My 331/88 (identical with H37RV and ATCC 27294), M. kansasii CNCTC My 235/80 (identical with ATCC 12 478, resistant to INH), M. avium CNCTC My 330/88 (identical with ATCC 25291, resistant to INH) and M. kansasii 6509/96. All the strains were obtained from the Czech National Collection of Type Cultures (CNCTC), National Institute of Public Health, Prague. The only exception was M. kansasii 6509/96, which was clinically isolated. The dilution micromethod was used for determination of the minimum inhibitory concentrations (MIC) and the MIC values for standard INH were included for comparison. An overview of the biological activity along

M. kansasii M. kansasii

6509/96

2/4

4/4

4/4

2/4

2/4

4/4

8/16

8/8

32/32

2/4

2/2

4/8

2/4

8/8

4/4

4/8

8/16

16/16

 nd^{b}

8/16

16/32

8/8

32/32

32/32

16/16

 nd^b

32/32

1/2

2/4

4/4

2/2

1/2

2/4

8/8

16/16

8/8

1/1

1/2

2/4

1/1

1/2

8/8

8/8

16/16

4/4

0.5/1

My 235/80

2/2

4/4

4/4

2/4

4/8

4/4

8/16

16/16

 $16/\mathrm{nd}^b$

2/4

2/4

4/4

2/2

8/8

4/4

8/16

16/16

16/16

 nd^{b}

16/16

32/32

16/32

32/32

32/32

16/16

 nd^{b}

32/32

8/8

2/4

4/4

 $4/\mathrm{nt}^c$

 $4/\mathrm{nt}^c$

8/16

16/16

8/8

2/4

2/4

2/8

16/32

2/4

2/8

8/16

8/16

16/16

>250/>250

 $4/\mathrm{nt}^c$

Comp					Comp	
	M. tuberculos My 331/88	is M. avium My 330/88	M. kansasii My 235/80	$M.\ kansasii$ $6509/96$	Ι	M. tuberculosis My 331/88
Ia	0.5/1	8/16	2/4	2/2	VIa	2/2
Ib	0.5/1	$32/\mathrm{nd}^b$	2/4	2/4	VIb	0.5/1
Ic	0.5/1	16/32	4/8	4/4	VIc	1/2
Id	0.5/1	16/32	2/4	2/4	VId	1/1
Ie	1/4	32/62.5	4/8	4/8	VIe	2/2
If	1/2	32/32	4/4	4/4	VIf	1/2
Ig	0.5/2	nd^b	8/16	8/16	VIg	1/2
Ih	2/2	16/32	8/8	8/8	VIh	2/4
Ii	2/4	32/62.5	8/16	8/16	VIi	4/4
IIa	1/2	4/4	2/4	2/4	VIIa	0.5/1
IIb	0.5/1	1/1	2/4	2/2	VIIb	0.5/1
IIc	0.5/0.5	2/2	2/4	2/4	VIIc	0.5/1
IId	0.5/0.5	4/4	2/4	2/4	VIId	0.5/0.5
IIe	0.5/0.5	8/16	4/8	8/8	VIIe	0.5/0.5
IIf	0.5/0.5	4/4	2/4	4/4	VIIf	0,5/0,5
IIg	4/8	4/4	8/16	8/8	VIIg	2/8
IIh	4/8	8/16	16/32	16/16	VIIh	4/8
IIi	4/8	32/32	16/32	16/32	VIIi	4/8
IIIa	16/32	32/32	16/32	8/16	VIIIa	nd^b
IIIb	16/32	32/32	16/16	8/8	VIIIb	8/16
IIIc	8/16	$32/\mathrm{nd}^b$	16/16	16/16	VIIIc	8/16
IIId	16/32	62.5/62.5	16/32	16/32	VIIId	16/32
IIIe	16/32	$62.5/{\rm nd}^{b}$	62.5/62.5	62.5/62.5	VIIIe	16/32
IIIf	32/32	62.5/62.5	32/32	32/32	VIIIf	8/16
IIIg	16/16	32/62.5	16/32	16/16	VIIIg	16/32
IIIh	16/32	62,5/125	32/32	32/32	VIIIh	$62.5/{ m nd}^{b}$
IIIi	32/32	125/125	32/62.5	32/62.5	VIIIi	16/32
IVa	2/4	$16/\mathrm{nt}^c$	$0.5/\mathrm{nt}^c$	0.5/1	IXa	4/4
IVb	1/2	$8/\mathrm{nt}^{c}$	$1/\mathrm{nt}^c$	1/2	IXb	1/2
IVc	1/1	4/8	$2/\mathrm{nt}^c$	1/2	IXc	2/2
IVd	2/2	4/8	$1/\mathrm{nt}^c$	0.5/1	IXd	2/4
IVe	0.5/1	8/8	$2/\mathrm{nt}^c$	2/2	IXe	1/2
IVf	1/2	4/8	$2/\mathrm{nt}^c$	1/4	IXf	1/2
IVg	1/2	8/16	8/16	8/8	IXg	1/2
IVh	8/16	16/16	16/16	16/16	IXh	16/16
IVj	2/4	32/32	8/8	8/8	IXj	2/4
Va^{d}	1/1	8/32	2/4	0.5/1	Xa^{d}	1/1
Vb^d	0.5/1	16/32	4/8	1/1	Xb^d	0.5/0.5
Vc^{d}	0.5/0.5	16/16	2/4	1/1	Xc^{d}	0.5/1
Vd^d	0.5/1	16/32	2/4	1/1	Xd^d	0.5/1
Ve^d	0.5/1	8/16	2/4	1/1	Xe^d	1/2
$V f^{b}$	0.5/1	8/32	2/4	1/2	$X f^d$	0.5/0.5
Vg	2/4	62.5/62.5	16/16	16/16	Xg	1/2
Vh	2/4	32/32	16/16	8/8	Xh	2/4
Vi	4/4	32/32	16/16	16/16	Xi	4/4
INH^{e}	0.5/1	>250/>250	>250/>250	4/4	INH^{e}	0.5/1

