ChemComm

Cite this: Chem. Commun., 2011, 47, 8682-8684

COMMUNICATION

Palladium-catalyzed haloallylation of aromatic ynol ethers with allyl chlorides: a highly regio- and stereoselective approach to (1E)- α -chloroenol ethers[†]

Haiting Cai,^a Zheliang Yuan,^a Weidong Zhu^b and Gangguo Zhu^{*ab}

Received 9th June 2011, Accepted 20th June 2011 DOI: 10.1039/c1cc13424h

Described herein is a Pd-catalyzed haloallylation of aromatic ynol ethers and allyl chlorides, allowing facile access to (1E)- α chloroenol ethers in a highly regio- and stereoselective manner. The synthetic utility of this method is demonstrated well by the synthesis of the stereodefined multisubstituted enol ethers and α -allylated carbonyl compounds.

The transition-metal-catalyzed reactions have become one of the most powerful tools for the effective construction of carbon–carbon or carbon–heteroatom bonds in organic chemistry.¹ In this respect, the halopalladation of acetylenes is receiving considerable attention because of the highly efficient and atom-economic formation of carbon–carbon and carbon–halide bonds in a single step.^{2,3} Among these, particularly good selectivities and high yields were obtained for terminal alkynes and alkynes with electron-withdrawing groups. Less developed are the reactions with unsymmetrical internal alkynes, because the control of regiochemistry is usually problematic.

Fundamentally, the halopalladation of internal alkynes can proceed *via* two different types of pathways, *i.e.*, α -addition (palladium α to the Y group) and β -addition (Scheme 1). To address this issue, quite recently, we successfully extended the halopalladation reaction into unsymmetrical internal alkynes by substituting the acetylenes with halogen atoms, where the halopalladation of the C \equiv C triple bond exclusively undergoes the α -addition pathway.⁴ In contrast, the regioselective halopalladation of acetylenes featuring the β -addition pathway has not been achieved yet. Clearly, it would enhance the scope and synthetic utility of halopalladation reaction if methods permitting the β -addition products were developed. In this communication, we report a highly regio- and stereoselective palladium-catalyzed haloallylation⁵ of aromatic ynol ethers with the formation of a β -addition adduct as the key intermediate.

We initially investigated the reaction parameters by conducting the haloallylation reaction of 1-ethoxy-2-phenyl-acetylene (1a) with allyl chloride (2a). To our delight, the use

Scheme 1 Two pathways for halopalladation of acetylenes.

of 5 mol% of PdCl₂ in THF at 50 °C for 1 h gave (1*E*)- α chloroenol ether **3aa** in 87% isolated yield (entry 1, Table 1). The regiochemistry of this reaction was determined by the NOE experiments. Replacement of PdCl₂ by other palladium catalysts, such as Pd(OAc)₂, Pd(MeCN)₂Cl₂ and Pd(PhCN)₂Cl₂, led to lower yields (entries 2–4, Table 1). Further survey of the solvents using PdCl₂ as the catalyst concluded that THF was the preferred medium for the reaction (entries 5–12, Table 1). As such, the optimal reaction conditions consisted of 5 mol% of PdCl₂ as the catalyst, 50 °C as the reaction temperature, and THF as the solvent.

 Table 1 Optimization of the reaction conditions^a

Ph—	OEt + CI	PdX ₂ solvent	Ph OEt 3aa
Entry	PdX ₂	Solvent	$\mathrm{Yield}^{b,c}(\%)$
1	PdCl ₂	THF	93 (87) ^c
2	$Pd(OAc)_2$	THF	80
3	Pd(MeCN) ₂ Cl ₂	THF	85
4	Pd(PhCN) ₂ Cl ₂	THF	83
5	PdCl ₂	Dioxane	62
6	PdCl ₂	DCE	30
7	PdCl ₂	Toluene	81
8	PdCl ₂	CH ₃ CN	84 $(4/1)^d$
9	PdCl ₂	EtOH	0
10	PdCl ₂	DMSO	0
11	PdCl ₂	EtOAc	69
12	PdCl ₂	DME	73

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2a** (1.5 mmol), and Pd catalyst (0.025 mmol) in 2 mL of solvent at 50 °C for 1-3 h. ^{*b*} GC yield. ^{*c*} Isolated yield. ^{*d*} Two stereoisomers (E/Z = 4/1) were obtained.

