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Fe(OTf)3, was found to be a good catalyst for the cyclization
of alkenyl N,O-acetals to give various nitrogen-containing
heterocycles in high yields.

Nitrogen-containing heterocycles are widely distributed in
nature and a lot of these compounds display important biological
and pharmaceutical activities. Although the heterocycles have
been prepared by various methods,1 development of more effi-
cient and convenient approaches to the synthesis of the function-
alized heterocycles under mild conditions is still desired. For the
sophisticated procedure, N-acyliminium ion is a useful synthetic
intermediate due to its highly electrophilic character, which
allows the intramolecular addition of various �- and �-nucleo-
philes to afford numerous heterocycles.2 However, there is no
catalytic example of iminium ion cyclization. Herein, we would
like to report a catalytic cyclization of alkenyl N,O-acetals by
Fe(OTf)3 to provide an easy access to nitrogen-containing
heterocycles (eq 1).
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We first investigated catalytic activities of various transi-
tion-metal complexes and Brønsted acid in the cyclization of
2-(but-3-enyl)-3-hydroxyisoindolin-1-one (1a) as a model sub-
strate (Table 1). Treatment of 1a with 10mol% of Sc(OTf)3
afforded the azacyclohexene 2a and its isomer 2a0 in 24 and
8% yields, respectively (Entry 1). Although Sc(OTf)3 showed
a good mass balance, the reaction was not catalytic even with ad-
ditional stirring due to a loss of activity. Similar phenomena
were observed with AlCl3 and BF3.OEt2 catalysts. With TfOH,
CuOTf, and Cu(OTf)2 catalysts, most of 1a was consumed with-
out decreasing the catalyst activity, but a low mass balance was
found because of oligomerization of 1a (Entries 2–4). In strong
contrast, AgOTf did not initiate the reaction (Entry 5). PdCl2 af-
forded a complex mixture (Entry 6). Use of PtCl2 caused olefin
isomerization of 1a to give a mixture of (E)-and (Z)-2-(but-2-en-
yl)-3-hydroxyisoindolin-1-one in 28% yield without cyclization
(Entry 7). Further screening revealed that employment of
Fe(OTf)3 catalyst improved the product yield to 73% NMR yield
(Entry 8), from which the pure product was obtained by column
chromatography in 63% yield with the same isomer ratio
(2a:2a0 = 76:24). Other iron triflates, Fe(OTf)2, and CpFe(CO)2-
OTf were also effective for the cyclization, but they needed
longer reaction time to complete the reaction (Entries 9 and
10). Similar catalytic activity was observed by Bi(OTf)3 (Entry
11). 1,4-Dioxane, 1,2-dichloroethane, and 1,2-dimethoxyethane
were suitable solvents, whereas toluene decreased the reaction
rate.3

With optimal conditions in hand, the cyclization of several
alkenyl N,O-acetals was investigated as summarized in
Table 2.4 2,2-Disubstituted olefin was a good coupling partner
for theN,O-acetal moiety, giving rise to heterocycles 2b as amix-
ture of three regioisomers in 94% yield, even at room temperature
(Entry 1).5 Similarly, high reactivity was observed in the case of
1,2,2-trisubstituted substrates, 1c and 1d (Entries 2 and 3). Acy-
clic N,O-acetal function also participated in the cyclization
(Entry 3). The cyclization of internal olefins such as 1e and 1f fa-
vored the formation of azacyclohexenes, and thus, neither the 5-
membered ring from 1e nor the 7-membered one from 1fwas de-
tected (Entries 4 and 5). In contrast, cyclization of N,O-acetal
with a terminal 4-pentenyl moiety such as 1g and 1h constructed
only azacycloheptene skeletons in good yields (Entries 6 and 7).6

For several plausible mechanisms in the cyclization, the imi-
nium ion could be a key intermediate because its generation has
been well known to occur the �-fragmentation of N,O-acetal
with typical Lewis acid other than iron.7 However, useful imini-
um ion generators such as BF3.OEt2, Sc(OTf)3, and TfOH did
not display high catalytic performance in the present cyclization.
To gain further information of the iron-catalyzed mechanism, a
reaction of alkenyl N,O-acetals 1g and Bi(OTf)3 (0.3 equiv),
which possesses similar catalytic activity to the iron and
is diamagnetic, was monitored by 1HNMR (Scheme 1 and
Figure S110). An acetal proton (Ha) of the alkenyl N,O-acetal
1g appeared at 5.72 ppm as a doublet signal (J ¼ 11:9Hz) in
the absence of the catalyst. In contrast, treatment of 1g with Bi-
(OTf)3 resulted in a disappearance of the coupling between Ha

and OH, and low-field shifts of Ha as well as all olefinic protons
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Entry Catalyst Time/h
Total yield/%a

[2a/2a0]a
Conv./%a

1 Sc(OTf)3 3 32 [75/25] 34
2 TfOH 3 46 [72/28] 96
3 Cu(OTf)2 3 36 [86/14] 62
4 (CuOTf)2.C6H6 48 35 [77/23] 79
5 AgOTf 3 0 [—] 3
6 PdCl2 3 0 [—] 96
7 PtCl2 8 0 [—] 92b

8 Fe(OTf)3 3 73 [77/23] 100
9 Fe(OTf)2 27 68 [81/19] 92

10 CpFe(CO)2OTf 27 71 [80/20] 100
11 Bi(OTf)3 3 70 [76/24] 100

aDetermined by NMR. bOlefin isomerization occured.
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(Hb, Hc, and Hd),
8 in which 2g was formed in 19% yield. The

spectra may suggest the formation of �- and �-chelated inter-
mediate A during the present cyclization.9

Based on these results, we propose a mechanism for
the iron-catalyzed cyclization of alkenyl N,O-acetals 1 in
Scheme 2. First, cationic iron would dually coordinate to the hy-
droxy group and the olefin of 1, leading to the intermediate A0, in
which the two reaction-sites could be brought together as shown
in Scheme 1. Subsequent cyclization of A0 takes place readily
through electron transfer from the olefin to the generated imini-
um ion function of B to afford the carbocation C. The species
could spontaneously liberate a proton to yield the corresponding
azacycloalkenes 2.

In conclusion, we have demonstrated the first catalytic cyc-
lization of alkenyl N,O-acetals by Fe(OTf)3 to give azacyclo-
alkenes in high yields. High catalyst activity of the iron could
be caused by its dual coordination to both hydroxy group and
olefin, which brings two reaction-sites together, and facilitates
electron transfer from the olefin to the iminium ion moiety, pre-

venting side-reactions. Synthetic application of the cyclization is
under investigation.
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Table 2. Fe(OTf)3-catalyzed cyclization of alkenyl N,O-
acetals 1
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Scheme 2. Plausible reaction mechanism.
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