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Dynamin is a key regulatory protein in clathrin mediated endocytosis. Compared to genetic or immuno-
logical tools, small chemical dynamin inhibitors such as dynasore have the potential to study the
dynamic nature of endocytic events in cells. Dynasore inhibits dynamin GTPase activity and transferrin
uptake at IC50 �15 lM but use in some biological applications requires more potent inhibitor than dyna-
sore. Here, we chemically modified the side chains of dynasore and found that two derivatives, DD-6 and
DD-11 more potently inhibited transferrin uptake (IC50: 4.00 lM for DD-6, 2.63 lM for DD-11) and dyn-
amin GTPase activity (IC50: 5.1 lM for DD-6, 3.6 lM for DD-11) than dynasore. The effect was reversible
and they were washed more rapidly out than dynasore. TIRF microscopy showed that they stabilize the
clathrin coats on the membrane. Our results indicated that new dynasore derivatives are more potent
inhibitor of dynamin, displaying promise as leads for the development of more effective analogues for
broader biological applications.

� 2010 Elsevier Ltd. All rights reserved.
Dynamin is essential for clathrin-coated vesicle formation in
endocytosis, at the trans Golgi network, as well as for the fission
of caveolae.1–6 It consists of a GTPase module, a pleckstrin-homol-
ogy (PH) domain, a GTPase effector domain (GED), and a proline/
arginine-rich C-terminal segment (PRD). Dynamin works as a
mechanochemical enzyme that induces conformational change
through GTP hydrolysis which leads to constriction and scission
of neck of a budding pit.7 A few endocytosis inhibitors such as
chlorpromazine, concanavalin A, phenylarsine oxide, dansylcada-
verine, had been suggested but had suffered from poor specificity
and no specific biological target.8–12 Targeting the GTPase activity
of dynamin has been attractive candidate for an endocytosis inhib-
itor, and a few small molecule inhibitors have been developed. Re-
cently, Macia et al. screened 16,000 compounds to find one with
the ability to block the GTPase activity of dynamin and have iden-
tified dynasore (C18H14N2O4, molecular weight 322.31 g/mol), that
interferes in vitro with the GTPase activity of dynamin1, dynamin2,
and Drp1, the mitochondrial dynamin, but not of other small
GTPases.13
All rights reserved.

minopyridine; DCM, dichlo-
oric acid; CHCl3, chloroform;
l)phosphonic chloride; EDCI,
2SO4, sodium sulfate; TIRF,

Physiology and Biomedical
ne, #309 Biomedical Science
9, South Korea.
Dynasore reversibly inhibits the GTPase activity of dynamin1 or
dynamin2 at the plasma membrane in a dose-dependent manner
with IC50 of �15 lM. At 80 lM, dynasore also inhibits the enzy-
matic activity of the mitochondrial dynamin Drp1. Dynasore blocks
internalization of transferrin, LDL, and cholera toxin.13,14 There has
been, however, concern about the instability of dynasore, and
moreover, the working concentration for dynasore (�80 lM/0.2%
DMSO final) is not suitable for some sensitive experiments such
as electrophysiological measurement in neuron, thereby asking
for more potent inhibitor than dynasore.

Dynasore (DD-4) was synthesized as previously described.14

Then, we designed a series of dynasore derivative compounds,
focusing synthetic approach of the corresponding amide analogues,
2-naphthohydrazaides and 2-naphthoamides which resulted in
potent and stable inhibitory effect. N0-substituted 2-naphthohyd-
razide (DD-4–11), N0-substituted 2-naphthoamide (DD-12–19),
and Bop-2-naphthoate (DD-20) were synthesized in good overall
yields by solution phase methods, as shown in Figure 1. Starting
materials of these reactions were commercially available 3-hydro-
xy-2-naphthoic acid (R1 = OH) and 2-naphthoic acid (R1 = H). The
carboxylic acid group of starting material (DD-1) was coupled with
methanol in well established Fischer esterification method to give
ester group containing compound (DD-2). Ester group of 2-naphtho-
ate (DD-2) was easily substituted by treatment with hydrazine
monohydrate in anhydrous ethanol at 20 �C for 24 h to furnish the
desired hydrazide containing compound (3). Eight kinds of N0-
substituted 2-naphthohydrazide (DD-4–11) compounds were
synthesized by reductive amination with 2-naphthohydrazide (3)
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Figure 1. Synthesis of N0-substituted 2-naphthohydrazide (DD-4–11) and N-substituted 2-naphthoamide (DD-12–19). Reagents and conditions: (a) HCl (g), MeOH, 1 h at
0 �C, then 1 h at room temperature; (b) hydrazine monohydrate, EtOH, 24 h at 20 �C; (c) ceric ammonium nitrate, EtOH, 3 h at 65 �C; (d) DMAP, EDCI, DCM, 5 h at room
temperature; (e) TEA, DCM, Bop-chloride, 1 h at room temperature. Details of these syntheses containing NMR and Mass data are described in Supplementary data.

