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ABSTRACT: By merging C—F and C—C bond activation in the cross-
electrophile coupling, we developed an efficient cyanide-free synthesis of diverse
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oxime esters and trifluoromethyl alkenes as precursors. Notably, this Ni-catalyzed
reaction is bestowed with broad substrate scope, low catalyst loading, complete
regioselectivities, and high tolerance of a wide range of sensitive functional
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groups. Preliminary mechanistic studies indicate that an iminyl radical-initiated

C—C bond cleavage is involved in the reaction pathway.

In recent years, cross-electrophile coupling reactions have
emerged as a powerful method in organic synthesis toward
C—C bond formation." In comparison with the classic
traditional cross-coupling reactions using stoichiometric
organometallics, cross-electrophile coupling is bestowed with
better step economy and higher functional group tolerance.
The tremendous advances in this realm focus on the cleavage
of relatively weak chemical bonds, such as C—I, C—Br,
activated C—Cl, and C—O bonds,> whereas the activation of
stronger bonds, either C—F® or C—C bonds," is rarely involved
in this field, let alone their combination.

The synthesis of organofluorine compounds is one of the
most important research subjects in pharmaceutical and
agrochemical developments.’ Being the bioisostere of meta-
bolically vulnerable carbonyl compounds, gem-difluoroalkenes
are of particular interest in drug discovery due to their higher
stability in metabolism.® Consequently, a number of bio-
logically active compounds containing a gem-difluoroalkene
moiety have been reported.” Furthermore, gem-difluoroalkenes
are also versatile building blocks for the synthesis of fluorine-
containing moieties, such as monofluoromethylene, difluor-
ocyclopropane, and difluoromethyl group.® Therefore, organic
chemists have made great efforts in the last decades to develop
simpler and more efficient methods for the synthesis of
structurally diverse gem-difluoroalkenes. Conventionally, two
successful strategies have been established to access this
structural motif. The first approach relies on the functional
group conversion, in which carbonyl or diazo compounds were
transformed into a difluoromethylene moiety.”'® Furthermore,
in a convergent strategy, organometallics or strong-base-
mediated nucleophilic addition to trifluoromethyl alkenes,
followed by —F elimination provides an alternative path to
gem-difluoroalkenes.'' Recently, both photocatalysis'* and Ni
catalysis® "' find applications in the synthesis of gem-
difluoroalkenes under mild reaction conditions. The C—-C
bond cleavage of cycloketone oxime esters was successfully
employed in a series of C—C and C—heteroatom bond-
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forming reactions, offering a new entry to synthesize nitriles
under cyanide-free conditions.'*'> Herein, we envisage that
both C—C'® and C—F'” bond activation could be merged in a
Ni-catalyzed cross-electrophile coupling reaction with trifluor-
omethyl alkenes and strained cyclobutanone oxime esters as
precursors, providing an efficient cyanide-free synthesis of
diverse cyano-substituted gem-difluoroalkenes as products
(Scheme 1).

Scheme 1. Synthesis of Cyano-Substituted gem-
Difluoroalkenes by Merging C—F and C—C Bond Cleavage
in the Ni-Catalyzed Cross-Electrophile Coupling
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For optimization of the reaction conditions of this Ni-
catalyzed reaction, we used acetyl-substituted a-trifluorome-
thylstyrene 1a and a-benzyl cyclobutanone O-acetyl oxime 2a
as standard substrates (Table 1). Initially, we tested a series of
ligands using NiCl,-glyme as the catalyst and Zn as the
reductant in DMF at room temperature. When bipyridine and
terpyridine ligands L1—3 were employed, the reaction afforded
the cross-coupled product 3a in low to moderate yields
(entries 1—3). Notably, the cleavage of the C—C bond
occurred on the more-substituted site with complete
regiocontrol. In the case of the phenanthroline-based ligand
L4, no desired product was formed (entry 4). Next, several Ni
salts were investigated as catalysts, providing no better yield
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Table 1. Optimization of the Reaction Conditions for the
Ni-Catalzyed Cross-Coupling Reaction”