^a Department of Chemistry, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, China. E-mail: gangguo@zjnu.cn; Fax: +86-579-82282610; Tel: +86-579-82283702

^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China

[†] Electronic supplementary information (ESI) available: Experimental details and characterization of new compounds. See DOI: 10.1039/ c1cc13424h

 Table 2
 Pd-catalyzed haloallylation of ynol ethers with 2a^a

R—≡	≡—OEt	+ CI PdC	$\frac{I_2}{O \circ C}$	OEt
1		2a		3 ^{CI}
Entry	1	R	3	$\operatorname{Yield}^{b}(\%)$
1	1a	Ph	3aa	87
2	1b	$4-Pr-C_6H_4$	3ba	78
3	1c	$4-Me-C_6H_4$	3ca	85
4	1d	$4-Br-C_6H_4$	3da	81
5	1e	$3-Br-C_6H_4$	3ea	76
6	1f	$2-Br-C_6H_4$	3fa	68
7	1g	4-Cl-C ₆ H ₄	3ga	83
8	1ĥ	2-Cl-C ₆ H ₄	3ha	79
9	1i	$4-F-C_6H_4$	3ia	82
10	1j	3-OMe-C ₆ H ₄	3ja	74
11	1k	2,4-Cl ₂ -C ₆ H ₃	3ka	76
12	11	3,4-OMe ₂ -C ₆ H ₃	3la	72
13	1m	2-Thienyl	3ma	77
14	1n	2-Naphthyl	3na	75
15	10	$n-C_5H_{11}$	3oa	0
^{<i>a</i>} Reaction in 2 mL	n condition of THF at	ns: 1 (0.5 mmol), 2a (1.5 n 50 °C for 1–3 h. ^b Isola	mmol), PdC ted yield.	l ₂ (0.025 mmol)

With the optimized reaction conditions identified, the scope and limitations of this approach were then investigated in detail with other alkynyl ethers. As summarized in Table 2, the reaction was suitable for a wide range of aromatic ynol ethers. Both electron-rich and electron-deficient aromatic alkynyl ethers were smoothly converted into the (1E)- α -chloroenol ether products in good yields with excellent stereoselectivity (Table 2). For example, yool ethers **1b** and **1c** resulted in the desired (1E)- α chloroenol ethers 3ba and 3ca in 78% and 85% yields, respectively (entries 2 and 3, Table 2). The reaction of sterically hindered ynol ethers 1f and 1h occurred uneventfully as well, producing (1E)- α -chloroenol ethers **3fa** and **3ha** in 68% and 79% yields, respectively (entries 6 and 8, Table 2). Heteroaromatic vnol ether, 1m, for example, led to the (1E)- α -chloroenol ether 3ma in 77% yield (entry 13, Table 2). However, to our disappointment, the reaction of aliphatic ynol ether 10 failed to give the desired product, due to its oligomerization under the standard reaction conditions (entry 15, Table 2).

The versatility of this method was further examined by the reactions of **1a** with various allylic halides (Table 3). As shown in Table 3, 3-chloro-1-heptene (**2b**) produced the α -chloroenol ether **3ab** in 82% yield with a 1.8/1 mixture of two stereoisomers (entry 1, Table 3). Furthermore, the reaction is sensitive to the steric and electronic effects of allyl halides. For example, 2-methyl-substituted allyl chloride (**2c**) smoothly reacted with **1a** at 50 °C for 2 h to give the desired product **3ac** in good yield, while the reaction of crotyl chloride (**2d**) had to be performed at 70 °C for 10 h to complete the conversion (entries 2 and 3, Table 3). Additionally, both cinnamyl chloride (**2e**) and its isomer **2f** were intact under the reaction conditions even at a higher temperature of 70 °C (entries 4 and 5, Table 3).

On the other hand, α -bromoenol ether **3ag** could be generated in 83% yield using allyl bromide (**2g**); however, a mixture of two stereoisomers (1E/1Z = 4/1) was isolated (entry 6, Table 3). In comparison to the (1E)- α -chloroenol ether products, the inconsistency of this reaction in terms of stereoselectivity could
 Table 3
 Pd-catalyzed haloallylation of 1a with 2^a

^{*a*} Reaction conditions: **1a** (0.5 mmol), **2** (1.0 mmol), PdCl₂ (0.025 mmol) in 2 mL of THF at 50 °C for 1–10 h. ^{*b*} Isolated yield. ^{*c*} 4E/4Z = 1.8/1. ^{*d*} 2E/2Z = 2/1. ^{*e*} The reaction was carried out at 70 °C for 10 h. ^{*f*} 5 mol% of PdBr₂ was used. ^{*g*} 1E/1Z = 4/1.

be attributed to the increased polarity of the Pd–Br bond,^{3f} that is, the more polar Pd–Br bond may generate the free bromide ion and lead to the formation of a (1Z)-isomer through the *trans*-halopalladation process.⁶