Table 1
Structures and effects of naphthohydrazide, naphthoamide, and naphthoate derivatives on dynamin1 GTPase activity
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Compound R1 R2 R3 R4 R5 R6 X n Inhibition

4 (dynasore) OH H H OH OH H 69.8%
5 OH H H Cl Cl H 0%
6 H H H OH OH H 73.2%
7 H H H Cl Cl H 0%
8 H H H CH3 CH3 H 0%
9 OH H H CH3 CH3 H 0%
10 OH H OH H H NO2 0%
11 OH H OH OCH3 H H 74.7%
12 OH H H OCH3 H H N 2 ND
13 H H H OH H H N 2 0%
14 H H H OH OH H N 2 ND
15 H H H OCH3 H H N 2 ND
16 H H H –O–CH2–O– H N 2 ND
17 H H H OH OCH3 H N 2 ND
18 H H H CH2CH2NH2 H H O 0 0%
19 H H H CH2CH2NH2 H OH O 0 ND
20 0%
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and various benzaldehyde.15 For the synthesis of the N-substituted
2-naphthoamide (DD-12–19), the starting material (DD-1) was acti-
vated with EDCI reagent, which was easily attacked by amine com-
pound in the described conditions. The amide bond step to
compound DD-12–19 proceeded in satisfactory yields by following
a typical EDCI/DMAP coupling protocol.16 In order to synthesis the
Bop-2-naphthoate (DD-20), 2-naphthoic acid was dissolved in
DCM and triethylamine was added to activate the carboxylic acid
and then Bop-Cl was added to the reaction bottle (Fig. 1 and Table
1; Details of syntheses containing NMR and Mass data are described
in Supplementary data).17

To test the fast-acting inhibitory activity of new analogues, we
performed transferrin uptake assay without pre-treatment.18 We
treated COS-7 cells with TexasRed–transferrin for 10 min at 37 �C
in the presence or absence of 80 lM dynasore or its analogues. In
control cells, TexasRed–transferrin rapidly internalizes and accu-
mulates in peripheral early endosomes (Fig. 2).19 Treatment with
80 lM dynasore efficiently blocked transferrin uptake as previ-
ously reported. The substitution of hydroxyl group of 3-position
on the naphthyl ring in dynasore to hydrogen (DD-6) and introduc-
Figure 2. The effect of dynasore and derivatives on transferrin uptake. Cos-7 cells wer
transferrin for 10 min in the presence of 80 lM synthesized compounds in 0.1% DMSO. T
microscopic images of TexasRed–transferrin in Cos-7 cells. All images were collected w
quantified with average fluorescence intensity of internalized TexasRed–transferrin. Fluo
Data are means ± s.e. (control, 100, n = 17; dynasore, 30.2084 ± 3.8011, n = 15; DD-5,
n = 17; DD-8, 99.3377 ± 8.3947, n = 17; DD-9, 100.8126 ± 8.1829, n = 17; DD-10, 100.1685
DD-18, 98.2969 ± 7.3932, n = 16; DD-20, 98.2782 ± 6.6423, n = 15; ***P <0.01).
tion of hydroxyl group at 30 and methoxy group at 40 on phenyl ring
(DD-11) also showed comparable inhibitory effect on transferrin
uptake to dynasore. Introduction of chlorine atoms at 40 and 50 po-
sition on phenyl ring (DD-5) completely lost the inhibitory effect
on dynamin GTPase. Dimethyl substituted compounds at 40 and
50 position of phenyl ring also showed the lack of inhibition (Fig. 2).

We tested the dose-dependency of DD-6 and DD-11 and deter-
mined the median inhibition concentration (IC50) of two analogues
on transferrin uptake. Dynasore inhibits transferrin uptake in a
dose-dependent manner with an IC50 of �15 lM which is consis-
tent with the previously reported value. The inhibition of transfer-
rin uptake by DD-6 and DD-11 is also dose-dependent and has an
IC50 of �4 lM and �2.6 lM, respectively, suggesting that DD-6 and
DD-11 are more potent inhibitor of transferrin uptake than dyna-
sore (Fig. 3a–c).

