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Abstract: Versatile, simple and inexpensive ligand-
free, copper-catalyzed N-arylations of sulfoximines
and nitrogen-containing heterocycles have been de-
veloped affording N-arylated products in high
yields.
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Transition metal-catalyzed C�N bond formation by
cross-coupling reactions constitutes a powerful strat-
egy for the preparation of important compounds in
biological, pharmaceutical and material sciences. Al-
though copper-catalyzed Ullmann-type couplings
were discovered more than a century ago,[1] their ap-
plication in N-arylation reactions has remained rela-
tively limited because of the required harsh reaction
conditions involving elevated temperatures, highly
polar solvents and most of the time over-stoichiomet-
ric amounts of copper reagents.[2]

Of particular interest is the N-arylation of nitrogen-
containing heterocycles, and in a series of papers
starting in 1999 Buchwald and co-workers reported
the use of various copper-chelating ligands such as
1,10-phenanthroline[3] and vicinal diamines,[4] which
now allows us to perform such challenging arylation
reactions under comparatively mild reaction condi-
tions. More recently, other bidentate chelates were
found to be applicable as well.[5] Despite these suc-
cesses, ligand-free Ullmann-type coupling reactions
are rare, and generally they involve chelating sub-
strates (such as amino acids, amino alcohols and o-
bromobenzoic acids),[6] or they require (over)stoichio-
metric quantities of copper salts.[7] Consequently, the
development of a versatile and experimentally simple,
ligand-free catalytic system would still represent a
major advance.

Our interest in this area stems from a need for N-
arylated sulfoximines, which were found to be effec-
tive chiral ligands in several catalytic asymmetric re-
actions.[8] For their synthesis, we utilized various
copper-mediated N-arylation reactions.[9] To our dis-
appointment, however, the finding of an efficient cat-
alytic Ullmann-type coupling employing simple aryl
halides and avoiding the use of additional diamine li-
gands remained an unreached goal. Pleasingly, we
have now been able to change this situation. Use of
inexpensive and readily available Cu2O led to the de-
velopment of an alternative cross-coupling protocol,
which is catalytic in copper and ligand-free.[10–12] Fur-
thermore, it utilizes simple aryl halides (aryl iodides,
bromides and chlorides) and can be applied in a wide
range of N-arylation reactions including those leading
to N-arylated heterocycles.
For finding the most active ligand-free catalyst

system, the metal salt screening involved the N-aryla-
tion of S-methyl-S-phenylsulfoximine (1) with phenyl
iodide (2a) as model reaction. Initially, all experi-
ments were carried out with 10 mol% of copper salt
and Cs2CO3 as base in DMF at 100 8C.

[13] To our de-
light, several copper salts proved applicable furnishing
N-phenylsulfoximine 3 in yields ranging from 8–95%
with copper(I) oxide being the best (Table 1, entry 4).
Neither biaryl formation nor reduction of iodoben-
zene was ever observed. Test reactions with 20 mol%
of CuI and 5 mol% of Cu2O (Table 1, entries 3 and 6,
respectively) resulted in lower yields of 3.[14] With
Cu2O also the less reactive bromobenzene (2b) could
be used providing N-phenylated product 3 in 89%
yield (Table 1, entry 7) although, in this case, the reac-
tion required a slightly higher temperature (110 8C) to
achieve full conversion. A blank experiment con-
firmed that in the absence of the metal catalyst no
arylated product was formed.
Encouraged by the efficiency of the above-

described, ligand-free Ullmann-type coupling and
given the fact that the catalytic protocols described so
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far for the N-arylation of heterocycles mostly involve
the use of bidentate chelating ligands,[2–5] we decided
to investigate the substrate scope. As shown in
Table 2, the Cu2O-catalyzed coupling reaction also
worked for N-arylations of heterocycles such as pyra-
zole, pyrrole, triazole, indole and benzimidazole.[15] In
all of these cases the couplings with phenyl iodide
(1a) led to the corresponding N-phenyl heterocycles
4a–8 in good to excellent yields (76–98%, Table 2, en-
tries 1–5). Furthermore, N-arylation of 2-pyrrolidi-
none afforded the corresponding cyclic N-arylamide
in 64% yield (entry 6). Alkyl and aromatic amines
proved to be unsuitable substrates (entries 7–9).
In order to evaluate the scope of the process with

respect to the aryl halide, a variety of substituted aryl
iodides, bromides and chlorides were tested under the
optimized reaction conditions using pyrazole as
model substrate.[10] Hence, both aryl iodides and aryl
bromides, independent of the nature of their substitu-
ents, afforded the corresponding coupling products
4a–h in excellent yields (93–99%, Table 3, entries 1–
8). Noteworthy is also that ortho-substituents did not
hamper the N-arylation reaction (entries 2, 5 and 6)
and that even a heteroaryl bromide (2-bromothio-
phene) proved to be a highly efficient coupling part-
ner (entry 8). Interestingly, although attempts to use
chlorobenzene as aryl source failed, the employment
of an activated aryl chloride led to the corresponding
coupling product in excellent yield (98% yield,
entry 9) comparable to the ones obtained with the
iodide and bromide derivatives.
In summary, we have developed a versatile and

simple, ligand-free, copper-catalyzed coupling proto-

col for the N-arylation of various nitrogen nucleo-
philes with differently substituted aryl iodides, bro-
mides and chlorides. The commercial availability and
experimental simplicity of the presented catalytic
system is expected to be useful for a variety of syn-
thetic chemists.

Experimental Section

General Procedure for N-Arylation of Nitrogen
Nucleophiles

An oven-dried tube was charged with S-methyl-S-phenylsul-
foximine (1, 100 mg, 0.64 mmol), Cu2O (9.5 mg, 0.064 mmol)
and Cs2CO3 (417 mg, 1.28 mmol). Under an argon atmos-
phere iodobenzene (2a, 0.11 mL, 0.97 mmol) or bromoben-
zene (2b, 0.10 mL, 0.97 mmol) was added followed by dry
DMF (1 mL). The tube was sealed under argon, and the
mixture was heated to 100 8C. After stirring at this tempera-
ture for 18 h, the heterogeneous mixture was cooled to
room temperature and diluted with dichloromethane. The
resulting solution was directly filtered through a pad of
silica gel and concentrated to yield the product, which was
purified by silica gel chromatography (1:1 pentane/ethyl ace-
tate) to yield N-phenyl-S-methyl-S-phenylsulfoximine (3) as
white solid; yield: 140 mg (95%). The identity and purity of

Table 1. Screening of copper sources for the N-arylation of
methylphenylsulfoximine.

Entry Aryl halide Cu source Yield of 3 [%][a]

1 2a Cu 32
2 2a CuI 26
3 2a[b] CuI 56
4 2a CuO 8
5 2a Cu2O 95
6 2a[c] Cu2O 76
7 2a CuBr 76
8 2a CuACHTUNGTRENNUNG(acac)2 77
9 2b[d] Cu2O 89

[a] Yield of isolated product after flash chromatography.
[b] Use of 20 mol% of CuI.
[c] Use of 5 mol% of Cu2O.
[d] The reaction was carried out at 110 8C.

Table 2. Scope of the optimized Cu2O-catalyzed N-arylation.

Entry N-Heterocycle Product Yield [%][a]

1 4a 98

2 5 93

3 6 76

4 7 95

5 8 86

6 9 64

7 10 0

8 PhNH2 PhNHPh 11 0
9 BnNH2 BnNHPh 12 0

[a] Yield of isolated product after flash chromatography.
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the product was confirmed by 1H and 13C NMR spectroscop-
ic analysis, see Supporting Information for full details.
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