ELSEVIER

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Bis(2-t-butylphenyl)phosphonoacetamides for the highly cis-selective synthesis of α , β -unsaturated amides

Kaori Ando*, Shigeo Nagaya, Yuko Tarumi

Department of Chemistry, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

ARTICLE INFO

Article history: Received 19 June 2009 Revised 17 July 2009 Accepted 27 July 2009 Available online 30 July 2009

ABSTRACT

New Horner–Wadsworth–Emmons reagents, (o-t-BuPhO)₂P(O)CH₂CONMe(OMe) and (o-t-BuPhO)₂-P(O)CH₂CON(CH₂CH₂) $_2$ O were prepared via the Arbuzov reaction in good yields. The HWE reaction of these reagents with a variety of aldehydes gave cis- α , β -unsaturated amides with high selectivity in almost quantitative yields.

© 2009 Published by Elsevier Ltd.

Cis- α , β -unsaturated amides are not only important parts of biologically active natural products¹ but also useful building blocks in organic synthesis.² Stereo-defined synthesis of carbon-carbon double bonds with high selectivity is critically important for use in stereoselective reactions. Although it is rather easy to obtain the thermodynamically favored trans isomers, there are only a limited number of methods for preparing the cis isomers.³⁻⁶ During the course of our study on the cis-selective Horner-Wadsworth-Emmons reagents. $(ArO)_{2}P(O)CH_{2}CO_{2}Et$ 1. which gave cis- α . β unsaturated esters highly selectively, we prepared (diphenylphosphono)acetamide reagents 2a-c (Scheme 1). In the presence of base, the reagents 2a-c react with a variety of aldehydes to give the corresponding $cis-\alpha,\beta$ -unsaturated amides with moderate to high cis selectivity (75–98% cis) in high yields.³ After that, Deslongchamps and co-workers reported that the reaction of (CF₃CH₂O)₂-P(O)CH₂CON(Me) OMe **3** with *n*-octanal gave more than 20:1 cis selectivity. However, Kojima et al. reported that the HWE reaction of 3 with RCHO (R = PhCH₂CH₂, c-Hexyl, PhMe₂C) gave only moderate to low cis selectivity, 85:15, 68:32, and 43:57, repectively.^{5b} Since more general and practical methods are desirable, we decided to improve our reagents 2. In our study on the cis selective HWE ester reagents 1, we found ortho-substituted phenyl reagents (o-Me and o-i-Pr) to show higher cis selectivity. After that, Touchard et al. reported the improvement of selectivity at 0 °C using the o-t-Bu reagent.8 Here, we wish to report that our new reagents, bis(2-t-butylphenyl)phosphonoacetamides react with a variety of aldehydes to give $cis-\alpha$, β -unsaturated amides in high selectivity.

The *N*-methoxy-*N*-methylamides (Weinreb amides) serve as valuable synthetic intermediates for aldehydes and ketones. The Wittig or HWE reagents containing this amide moiety were reported to show high trans-selectivity. Therefore, cis selective

$$(PhO)_2CH_2CONR^1R^2$$
RCHO
base
RCONR^1R^2

2a NMe₂, 2b NHPh, 2c N(OMe)Me

Scheme 1.

Scheme 2.

reagents can complement these reactions. However, our reagent **2c** showed only 75–81% cis selectivity, which were lower than the results from dimethylamide reagent **2a** (75–98% cis). Since the morpholine amides have been used as low-cost substitutes for the Weinreb amides, ¹¹ we prepared the morpholine amide reagents **4a–d** (Scheme 2). *N*-Bromoacetylmorpholine **5** was prepared from bromoacetyl bromide and morpholine in the presence of triethylamine in 75% yield. The phenyl reagent **4a** was prepared by the reaction of diphenyl phosphite with **5** in the presence of triethylamine in 78% yield. The reagents **4b–d** were

^{*} Corresponding author. Tel./fax: +81 58 293 2674. E-mail address: ando@gifu-u.ac.jp (K. Ando).

prepared by heating $(ArO)_2POEt^8$ and **5** at 150 °C for 6–8 h in 64–79% yields.