We next tested whether new analogues inhibit dynamin GTPase
activity in vitro.20 Dynasore inhibits the GTPase activity of full-
length dynamin1 stimulated by self-association (by exposure to
low salt) in a dose-dependent manner with a median inhibition
concentration (IC50) of 10.8 lM. DD-6 and DD-11 also inhibit dyn-
e starved for 2 h with serum free medium and treated with TexasRed conjugated
he control experiment was done in the presence of 0.1% DMSO. (a) The fluorescence
ith 200 ms exposures. Scale bar = 50 lm. (b) The amount of transferrin uptake was
rescence intensity was normalized to the average fluorescence intensity of control.

92.8422 ± 5.3795, n = 15; DD-6, 27.8135 ± 5.2839, n = 13; DD-7, 92.6877 ± 7.2998,
± 3.5262, n = 15; DD-11, 25.3431 ± 3.7935, n = 17; DD-13, 94.0383 ± 5.5011, n = 14;
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amin GTPase activity in a dose-dependent manner but more potent
than dynasore with IC50 of 5.1 lM and 3.6 lM, respectively, close
to the IC50 determined in cells for the inhibition of transferrin up-
take (Fig. 3d). They also inhibit the enzymatic activity of the mito-
chondrial Drp1, but do not affect the activity of small GTPase
Cdc42 in the presence of its RhoGAP (Fig. 3e and f). It appears to
be hydrogen boning acceptor and donor group that are necessary
for inhibition of dynamin GTPase. In addition, 30 position seems
Figure 3. Determination of kinetics parameters for the effects of dynasore derivatives
TexasRed–transferrin and 10–40 lM compounds without preincubation. The control exp
images of internalized TexasRed–transferrin in the presence of indicated amount of com
Fluorescence intensity was normalized to control average fluorescence intensity. Data are
49.6135 ± 4.6107, n = 11; 40 lM, 32.8724 ± 3.2074, n = 15; DD-6 10 lM, 33.2103 ± 2.286
10 lM, 30.4733 ± 3.4038, n = 15; 20 lM, 22.9712 ± 2.3640, n = 12; 40 lM, 22.6976 ± 4.26
(IC50) on transferrin uptake. Inset indicates calculated IC50 value. (d) IC50 for the effects o
native dynamin1 was determined at low salt condition (15 mM) in the presence of indica
of dynasore derivatives on GTPase activity of 2 lM Drp1 in the presence of 80 lM dyna
activity of 1 lM Cdc42 determined in the presence of 0.5 lM RhoGAP domain of TCGAP
to be the key region for interaction between dynamin and com-
pounds (Table 1).

The effect of DD-6 and DD-11 on transferrin uptake is com-
pletely reversible, as after 30 min preincubation with analogues
followed by removal from the medium, transferrin uptake com-
pletely returned to normal levels within 30 min (Fig. 4). The recov-
ery was faster in DD-6 and DD-11 treated cells than dynasore
treated cells (after 10 min washout, recovery is 56.5955 ± 4.7102
on transferrin uptake and GTPase activity of dynamin. Cells were incubated with
eriment was done in the presence of 0.1% DMSO. (a) The fluorescence microscopic
pounds. Scale bar = 50 lM. (b) Quantification of internalized TexasRed–transferrin.
means ± s.e. (control, 100, n = 12; dynasore 10 lM, 54.5726 ± 2.6233, n = 13; 20 lM,
5, n = 11; 20 lM, 33.2103 ± 2.2865, n = 14; 40 lM, 25.8958 ± 1.0456, n = 13; DD-11
34, n = 13; ***P <0.01, *P <0.1). (c) Determination of median inhibition concentration
f dynasore derivatives on GTPase activity of dynamin. The GTPase activity of 1 lM
ted amount of dynasore, DD-6, and DD-11. Inset indicates IC50. ***P <0.01. (e) Effect
sore, 40 lM DD-6, and 20 lM DD-11. (f) Effect of dynasore derivatives on GTPase
.



Figure 4. Reversible inhibition activity of dynasore and derivatives to endocytosis. (a) Schematic diagram of experimental strategy used for measuring the reversible activity.
Cos-7 cells were pre-incubated with dynamin inhibitors (control: 0.1% DMSO, dynasore 80 lM, DD-6 40 lM, DD-11 20 lM, DD-20 80 lM) for 30 min at 37 �C, then measured
the amount of transferrin uptake after washing-out for 0, 10, or 30 min. (b) TexasRed–transferrin images were collected with same exposure time (200 ms), Scale bar = 60 lm.
(c) The amount of transferrin uptake was quantified with average fluorescence intensity of internalized TexasRed–transferrin. Fluorescence intensity was normalized to the
average fluorescence intensity of the control. Data are means ± s.e. (control: 0 min, 100, n = 14; 10 min, 103.2277 ± 6.9714, n = 14; 30 min, 99.1898 ± 6.6613, n = 15; dynasore
0 min, 32.2865 ± 2.4753, n = 16; 10 min, 40.5516 ± 1.4943, n = 15; 30 min, 98.9139 ± 1.5462, n = 16; DD-6 0 min, 34.2131 ± 4.3470, n = 14; 10 min, 56.5955 ± 4.7102, n = 16;
30 min, 97.3173 ± 6.4430, n = 16; DD-11 0 min, 33.6497 ± 4.3162, n = 15; 10 min, 60.0607 ± 5.7320, n = 17; 30 min, 99.0156 ± 5.1484, n = 15; DD-20 0 min, 35.4970 ± 8.1782,
n = 14; 10 min, 55.1139 ± 5.2791, n = 14; 30 min, 92.6970 ± 3.8849, n = 15).