To demonstrate the synthetic utility of this method, the resulting products were examined in the Pd-catalyzed cross-coupling reactions. For example, the Suzuki–Miyaura coupling⁷ of **3aa** with 4-Me-C₆H₄B(OH)₂ employing Xphos⁸ as the ligand gave the trisubstituted enol ether **4a** in 77% yield, while the Sonogashira coupling⁹ of **3aa** with 1-hexyne afforded the enol ether **4b** in 82% yield (Scheme 2). Although there are a few methods that exist for the synthesis of the highly

Reaction conditions: a = Pd(OAc)₂ (5 mol%), Xphos (10 mol%), p-Me-C₆H₄B(OH)₂ (1.5 equiv), Cs₂CO₃ (2 equiv), THF, 50 °C; b = Pd(OAc)₂ (5 mol%), Xphos (10 mol%), 1-hexyne (2 equiv), Cs₂CO₃ (2 equiv), THF, 60 °C.

Scheme 2 Synthesis of stereodefined enol ethers.

Scheme 3 Synthesis of α -allylated carbonyl compounds.

Scheme 4 Proposed mechanism.

substituted enol ethers,¹⁰ this protocol provides a complementary, as well as efficient strategy to access the stereodefined multi-substituted enol ethers.

In addition, treatment of **4a** with 6 N HCl resulted in the α -allylated ketone **5** in 95% yield (Scheme 3). More interestingly, this method can be applied to the synthesis of α -allylated esters *via* the bromoallylation-hydrolysis sequence. For instance, α -bromoenol ether **3ag**, generated *in situ via* the Pd-catalyzed bromoallylation of ynol ether **1a**, was hydrolyzed with the assistance of silver nitrate to give the α -allylated ester **6a** in 76% yield (unoptimized). The generality of this strategy was preliminary demonstrated by the synthesis of functionalized aromatic α -allylated esters **6b-6d** in good yields (Scheme 3).

A plausible mechanism for this Pd-catalyzed haloallylation of aromatic ynol ethers was illustrated in Scheme 4. The first reasonable step is the insertion of ynol ether 1 into the Pd–Cl bond to generate the alkenyl palladium intermediate I. Very likely, the negative charge¹¹ on the β -carbon of ynol ethers may account for the regioselective β -addition of palladium, which is similar to the reversal of regiochemistry in the Heck reaction of electron-rich olefins.¹² Then, the carbopalladation of alkenyl palladium intermediate I with allyl halide 2 gives an alkyl palladium intermediate II, followed by the β -Cl elimination¹³ to form the α -chloroenol ether 3 and to regenerate the palladium catalyst (Scheme 4).

In summary, we have developed a convenient protocol for the synthesis of (1E)- α -chloroenol ethers with excellent control of regio- and stereochemistry under the mild conditions. It represents the first example of halopalladation reaction featuring the β -addition pathway. Moreover, this methodology could be applied to the synthesis of stereodefined multisubstituted enol ethers and α -allylated carbonyl compounds. Further investigations on the applications of the developed protocol are underway. We thank the National Natural Science Foundation of China (No. 20902084), Qianjiang Talents Project of the Science and Technology Office in Zhejiang Province (2010R10016), and the Program for Changjiang Scholars and Innovative Research Team in Chinese Universities (IRT0980) for their financial support.