 Table 4. In-vitro antimycobacterial activity of 3-phenyl-4thioxo-2*H*-1,3-benzoxazine-2(3*H*)-ones

 $MIC/(\mu mol L^{-1})^a$

 Table 5. In-vitro antimycobacterial activity of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones

M.~avium

My 330/88

8/16

16/32

32/32

16/32

32/32

16/16

16/32

62.5/125

4/4

2/2

4/4

2/4

8/16

4/4

4/4

8/8

32/32

 nd^{b}

16/32

62.5/62.5

 nd^b

 $62.5/\mathrm{nd}^b$

62.5/62.5

 nd^{b}

62.5/125

 $8/\mathrm{nt}^c$

 $16/nt^c$

 $16/\mathrm{nt}^c$

 $8/\mathrm{nt}^c$

 $16/nt^c$

 $16/nt^c$

16/16

16/16

32/32

8/16

 $16/nt^c$

16/16

1/2

16/16

16/16

16/16

62.5/62.5

62.5/62.5

>250/>250

 $32/nd^b$

32/62.5

 ${\rm MIC}/(\mu mol \; L^{-1})^a$

a) Values given for 14 days/21 days of incubation; b) nd – not determined due to low solubility of the compound; c) nt – not tested; d) the MIC values taken from Waisser et al. (2000); e) isoniazid (isonicotinhydrazide) used as a reference drug.

a) Values given for 14 days/21 days of incubation; b) nd – not determined due to low solubility of the compound, c) nt – not tested; d) the MIC values taken from Waisser et al. (2000); e) isoniazid (isonicotinhydrazide) used as a reference drug.

with the activity of INH is shown in Tables 4 and 5.

The antimycobacterial activities of the starting 3benzyl-2*H*-1,3-benzoxazine-2,4(3*H*)-diones were in the range of 4–16 μ mol L⁻¹. The replacement of one oxo group with a thioxo group significantly increased the antimycobacterial activity. The further replacement had a small effect on the activity. Also the introduction of the third sulphur atom by substituting the phenyl ring with ethoxythiocarbonyl strongly decreased the antimycobacterial activity (Waisser et al., 2009). The MIC values of the sulphur compounds were generally in the range of 0.5–32 μ mol L⁻¹ but the ma-

 Table 6. Activity contribution of the Free–Wilson analyses of of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and statistical significance of correlation