Figure 5. DD-6 and DD-11 stabilize clathrin-coated spots on the plasma membrane. TIRFM image of a COS-7 cell transiently transfected with mRFP-LCa. Time-lapse series
were collected for 5 min at 37 �C in the presence or absent of dynasore, DD-6 or DD-11. Each still image corresponds to a frame acquired after 240 s and 140 s data collection,
kymographs (time) represents the complete time-lapse series obtained with the line scan (100 ms exposure, acquired every 2 s).
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Table 2
HPLC characterization of dynasore derivatives for purity determination

Compounds Retention time (min) Purity (%)

Dynasore 9.65 95.4
DD-6 8.97 93.6
DD-11 14.32 96.3
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for DD-6, 60.0607 ± 5.7320 for DD-11, 40.5516 ± 1.4943 for dyna-
sore). Interestingly, DD-20 which didn’t exhibit inhibitory activity
without preincubation, showed a comparable and reversible inhi-
bition on transferrin uptake after 30 min preincubation (Fig. 4).

To study in more detail the effects of DD-6 and DD-11 compared
to dynasore on the formation of clathrin-coated pits, total internal
reflection microscopy (TIRFM) was performed in COS-7 cells trans-
fected with clathrin (mRFP-LCa).21 TIRFM showed that mRFP-LCa is
recruited to the plasma membrane in a punctate pattern which ap-
pears and disappears and have life spans ranging between 20 and
60 s (Fig. 5a). Upon incubation for 30 min with 10 lM dynasore
(which is suboptimal concentration for dynamin inhibition), some
of mRFP-LCa spots become stable for long periods but many of
them are still able to bud off from the membrane (Fig. 5b). In con-
trast, upon incubation for 30 min with 10 lM DD-6 or DD-11, most
of mRFP-LCa coats remain locked at their starting positions on the
membrane, suggesting DD-6 and DD-11 block dynamin-mediated
membrane fission more potently than dynasore (Fig. 5c and d).

Compared to conventional genetic or immunological tools,
small chemical molecule dynamin inhibitors have the potential
to study the dynamic nature of endocytic events in cells. Dynasore
was discovered by chemical genetics discovery approach and has
proven to be a useful tool for studying membrane traffic.22–26 We
have designed a series of dynasore derivatives, and found that
introduction of chlorine atoms or dimethyl substitution at 40 and
50 position on phenyl ring completely lost the dynasore’s inhibitory
effect on dynamin GTPase. In contrast, the substitution of hydroxyl
group of 3-position on the naphthyl ring in dynasore to hydrogen
(DD-6) and introduction of hydroxyl group at 30 and methoxy
group at 40 on phenyl ring (DD-11) significantly increase inhibitory
potency on dynamin GTPase (Table 2). Using TIRF microscopy, we
further showed that DD-6 and DD-11 stabilize clathrin-coated
spots on the plasma membrane at the concentration of 10 lM,
which is suboptimal concentration for dynasore to inhibit dynam-
in. They did not induce any noticeable toxicity to the cells even
with 12 h incubation (Supplementary Fig. 2). Besides, DD-6 has
comparable solubility in aqueous solution to that of dynasore (Sup-
plementary Fig. 3). Although DD-11 is less soluble (Supplementary
Fig. 3) but its IC50 for transferrin uptake is 3 times less than that of
dynasore. All in all, our results display considerable promise as
leads for the development of more potent analogues for dynamin
inhibition.
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amount of inorganic phosphate released by GTPase activity was measured by
using the GTPase Enzyme Linked Inorganic Phosphate Assay in the presence of
0.5 lM GST tagged human TCGAP RhoGAP domain. The amount of inorganic
phosphate released by Cdc42 in the presence of 0.1% DMSO (control), 80 lM
dynaosre, DD-6 or DD-11 was measured at 360 nm and plotted as a function of
time.
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