The results of the HWE reaction of **4a-d** with 2-ethylhexanal in THF are summarized in Table 1. After 4a was treated with NaH at 0 °C for 10 min, the reaction with the aldehyde was performed at -78 to 0 °C over 2 h (entry 1). Only 35% yield of **6a** was obtained in moderate cis selectivity (68:32).¹² The crude NMR showed that no 4a and about 60% of the aldehyde remained. Although a low yield was also obtained for the reaction of o-Me reagent 4b (entry 2), treating **4b** with NaH in the presence of the aldehyde at 0 °C gave 6a in 94% yield with 83:17 selectivity (entry 3). These results show that the anion from **4** is labile and easily decomposes at 0 °C. A similar selectivity was observed for the o-i-Pr reagent 4c (entry 4). The selectivity was improved by treating 4b with NaH at -78 °C and allowing the mixture to warm up to 0 °C (89% cis). Furthermore. o-t-BuPh reagent 4d gave 94:6 cis selectivity even at 0 °C and 95:5 selectivity at lower temperature (entries 6 and 7). Since NaH does not react with the reagent 4d at -78 °C and therefore the real reaction temperature is much higher than that, the selectivity did not change much. When t-BuOK was used as a base, the selectivity was also 95:5. The selectivity was improved to 97% by

Table 1The HWE reaction of **4a-d** with 2-ethylhexanal

Entry	R'	Base	Temperature	Yield (%)	cis:trans
1	Н 4а	NaH	−78 to 0 °C	35	68:32
2	Me 4b	NaH	0 °C	32	81:19
3	Me 4b	NaH ^a	0 ℃	94	83:17
4	i-Pr 4c	NaH ^a	0 ℃	99	82:18
5	Me 4b	NaH	−78 to 0 °C	92	89:11
6	<i>t-</i> Bu 4d	NaH ^a	0 ℃	78	94:6
7	<i>t-</i> Bu 4d	NaH	−78 to 0 °C	87	95:5
8	<i>t-</i> Bu 4d	t-BuOK	-78 to 0 °C	91	95:5
9	<i>t</i> -Bu 4d	t-BuONa	-78 to 0°C	98	97:3

^a Base was added in the presence of RCHO.

the use of t-BuONa (entry 9). Thus, the cis selectivity is highest with the biggest t-Bu substituted reagent **4d** (R':H<Me \approx i-Pr<t-Bu).

We examined the HWE reaction of 4 with other types of aldehydes in THF (Table 2). The reaction of the Ph reagent 4a with aromatic aldehydes, benzaldehyde and p-methoxybenzaldehyde using t-BuOK in the presence of 1 equiv of 18-crown-6 at −78 °C gave 6 in 98:2 and 97:3 selectivity in high yields (entries 1 and 3). The reaction of the o-t-BuPh reagent **4d** with benzaldehyde and p-chlorobenzaldehyde gave **6** with 99:1 selectivity by just using *t*-BuOK (entries 2 and 4). Since the reaction of **4d** with the aliphatic aldehydes hardly proceeded at -78 °C, the reaction mixture was gradually warmed to 0 °C over about 2 h after the addition of the aldehydes. 92% cis selectivity was obtained in the reaction with *n*-octanal by using *t*-BuOK (entry 5). The selectivity was improved by using t-BuONa and 6 was obtained with 96% selectivity (entry 6). The reaction with cyclohexanecarboxaldehyde and pivalaldehyde gave 94 and 96% selectivity, respectively, using either t-BuOK or t-BuONa as a base (entries 7–10). For the α,β -unsaturated aldehyde, 2-trans-hexenal, the reaction also gave 6 with high selectivity (94:6) in 98% yield. These results clearly show that the new reagent **4d** is applicable to a diverse range of aldehydes for the synthesis of cis- α , β -unsaturated morpholine amides with high selectivity. Thus, t-BuONa is the best base for the reaction of 4d with saturated aliphatic aldehydes and t-BuOK is the best one for aromatic and α,β -unsaturated aldehydes. These base preferences are similar to the results from the HWE reaction of (diarylphosphono)acetate 1.7a-c

Encouraged by the results of the morpholine amide reagent **4d**, we also prepared the Weinreb amide reagent **7** (Scheme 3). *N*-Methoxy-*N*-methybromoacetamide **8**¹³ was prepared in 81% yield

Scheme 3.