OAc Ni-salt (5 mol%) | Bn

Ilgand (5 mol%)
Ac oN
Zn (2 equiv)

solvent rt,40h

3a
R
7N S
L1 2N N~
L2 R=H; L3 R={Bu.
entry metal—salt ligand solvent yield (%)°
1 NiCl,-glyme L1 DMF 13
2 NiCl,-glyme L2 DMF 22
3 NiCl,-glyme L3 DMF 49
4 NiCl,-glyme L4 DMF 0
5 Ni(COD), L3 DMF 18
6 NiBr, L3 DMF 40
7 Ni(acac), L3 DMF trace
8 NiCl,-glyme L3 MeCN 25
9 NiCl,-glyme L3 THF 16
10 NiCl,-glyme L3 DMA 56
11° NiCl,-glyme L3 DMA 0
124 NiCl,-glyme L3 DMA trace
13° NiCl,-glyme L3 DMA 73
14% NiCl,-glyme L3 DMA 82
158 NiCl,-glyme L3 DMA S8

“Unless otherwise specified, reactions were performed on a 0.2 mmol
scale of acetyl-substituted a-trifluoromethylstyrene 1a with 2 equiv a-
benzyl cyclobutanone O-acetyl oxime 2a, S mol % nickel-salt, S mol %
ligand, and 2 equiv Zn as the reductant in 2 mL of solvent at room
temperature for 40 h. ®Yields of the isolated product. “Mn was used as
the reductant instead of Zn. “Reaction was performed at 0 °C.
“Reaction was performed at 60 °C. /Reaction was performed with 1
mol % catalyst and 1 mol % ligand. ¥Reaction was performed with 1
equiv a-benzyl cyclobutanone O-acetyl oxime 2a.

(entries 5—7). Moreover, a brief solvent screening was
undertaken, and an improved result was obtained in the case
of DMA as the solvent (entries 8—10). Replacing Zn by Mn as
the reducing agent resulted in a complete shutdown of the
studied reaction (entry 11). Furthermore, the temperature
impact on this Ni-catalyzed reaction was explored. At 0 °C, the
reaction became very sluggish, affording only a trace of product
(entry 12). In contrast, increasing the reaction temperature to
60 °C gave rise to a significantly improved efficiency (entry
13). Finally, the yield of the studied reaction was improved to a
high level, when the catalyst loading was lowered to 1 mol %
(entry 14). Reducing the amount of the oxime ester 2a to 1
equiv led to a decrease in the yield to 58%.

After establishing the optimal reaction conditions, we started
to evaluate the substrate scope of this Ni-catalyzed reductive
cross-coupling reaction (Scheme 2). First, we reacted a-benzyl
cyclobutanone O-acetyl oxime (2a) with a variety of aryl and
heteroaryl-substituted trifluoromethyl alkenes la—i. To our
delight, all of the reactions furnished the corresponding cyano-
substituted gem-difluoroalkenes 3a—i in moderate to good
yield. Notably, these reactions demonstrate good tolerance of
diverse functional moieties including ketones (3a), halides (3b
and 3c), amines (3d), hydroxyl group (3e), and amides (3f
and 3i). Furthermore, alkynyl trifluoromethyl alkene also

Scheme 2. Evaluation of the Substrate Scope by Variation of
the Structure of the Trifluoromethyl Alkenes™"”
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“Unless otherwise specified, reactions were performed on a 0.2 mmol
scale of a-trifluoromethylstyrenes 1 with 2 equiv a-benzyl cyclo-
butanone O-acetyl oxime 2a, 1 mol % NiCl,-glyme, 1 mol % ligand
L3, and 2 equiv Zn as the reductant in 2 mL of DMA at 60 °C for 40
h. “Yields of the isolated products. “Determined by '*C NMR
spectroscopy.

turned out to be suitable for this Ni-catalyzed reaction,
affording the product 3j in a good yield.

Subsequently, we continued to explore the substrate
spectrum of this defluorinative reaction by varying the
structure of the cyclobutanone oxime esters (Scheme 3). In
the case of symmetrical cyclobutanone O-acetyl oximes, all of
the reactions proceeded smoothly under the optimal
conditions, affording the products 3k—t in moderate to high
yield. When unsymmetrical cyclic oxime esters were utilized as
precursors, all of the C—C bond cleavages occurred selectively
at the more substituted carbon center, furnishing the products
3u—aj in good to high yield. Remarkably, in the case of the cis-
bi-, and tri-cyclic oxime esters as substrates, only the formation
of trans-configurated products 3x—aj was observed, suggesting
a complete conversion of the stereochemistry of the newly
formed stereocenter. Furthermore, a 10 mmol scale reaction
was performed, providing the product 3k in a similar yield,
wherein the catalyst loading could be reduced to 0.5 mol %.
Unfortunately, the reactions using cyclopentanone- and
cyclohexanone-derived oxime esters as precursors failed to
yield the ring-opening products.