	$\Delta \log(MIC/(\mu mol \ L^{-1}))$					
Parameter	M. tuberculosis My 331/88	<i>M. avium</i> My 330/88	M. kansasii My 235/80	M. kansasii 6509/96		
bR^1 : Br	$-1.333~(\pm 0.109)$	$-0.379~(\pm 0.125)$	$-0.733~(\pm 0.102)$	$-0.700~(\pm~0.118)$		
CH_3	$-1.200~(\pm~0.109)$	$-0.103~(\pm~0.121)$	$-0.733~(\pm 0.102)$	$-0.633~(\pm 0.118)$		
F	$-1.067~(\pm 0.109)$	$-0.767~(\pm 0.121)$	$-0.933~(\pm 0.102)$	$-1.000 (\pm 0.118)$		
Cl	$-1.267~(\pm 0.109)$	$-0.467~(\pm 0.121)$	$-0.700 (\pm 0.102)$	$-0.967~(\pm 0.118)$		
OCH_3	0	0	0	0		
R^2 : 4-CH ₃	$-0.180~(\pm~0.146)$	$0.00~(\pm~0.162)$	$0.120~(\pm 0.137)$	$0.120~(\pm~0.159)$		
4-Cl	$-0.240~(\pm 0.146)$	$-0.060~(\pm~0.162)$	$0.180 \ (\pm \ 0.137)$	$0.240~(\pm~0.159)$		
3-Cl	$-0.120(\pm 0.146)$	$0.060 (\pm 0.162)$	$0.060(\pm 0.137)$	$0.120(\pm 0.159)$		
$3, 4-Cl_2$	$-0.180 (\pm 0.146)$	$0.180 \ (\pm \ 0.162)$	$0.360~(\pm 0.137)$	$0.540 \ (\pm \ 0.159)$		
4-Br	$-0.060(\pm 0.146)$	$0.060 (\pm 0.162)$	$0.180(\pm 0.137)$	$0.360(\pm 0.159)$		
4-F	$0.120 (\pm 0.146)$	$0.218~(\pm~0.176)$	$0.660 \ (\pm \ 0.137)$	$0.840 \ (\pm \ 0.159)$		
3-F	$0.420(\pm 0.146)$	$0.300(\pm 0.162).$	$0.840(\pm 0.137)$	$0.960(\pm 0.159)$		
$3-CF_3$	$0.420(\pm 0.149)$	$0.600 (\pm 0.162)$	$0.780(\pm 0.170)$	$0.960 (\pm 0.159)$		
4-H	0	0	0	0		
$\mu_{ m o}$	$1.213~(\pm~0.124)$	$1.549~(\pm~0.138)$	$0.98~(\pm~0.116)$	$0.803~(\pm~0.134)$		
R	0.943	0.883	0.926	0.923		
8	0.230	0.256	0.216	0.251		
F	21.22	9.12	15.81	15.30		
n	45	44	45	45		

jority of MICs was in the range of 0.5–4 µmol L⁻¹. The activities against M. tuberculosis of most of the compounds tested were comparable with the activity of INH but the activities against M. kansasii 6509/96 are higher.

The Hansch approach was carried out to study the relationship between the structure of the compounds and their activity against M. tuberculosis. The correlation of the logarithm of the minimum inhibitory concentration for 14 d and 21 d is statistically significant so the QSAR study included only the results obtained after 14 d of incubation. The reliability of the calculation is confirmed by the leave-one-out (LOO) method.

Equation 1 illustrates the structure–activity relationship of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones (I-V):

$$\begin{aligned} \log(\text{MIC}_{\text{M.tub.14d}}) &= -(1.202 \pm 0.176)\pi_1 + \\ &+ (0.886 \pm 0.327)\sigma_2 - (0.522 \pm 0.182)\pi_2 + \\ &+ (0.898 \pm 0.130) \end{aligned} \tag{1} \\ (r = 0.760, \ Q^2 = 0.486, \ s = 0.396, \ n = 45, \ F = 18.69, \\ F^{\alpha = 0.05} = 2.83) \end{aligned}$$

where r is the correlation coefficient, Q^2 is the crossvalidation value, s is the standard deviation, n is the number of compounds used for calculation, F is the Fischer–Snedecor distribution, F-test, symbol π_1 represents Hansch constants of \mathbb{R}^1 substituents, π_2 Hansch constants of \mathbb{R}^2 substituents, and σ_2 Hammett constants of \mathbb{R}^2 substituents on the phenyl ring. The following equation illustrates the structure– activity relationship of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones (VI-X):

$$\begin{aligned} \log(\text{MIC}_{\text{M.tub.14d}}) &= -(1.028 \pm 0.166)\pi_1 + \\ &+ (1.206 \pm 0.302)\sigma_2 - (0.604 \pm 0.170)\pi_2 + \\ &+ (0.830 \pm 0.127) \end{aligned} \tag{2} (r = 0.762, Q^2 = 0.485, s = 0.366, n = 44, F = 18.52, F^{\alpha = 0.05} = 2.84) \end{aligned}$$