Table 2The HWE reaction of **4** with aldehydes

Entry	R'	RCHO	Base	Temperature	Yield (%)	cis:trans
1	Н	PhCHO	t-BuOK ^a	−78 °C, 3 h	97	98:2
2	<i>t-</i> Bu	PhCHO	t-BuOK	−78 °C, 2 h ^b	94	99:1
3	Н	p-MeOPhCHO	t-BuOK	−78 °C, 3 h	78	97:3
4	<i>t</i> -Bu	p-CIPhCHO	t-BuOK	−78 °C, 2 h	96	99:1
5	<i>t</i> -Bu	n-Octanal	t-BuOK	−78 to 0 °C	95	92:8
6	t-Bu	n-Octanal	t-BuONa	−78 to 0 °C	87	96:4
7	t-Bu	c-HexylCHO	t-BuOK	−78 to 0 °C	97	94:6
8	t-Bu	c-HexylCHO	t-BuONa	−78 to 0 °C	96	94:6
9	<i>t</i> -Bu	t-BuCHO	t-BuOK	−78 to 0 °C	87	96:4
10	<i>t</i> -Bu	t-BuCHO	t-BuONa	−78 to 0 °C	99	96:4
11	Н	2E-Hexenal	t-BuOK ^a	−78 to 0 °C	95	80:20
12	t-Bu	2E-Hexenal	t-BuOK	−78 to 0 °C	98	94:6

a 18-crown-6 (1 equiv).

 $^{^{}m b}$ After the specified time, the reaction mixture was gradually warmed to $-30\,^{\circ}\text{C}$.

Table 3The HWE reaction of **7** with aldehydes

$$\begin{array}{c|c}
 & \text{CPOCH}_2\text{C-N} & \text{Me} \\
\hline
 & \text{OMe} \\
\hline
 &$$

Entry	RCHO	Base	Temperature	Yield (%)	cis:trans
1	PhCHO	t-BuOK	−78 °C, 4 h ^a	94	96:4
2	PhCHO	t-BuOK ^b	−78 °C, 4 h ^a	97	98:2
3	p-ClPhCHO	t-BuOK	−78 °C, 2 h	95	97:3
4	n-Octanal	t-BuOK	-78 to 0 °C	92	90:10
5	n-Octanal	t-BuONa	-78 to 0 °C	95	92:8
6	c-HexylCHO	t-BuOK	-78 to 0 °C	95	89:119
7	c-HexylCHO	t-BuONa	-78 to 0 °C	91	91:9
8	2-Et-hexanal	t-BuOK	−78 to 0 °C	96	94:6
9	2-Et-hexanal	t-BuONa	-78 to 0 °C	89(11) ^c	93:7
10	t-BuCHO	t-BuOK	-40 to 25 °C	91	95:5
11	t-BuCHO	t-BuONa	-78 to 0 °C	86	92:8
12	2E-Hexenal	t-BuOK ^b	−78 to 0 °C	75(16) ^c	89:11

- $^{\rm a}$ After the specified time, the reaction mixture was gradually warmed to 0 $^{\circ}\text{C}.$
- b 18-crown-6 (1 equiv).
- ^c The number in parentheses is the recovered yield of **7** (%).

from bromoacetyl bromide and N,O-dimethylhydroxylamine hydrochloride in the presence of triethylamine in 81% yield. The o-t-BuPh reagent **7** was prepared by heating (2-t-BuPhO $)_2$ POEt and **8** in 56% yield. 14

The results of the HWE reaction of 7 are summarized in Table $3.^{15}$ The o-t-BuPh reagent 7 was treated with t-BuOK at $-78\,^{\circ}$ C for 15 min and reacted with benzaldehyde. Since a trace of the reagent 7 was left after 4 h, the mixture was allowed to warm up to 0 °C. The α,β-unsaturated amide $\bf 9$ was obtained with 96% cis selectivity in 94% yield (entry 1). Adding 1 equiv of 18-crown-6 improved the selectivity to 98% (entry 2). p-Chlorobenzaldehyde is more reactive than benzaldehyde and the reaction took only two hours at -78 °C to complete. 97% cis selectivity was obtained in 95% yield (entry 3). For the aliphatic aldehydes, the reaction also hardly proceeded at -78 °C, thus the reaction mixture was gradually warmed to 0 °C over about 2 h after the addition of the aldehydes. The reaction with n-octanal gave **9** in 90% selectivity using t-BuOK. This selectivity was improved to 92% by using t-BuO-Na as in the case of the morpholine amide reagent 4d (entries 4 and 5). Also, t-BuONa gave a higher selectivity for the reaction with cyclohexanecarboxaldehyde (entries 6 and 7). However, t-BuOK gave higher 95 and 94% selectivity for the reactions with 2-ethylhexanal and pivalaldehyde (entries 8-11). The reaction with 2trans-hexenal also gave 9 selectively (entry 12). These results can be favorably compared with the results of the phenyl reagent 2c.³

The methods described here provide simple routes to a wide range of $cis-\alpha,\beta$ -unsaturated morpholine and Weinreb amides in almost quantitative yields. These amides are believed to be trans-

formable to ketones and aldehydes with ease. In fact, $cis-\alpha,\beta$ -unsaturated N-methoxy-N-methylamides were efficiently transformed to $cis-\alpha,\beta$ -unsaturated ketones by using organocerium reagents. Since it is easy to make the HWE reagents containing other amide moieties, this method should give a variety of $cis-\alpha,\beta$ -unsaturated amides with high selectivity. We have already made both the dimethylamide reagent and the reagent bearing a methyl glycinate. Both can serve as reagents for the synthesis of bioactive natural products. The results will be reported in the near future.

Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References and notes

- (a) Albert, B. J.; Sivaramakrishnan, A.; Naka, T.; Czaicki, N. L.; Koide, K. J. Am. Chem. Soc. 2007, 129, 2648–2659; (b) Petri, A. F.; Sasse, F.; Maier, M. E. Eur. J. Org. Chem. 2005, 1865–1875; (c) Chakraborty, T. K.; Laxman, P. Tetrahedron Lett. 2003, 44, 4989–4992
- (a) Ashimori, A.; Bachand, B.; Calter, M. A.; Govek, S. P.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6488–6499; (b) Davis, F. A.; Qi, H.; Sundarababu, G. Tetrahedron 2000, 56, 5303–5310; (c) Carey, J. S. J. Org. Chem. 2001, 66, 2526–2520
- 3. Ando, K. Synlett 2001, 1272-1274.
- 4. Fortin, S.; Dupont, F.; Deslongchamps, P. J. Org. Chem. 2002, 67, 5437-5439.
- (a) Kojima, S.; Hidaka, T.; Ohba, Y.; Ohkata, K. Phosphorus, Sulfur and Silicon 2002, 177, 729–732; (b) Kojima, S.; Hidaka, T.; Yamakawa, A. Chem. Lett. 2005, 34, 470–471.
- Peterson reaction: Kojima, S.; Inai, H.; Hidaka, T.; Ohkata, K. Chem. Commun. 2000. 1795–1796.
- 7. (a) Ando, K. *Tetrahedron Lett.* **1995**, *36*, 4105–4108; (b) Ando, K. *J. Org. Chem.* **1997**, *62*, 1934–1939; (c) Ando, K. *J. Org. Chem.* **1998**, *63*, 8411–8416; (d) Ando, K. *J. Org. Chem.* **1999**, *64*, 8406–8408; (e) Ando, K.; Oishi, T.; Hirama, M.; Ohno, H.; Ibuka, T. *J. Org. Chem.* **2000**, *65*, 4745–4749.
- 8. Touchard, F. P.; Capelle, N.; Mercier, M. Adv. Synth. Catal. 2005, 347, 707-711.
- . Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
- (a) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001–7031; (b) Nuzillard, J.; Boumendjel, A.; Massiot, G. Tetrahedron Lett. 1989, 30, 3779–3780; (c) Netz, D. F.; Seidel, J. L. Tetrahedron Lett. 1992, 33, 1957–1958.
- (a) Martin, R.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J. Synlett 1997, 1414–1415;
 (b) Kurosu, M.; Kishi, Y. Tetrahedron Lett. 1998, 39, 4793–4796.
- 12. All the HWE products and the reagents described in this Letter were characterized by 400 MHz ¹H NMR spectra and mass spectroscopy. The cis:trans ratios were determined by integration of the vinyl proton signals.
- 13. Mechelke, M. F.; Meyers, A. I. Tetrahedron Lett. 2000, 41, 4339-4342.
- 14. Preparation of 7: A mixture of (o-t-BuPhO)₂POEt (6.890 g, 18.4 mmol) and **8** (3.351 g, 18.4 mmol) was heated at 150 °C under Ar atmosphere for 8 h. Column chromatography (silica gel/33% AcOEt in hexane) gave 7 (4.573 g, 56%) as a colorless powder (mp 62.7–63.5 °C). The reagents **4b–d** were prepared in the same way.
- 15. A typical procedure of the HWE reaction of **7** with p-ClPhCHO (entry 3 in Table 3): A solution of **7** (0.30 mmol) in THF (6 mL) was treated with t-BuOK (0.39 mmol) at -78 °C for 15 min. Then, p-ClPhCHO (0.32 mmol) was added. After 2 h, the reaction was quenched with aqueous NH₄Cl, extracted with AcOEt, washed with brine, dried (MgSO₄), and concentrated. The residue was purified by flash chromatography (50% AcOEt in hexane) to give amide **9** (0.0729 g, 96%) as a colorless oil.