Next, we tested the application of our methodology in the
reactions involving some structurally complex trifluoromethyl
alkenes or cyclobutanone oxime esters, which derive from
gemfibrozil, estrone, stigmasterol, and vitamin E. To our
delight, all of the reactions afforded the desired products in
moderate to good yield (Scheme 4).

Furthermore, some derivatizations based on the conversion
of the cyano and gem-difluoroalkene moieties were carried out
(Scheme 5). The hydrolysis of 3k under basic conditions
delivered a carboxylic acid 4 and an amide § in good yield,
respectively. The diisobutylaluminum hydride (DIBAL-H)-
mediated reduction at —78 °C afforded an aldehyde 6 with
high efficiency. In addition, the difluoromethylene moiety was
successfully converted to a difluoromethyl group via a Pd/C-
catalyzed hydrogenation.

A series of control experiments were carried out to explore
the mechanism of this Ni-catalyzed reaction (Scheme 6). First,
a stoichiometric reaction of Ni(COD), with the trifluor-
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Scheme 3. Evaluation of the Substrate Scope by Variation of the Structure of the Cycloketone O-Acetyl Oximes
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“Unless otherwise specified, reactions were performed on a 0.2 mmol scale of trifluoromethyl alkenes 1 with 2 equlv cyclobutanone O-acetyl oximes
2, 1 mol % NiCl,-glyme, 1 mol % ligand L3, and 2 equiv Zn as the reductant in 2 mL of DMA at 60 °C for 40 h. “Yields of the isolated products.
“Reaction was performed on a 10 mmol scale using 0.5 mmol % catalyst loading. “Determined by *C NMR spectroscopy.

omethyl alkene 1a and the oxime ester 2a in the absence of a
reducing agent was carried out, providing the coupling product
3a in a moderate yield (Scheme 6A). This result indicates that
the Zn powder can serve as a terminal reductant in this
reaction. In our previous work, it was discovered that Ni(0)
species does not react with acyclic oxime esters."” Thus we
wonder if strained cyclic oxime esters are also inert in the
presence of Ni(0) complex. To verify this, we performed the
stoichiometric reaction between Ni(COD), and the oxime
ester 2a (Scheme 6B). In contrast, a full consumption of 2a
was observed, and the ring opening product S-phenyl-
pentanenitrile was afforded in a moderate yield after the
reaction was quenched with water. It is known that transition-
metal-promoted ring opening of cycloketone oxime esters can
proceed via either two-electron f-carbon elimination'**" or
iminyl radical-initiated ring opening.'*"° To find out the
actual pathway of the studied reaction, we conducted the
stoichiometric reaction of the cyclic ketone ester 2n and
Ni(COD), with TEMPO as a radical scavenger (Scheme 6C).
In this case, the TEMPO adduct 8 was obtained in a moderate
yield, suggesting the formation of a carbon-centered radical in
the reaction mixture, which is generated through the iminyl
radical-initiated C—C bond cleavage. The aforementioned
results imply that the Ni(0) species is probably responsible for
the ring opening of cyclobutanone O-acetyl oximes. However,

we cannot exclude the possibility that an in situ generated
Ni(I) complex is the actual species inducing the radical-type
ring opening because the Ni(I) species is known to produce
alkyl radicals through interaction with alkyl halides.”