Eq. (3) illustrates the structure–activity relationship of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)ones (I-V) and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)dithiones (VI-X) combined:

$$\begin{aligned} \log(\text{MIC}_{\text{M.tub.14d}}) &= -(1.116 \pm 0.089)\pi_1 + \\ &+ (1.046 \pm 0.219)\sigma_2 - (0.564 \pm 0.123)\pi_2 + \\ &+ (0.866 \pm 0.089) \end{aligned} \tag{3} \\ (r &= 0.757, \ Q^2 = 0.529, \ s = 0.375, \ n = 89, \ F = 37.99, \\ F^{\alpha = 0.05} &= 2.71) \end{aligned}$$

Index 1 represents the parameters of \mathbb{R}^1 substituents (in position 6 of the benzoxazine ring) and index 2 the parameters of \mathbb{R}^2 substituents on the phenyl ring. Both the equations have a significance level lower than 0.05. Both regression equations satisfy the statistical criteria for rejecting the null hypothesis at a significance level lower than 0.05. Cross-validation (Q^2) proved the acceptable stability of these QSAR models. The equations show that activity increases with the lipophilicity of the substituents. The Free–Wilson

Table 7. Activity contribution of the Free–Wilson analyses of 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithiones and statistical significance of correlation

	$\Delta \log({ m MIC}/(\mu { m mol} \ { m L}^{-1}))$					
Parameter	M. tuberculosis My 331/88	<i>M. avium</i> My 330/88	M. kansasii My 235/80	M. kansasii 6509/96		
R^1 : Br	$-1.037~(\pm 0.106)$	$-0.126~(\pm 0.148)$	$-0.688~(\pm 0.119)$	$-0.587~(\pm 0.126)$		
CH_3	$-1.203~(\pm 0.106)$	$-0.762~(\pm~0.148)$	$-0.721~(\pm 0.119)$	$-0.620~(\pm~0.126)$		
F	$-0.870~(\pm 0.106)$	$-0.291~(\pm~0.148)$	$-0.621~(\pm 0.119)$	$-0.787~(\pm 0.126)$		
Cl	$-1.203~(\pm 0.106)$	$-0.292~(\pm~0.148)$	$-0.755~(\pm 0.119)$	$-0.920~(\pm 0.126)$		
OCH_3	0	0	0	0		
$R^2: 4-CH_3$	$-0.366~(\pm 0.147)$	$0.120~(\pm~0.186)$	$0.145~(\pm 0.157)$	$0.004~(\pm 0.167)$		
4-Cl	$-0.246~(\pm 0.144)$	$0.360~(\pm~0.186)$	$0.206~(\pm 0.157)$	$0.304 \ (\pm \ 0.167)$		
3-Cl	$-0.187~(\pm 0.147)$	$-0.225~(\pm~0.194)$	$0.206~(\pm 0.157)$	$0.124(\pm 0.167)$		
3.4-Cl ₂	$-0.126~(\pm~0.147)$	$0.360~(\pm 0.186)$	$0.266~(\pm 0.157)$	$0.244 \ (\pm \ 0.167)$		
4-Br	$-0.306~(\pm 0.147)$	$0.360~(\pm 0.186)$	$0.206~(\pm 0.157)$	$0.304~(\pm 0.167)$		
4-F	$0.066~(\pm 0.147)$	$0.240~(\pm~0.186)$	$0.387~(\pm 0.157)$	$0.604 \ (\pm \ 0.167)$		
3-F	$0.474 (\pm 0.147)$	$0.450 (\pm 0.194).$	$0.750~(\pm~0.164)$	$0.825~(\pm 0.175)$		
$3-CF_3$	$0.294~(\pm 0.147)$	$0.660~(\pm~0.186)$	$0.686~(\pm 0.157)$	$0.964~(\pm 0.167)$		
4-H	0	0	0	0		
$\mu_{ m o}$	$1.228~(\pm~0.124)$	$1.200~(\pm~0.186)$	$1.071~(\pm~0.152)$	$0.879~(\pm~0.162)$		
R	0.940	0.852	0.869	0.904		
s	0.218	0.275	0.232	0.247		
F	19.90	6.35	7.73	11.17		
n	44	42	43	43		

method modified by Fujita–Ban was used to investigate the activity contribution (Tables 6 and 7). The alkyl derivatives are proposed for future screening because of the decrease in the activity with an increasing value of σ_2 constants and the Free–Wilson analysis results.