Notes and references

- (a) E.-I. Negishi, Handbook of Organopalladium Chemistry for Organic Synthesis, John Wiley & Sons, Hoboken, NJ, 2002;
 (b) A. de Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, Germany, 2004, vol. 1.
- 2 For selected intermolecular halopalladation reactions, see: (a) K. Kaneda, F. Kawamoto, Y. Fujiwara, T. Imanaka and S. Teranishi, *Tetrahedron Lett.*, 1974, **15**, 1067; (b) K. Kaneda, T. Uchiyama, Y. Fujiwara, T. Imanaka and S. Teranishi, J. Org. Chem., 1979, **44**, 55; (c) A. N. Thadani and V. H. Rawal, Org. Lett., 2002, **4**, 4317; (d) A. N. Thadani and V. H. Rawal, Org. Lett., 2002, **4**, 4321; (e) S. Ma, B. Wu and S. Zhao, Org. Lett., 2003, **5**, 4429; (f) S. Ma, B. Wu and X. Jiang, J. Org. Chem., 2005, **70**, 2588; (g) J. Huang, L. Zhou and H. Jiang, Angew. Chem., Int. Ed., 2006, **45**, 1945; (h) H. Jiang, X. Liu and L. Zhou, Chem.-Eur. J., 2008, **14**, 11305; (i) H. Jiang, C. Qiao and W. Liu, Chem.-Eur. J., 2010, **16**, 10968.
- For intramolecular halopalladation reactions, see: (a) S. Ma and X. Lu, J. Chem. Soc., Chem. Commun., 1990, 733; (b) S. Ma and X. Lu, J. Org. Chem., 1991, 56, 5120; (c) S. Ma, G. Zhu and X. Lu, J. Org. Chem., 1993, 58, 3692; (d) J.-E. Bäckvall, Y. I. M. Nilsson, P. G. Andersson, R. G. P. Gatti and J. Wu, Tetrahedron Lett., 1994, 35, 5713; (e) T. R. Hoye and J. Wang, J. Am. Chem. Soc., 2005, 127, 6950; (f) G. Zhu and Z. Zhang, J. Org. Chem., 2005, 70, 3339; (g) Y. Liang, S. Tang, X.-D. Zhang, L.-Q. Mao, Y.-X. Xie and J. H. Li, Org. Lett., 2006, 8, 3017; (h) S. Tang, Q.-F. Yu, P. Peng, J.-H. Li, P. Zhong and R.-Y. Tang, Org. Lett., 2007, 9, 3413; (i) X.-C. Huang, F. Wang, Y. Liang and J.-H. Li, Org. Lett., 2009, 11, 1139; (j) S. Q. Ye, K. Gao, H. Zhou, X. D. Yang and J. Wu, Chem. Commun., 2009, 5406.
- 4 (a) X. Chen, W. Kong, H. Cai, L. Kong and G. Zhu, *Chem. Commun.*, 2011, **47**, 2164; (b) D. Chen, Y. Cao, Z. Yuan, H. Cai, R. Zheng, L. Kong and G. Zhu, *J. Org. Chem.*, 2011, **76**, 4071.
- 5 For a radical-mediated haloallylation of acetylenes, see: T. Kippo, T. Fukuyama and I. Ryu, *Org. Lett.*, 2010, **12**, 4006.
- 6 (a) S. Ma and X. Lu, J. Org. Chem., 1993, 58, 1245; (b) J.-E. Bäckvall, Y. I. M. Nilsson and R. G. P. Gatti, Organometallics, 1995, 14, 4242.
- 7 N. Miyaura, K. Yamada and A. Suzuki, *Tetrahedron Lett.*, 1979, **20**, 3437.
- 8 H. Tomori, J. M. Fox and S. L. Buchwald, J. Org. Chem., 2000, 65, 5334.
- 9 (a) K. Sonogashira, Y. Tohda and N. Hagihara, *Tetrahedron Lett.*, 1975, **16**, 4467; (b) D. Gelman and S. L. Buchwald, *Angew. Chem.*, *Int. Ed.*, 2003, **42**, 5993.
- (a) A. Takahashi, Y. Kirio, M. Sodeoka, H. Sasai and M. Shibasaki, J. Am. Chem. Soc., 1989, 111, 643; (b) M. Shindo, T. Kita, T. Kumagai, K. Matsumoto and K. Shishido, J. Am. Chem. Soc., 2006, 128, 1062; (c) J. R. DeBergh, K. M. Spivey and J. M. Ready, J. Am. Chem. Soc., 2008, 130, 7828; (d) B. Bourdon, M. Corbet, P. Fontaine, P. G. Goekjian and D. Gueyrard, Tetrahedron Lett., 2008, 49, 747; (e) P. Lemoine and B. Daoust, Tetrahedron Lett., 2008, 49, 6175; (f) Z. Song, L. Kui, X. Sun and L. Li, Org. Lett., 2011, 13, 1440; (g) D. J. Winternheimer, R. E. Shade and C. A. Merlic, Synthesis, 2010, 2497.
- (a) R. Tanaka and S. I. Miller, *Tetrahedron Lett.*, 1971, 12, 1753;
 (b) P. J. Stang and K. A. Roberts, *J. Am. Chem. Soc.*, 1986, 108, 7125;
 (c) M. Shindo, *Tetrahedron*, 2007, 63, 10.
- 12 For the Heck reaction of electron-rich alkenes, see: J. Ruan and J. Xiao, *Acc. Chem. Res.*, 2011, **44**, DOI: 10.1021/ar200053d and references therein.
- 13 (a) S. A. Strazisar and P. T. Wolczanski, J. Am. Chem. Soc., 2001, 123, 4728; (b) Z. Zhang, X. Lu, Z. Xu, Q. Zhang and X. Han, Organometallics, 2001, 20, 3724; (c) R. A. Stockland, S. R. Foley and R. F. Jordan, J. Am. Chem. Soc., 2003, 125, 796.