Next, a sequential stoichiometric reaction was conducted by
adding the trifluoromethyl alkene 1b to the premixed oxime
ester 2b, ligand L3, and Ni(COD), in DMA. However, the
cross-coupled product 3k was not formed in this case (Scheme
3D). The rapid H-radical abstraction of the carbon-centered
radical prior to the addition of 1b might account for this result.
Subsequently, we continued to explore the interaction between
the catalyst and the trifluoromethyl alkenes. According to our
previous work,®” Ni(0) species can likely form a complex with
trifluoromethyl alkenes using pyridine-based ligands, whereas
Ichikawa et al. discovered the formation of nickelacyclopro-
pane in the reaction between Ni(COD), and a trifluoromethyl
alkene using a phosphine ligand.B’Z1 Moreover, we wonder
how trifluoromethyl alkenes interact with the Ni(I) species,
which is probably also available in the reaction mixture under
the reductive conditions. Thus we performed the stoichio-
metric reaction employing trifluoromethylalkene 1b and NiCl,-
glyme with Zn as the reductant (Scheme 6E). In this case, the
hydrogenated product 9 was furnished in a moderate yield,
implying the formation of a nickelacyclopropane through the
interaction between an in situ generated Ni(I) species and the
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Scheme 4. Cross-Coupling Reaction Involving Structurally Complex Trifluoromethyl Alkenes or Cyclobutanone Oxime
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“Unless otherwise specified, reactions were performed on a 0.2 mmol scale of trifluoromethyl alkenes 1 with 2 equlv cyclobutanone O-acetyl oximes
2, 1 mol % NiCl,-glyme, 1 mol % ligand L3, and 2 equiv Zn as the reductant in 2 mL of DMA at 60 °C for 40 h. bYields of the isolated products.

“Determined by *C NMR spectroscopy.

Scheme S. Derivatizations of a Ni-Catalyzed Defluorinative
Cross-Coupling Product
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trifluoromethyl alkene 1b. When the oxime ester 2b was added
to the mixture instead of water, the desired product 3k was
provided in a moderate yield, revealing that a catalytic cycle
with the interaction between trifluoromethyl alkenes and Ni
catalyst as the initial step is feasible.

On the basis of the experimental results and previous
reports, we proposed two plausible mechanisms for this Ni-
catalyzed reaction (Scheme 7). The main difference between
them lies in the way the radicals add to the olefinic unit in the
C—C bond-forming step, which can proceed either off or on
the Ni catalyst. The first catalytic cycle is initiated by the
interaction of a Ni(0) species I with cyclobutanone oxime ester
2 (Scheme 4A). The generated iminyl radical II undergoes the
ring-opening reaction, providing a C-centered radical IIL. The
subsequent radical addition of III to trifluoromethyl alkene 1
without the participation of a Ni catalyst affords a relatively
electron-deficient a-trifluoromethyl carbon-radical IV, which
tends to perform the radical addition to the Ni(I) species V.
Next, the pf-fluoro elimination on the resultant Ni(II)
intermediate VI provides the gem-difluoroalkene 3 as the
product and a Ni(Il) species VII, which is reduced by Zn to
regenerate the Ni(0) species I for the next catalytic cycle. The

Scheme 6. Control Experiments
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seminal work of Zhou and Molander revealed that alkyl
radicals are able to perform the addition to trifluoromethyl
alkenes in polar aprotic solvent in the absence of Ni, which
supports the mechanism mentioned above.'” Alternatively, the
reaction can start with the complexation of trifluoromethyl
alkene 1 with the Ni(0) species I (Scheme 4B). The afforded
Ni(0) complex VIII interacts with cyclobutanone oxime ester
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Scheme 7. Proposed Mechanisms of the Ni-Catalyzed
Reaction
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2 to initiate the radical-mediated C—C bond cleavage.
Meanwhile, the produced Ni(I) complex IX undergoes the
oxidative addition to form a nickelacyclopropane X. The
subsequent reductive ring opening of X leads to the formation
of the Ni(II) intermediate VI. The following p-fluoro
elimination furnishes the coupling product 3. In the final
step, Zn-mediated terminal reduction of VII regenerates the
Ni(0) species L

In summary, a Ni-catalyzed cross-electrophile coupling of
cycloketone oxime esters with trifluoromethyl alkenes has been
accomplished through merging C—F and C-C bond
activation. This new method offers efficient access to prepare
various cyano-substituted gem-difluoroalkenes under cyanide-
free conditions, featuring a broad substrate scope, low catalyst
loading, complete regiocontrol, and high tolerance of a wide
range of sensitive functional moieties. Two different versions of
the reaction mechanism were proposed based on experimental
results and previous reports, and Ni-mediated generation of
iminyl radicals leading to the subsequent C—C bond cleavage
is involved in both cases.
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