Conclusions

The derivatives of 3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-one (I-V) and 3-phenyl-2H-1,3-benzoxazine-2,4(3H)-dithione (VI-X) possess a biological activity similar to INH, the standard used for comparison. The replacement of one oxo group with a thioxo group strongly increased the antimycobacterial activity. The replacement of a further oxo group had a small effect on the activity. 3-(4-Chlorophenyl)-6-methyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-one (IIc) is the most promising compound, as it shows the best activity against all the mycobacterial strains under examination. This compound has been selected for future investigation.

Acknowledgements. This work was financially supported by project No. MSM 0021620822 of the Ministry of Education of the Czech Republic, Grant Agency of Charles University (GAUK 11809/2009/B-CH/FAF) and by grant No. SVV-2010-261-001.

References

Aaron, L., Saadoun, D., Calatroni, I., Launay, O., Mémain, N.,

Vincent, V., Marchal, G., Dupont, B., Bouchaud, O., Valeyre, D., & Lortholary, O. (2004). Tuberculosis in HIV-infected patients: a comprehensive review. *Clinical Microbiology and Infection*, 10, 388–398. DOI: 10.1111/j.1469-0691.2004.00758.x.

- Dye, C. (2009). Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. *Nature Reviews Microbiology*, 7, 81–87. DOI: 10.1038/nrmicro2048.
- Free, S. M., & Wilson, J. W. (1964). A mathematical contribution to structure-activity studies. Journal of Medicinal Chemistry, 7, 395–399. DOI: 10.1021/jm00334a001.
- Fujita, T., & Ban, T. (1971). Structure-activity relation. 3. Structure-activity study of phenethylamines as substrates of biosynthetic enzymes of sympathetic transmitters. *Journal of Medicinal Chemistry*, 14, 148–152. DOI: 10.1021/jm00284a016.
- Golbraikh, A., & Tropsha, A. (2002). Beware of q²! Journal of Molecular Graphics and Modelling, 20, 269–276. DOI: 10.1016/S1093-3263(01)00123-1.
- Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Study of physicochemical properties–antitubercular activity relationship of naphtalene-1,4-dione analogs: A QSAR approach. *Chemical Papers*, 63, 723–730. DOI: 10.2478/s11696-009-0080-0.
- Hansch, C., & Leo, A. J. (1979). Substituent constants for correlation analysis in chemistry and biology. New York, NY, USA: Wiley.
- Hlasta, D. J., Demers, J. P, Foleno, B. D, Frago-Spano, S. A., Guan, J., Hilliar, J. J., Macielag, M. J., Ohemeng, K. A., Sheppard, C. M., Sui, Z., Webb, G. C., Weidner-Wells, M. A., Werblood, H., & Barrett, J. F. (1998). Novel inhibitors of bacterial two-component systems with gram positive antibacterial activity: Pharmacofore identification based on the screening hit closantel. *Bioorganic & Medicinal Chemistry Letters*, 8, 1923–1928. DOI: 10.1016/S0960-894X(98)00326-6.

- Li, X., Liu, N., Zhang, H., Knudson, S. E., Slayden, R. A., & Tonge, P. J. (2010). Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: Novel antibacterial agents against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry Letters, 20, 6306–6309. DOI: 10.1016/j.bmcl.2010.08.076.
- Macielag, M. J., Demers, J. P., Fraga-Spano, S. A., Hlasta, D. J., Johnson, S. G., Kanojia, R. M., Russell, R. K., Sui, Z., Weidner-Wells, M. A., Werblood, H., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C., & Barrett, J. F. (1998). Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. *Journal of Medicinal Chemistry*, 41, 2939–2943. DOI: 10.1021/jm9803572.
- Matyk, J., Waisser, K., Dražková, K., Kuneš, J., Klimešová, V., Palát, K., Jr., Kaustová, J. (2005). Heterocyclic isosters of antibacterial salicylanilides. *II Farmaco*, 60, 399–408. DOI: 10.1016/j.farmac.2005.02.002.
- Naidoo, K., Naidoo, K., Padayatchi, N., & Karim, Q. A. (2011). HIV-associated tuberculosis. *Clinical and Develop*mental Immunology, 2011, Article ID 585919, 8 pages. DOI: 10.1155/2011/585919.
- Nemeček, P., Ďurčeková, T., Mocák, J., & Waisser, K. (2009). Chemometrical analysis of computed QSAR parameters and their use in biological activity prediction. *Chemical Papers*, 63, 84–91. DOI: 10.2478/s11696-008-0089-9.
- O'Brien, R. J., & Nunn, P. P. (2001). The need for new drugs against tuberculosis. American Journal of Respiratory and Critical Care Medicine, 163, 1055–1058.
- Petrlíková, E., Waisser, K., Jílek, P., & Dufková, I. (2010). Antibacterial activity of N-nenzylsalicylthioamides, Folia Microbiologica, 55, 418–421. DOI: 10.1007/s12223-010-0070-1.
- Petrlíková E., Waisser K., Palát, K., Kuneš, J., & Kaustová J. (2011). A new group of potential antituberculotics: N-(2pyridylmethyl)salicylamides and N-(3-pyridylmethyl)salicylamides, Chemical Papers, 65, 52–59. DOI: 10.2478/s11696-010-0084-9.
- Saeed, A., & Ashraf, Z. (2008). Synthesis of some 3-aryl-1Hisochromene-1-thiones. Journal of Heterocyclic Chemistry, 45, 679–682. DOI: 10.1002/jhet.5570450307.
- Schroeder, E. K., de Souza, O. N., Santos, D. S., Blanchard, J. S., & Basso, L. A. (2002). Drugs that inhibit mycolic acid biosynthesis in mycobacterium tuberculosis. *Current Pharmaceutical Biotechnology*, 3, 197–225. DOI: 10.2174/1389201023378328.

- Tortoli, E. (2009). Clinical manifestations of nontuberculous mycobacteria infections. *Clinical Microbiology and Infection*, 15, 906–910. DOI: 10.1111/j.1469-0691.2009.03014.x.
- van den Boogaard, J., Kibiki, G. S., Kisanga, E. R., Boeree, M. J., & Aarnoutse, R. E. (2009). New drugs against tuberculosis: Problems, progress, and evaluation of agents in clinical development. Antimicrobial Agents and Chemotherapy, 53, 849–862. DOI: 10.1128/AAC.00749-08.
- Wagner, G., Singer, D., & Weuffen, W. (1966). Studies on 2-hydroxythiobenzamide and 2-hydroxythiobenzanilide. 1. Synthesis of the compounds. *Pharmazie*, 21, 161–166.
- Waisser, K., Čižmárik, J., Holý, P., Petrlíková, E., Kuneš, J., & Kaustová, J. (2009). Antimycobacterial 3-(4-ethoxythiocarbonylphenyl)-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 3-(4-ethoxythiocarbonylphenyl)-2H-1,3-benzoxazine-2,4(3H)-dithiones. Acta Facultatis Pharmaceuticae Universitatis Comenianae, 56, 171–179.
- Waisser, K., Gregor, J., Kubicová, L., Klimešová, V., Kuneš, J., Macháček, M., & Kaustová, J. (2000). New groups of antimycobacterial agents: 6-chloro-3-phenyl-4-thioxo-2H-1,3-benzoxazine-2(3H)-ones and 6-chloro-3-phenyl-2H-1,3benzoxazine-2,4(3H)-dithiones. European Journal of Medicinal Chemistry, 35, 733–741. DOI: 10.1016/S0223-5234(00)00 174-4.
- Waisser, K., Hladůvková, J., Holý, P., Macháček, M., Karajannis, P., Kubicová, L., Klimešová, V., Kuneš, J., & Kaustová, J. (2001a). 2*H*-1,3-benzoxazine-2,4(3*H*)-diones substituted in position 6 as antimycobacterial agents. *Chemical Papers*, 55, 323–334.
- Waisser, K, Hladůvková, J, Kuneš, J, Kubicová, L, Klimešová, V, Karajannis, P, & Kaustová, J. (2001b). Synthesis and antimycobacterial activity of salicylanilides substituted in position 5. Chemical Papers, 55, 121–129.
- Waisser, K., Matyk, J., Divišová, H., Husáková, P., Kuneš, J., Klimešová, V., Kaustová, J., Möllmann, U., Dahse, H.-M., & Miko, M. (2006). The oriented development of antituberculotics: Salicylanilides. Archiv der Pharmazie, 339, 616–620. DOI: 10.1002/ardp.200600093.