ISSN 1070-4280, Russian Journal of Organic Chemistry, 2012, Vol. 48, No. 4, pp. 602-604. © Pleiades Publishing, Ltd., 2012. Original Russian Text © L.L. Rodina, Yu.Yu. Medvedev, P.N. Moroz, V.A. Nikolaev, 2012, published in Zhurnal Organicheskoi Khimii, 2012, Vol. 48, No. 4, pp. 604-606.

SHORT COMMUNICATIONS

Thermolysis and Acid-Catalyzed Decomposition of 4-Diazotetrahydrofuran-3-ones. A New Efficient Synthesis of Tetrasubstituted Dihydrofuran-3-ones

L. L. Rodina, Yu. Yu. Medvedev, P. N. Moroz, and V. A. Nikolaev

St. Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504 Russia e-mail: LRodina@VN6646.spb.edu

Received November 18, 2011

DOI: 10.1134/S1070428012040252

The Wolff rearrangement is one of the most characteristic transformations of diazo ketones [1]. Diazo ketones of the tetrahydrofuran series are thus converted into oxetane derivatives. Using tetramethylsubstituted diazotetrahydrofuranone as an example, we previously showed [2] that its photolytic Wolff rearrangement was the most efficient [2]. Photoinduced reactions of aryl-substituted diazotetrahydrofuranones are characterized by lower selectivity, and they give rise to a number of products [3, 4].

The goal of the present work was to study thermal and acid-catalyzed decomposition of 2,2,5,5-tetrasubstituted 4-diazotetrahydrofuran-3-ones, compare the results with those obtained by photolysis, and estimate synthetic potential of these processes. As substrates we selected 4-diazo-2,2,5,5-tetramethyltetrahydrofuran-3one (I), 4-diazo-2,2-dimethyl-5,5-diphenyltetrahydrofuran-3-one (IIa), 4-diazo-5,5-bis(4-fluorophenyl)-2,2dimethyltetrahydrofuran-3-one (IIb), 4-diazo-5,5-dimethyl-2,2-diphenyltetrahydrofuran-3-one (IIIa), and 4-diazo-2,2-bis(4-fluorophenyl)-5,5-dimethyltetrahydrofuran-3-one (IIIb).

Preliminary experiments showed that diazo ketones I-III are very resistant to heat. Taking into account unexpected thermal stability [5, 6], thermolysis of diazo ketones II and III was performed at 150-160°C

converted almost quantitatively into 2,2,4,5-tetramethyl-2,3-dihydrofuran-3-one (VI), whereas diazo ketones I and III gave rise to the same 1,2-alkyl or 1,2-aryl migration products (IV, V) as in the thermolysis. The structure of newly synthesized compounds IVb and

Acid-catalyzed decomposition of diazofuranones I-

III in trifluoroacetic acid was complete in 5-6 min. The reaction was exothermic, and diazo ketone I was

in the absence of solvent (in melt), and the progress of reactions was monitored by TLC and ¹H NMR.

Diazofuranone IIa completely decomposed in 7 h, whereas thermolysis of its di-para-fluoro-substituted analog IIb required more than 48 h, other conditions being equal. According to the ¹H NMR data, dihydrofuranones IVa and IVb were formed as almost the only products. Thermal decomposition of regioisomeric diazo ketones IIIa and IIIb occurred at a much higher rate (in 3 h): like thermolysis of **Ha** and **Hb**, the only observed path of decomposition of IIIa and IIIb was elimination of nitrogen molecule and 1,2-migration of one methyl group with formation of dihydrofuranones Va and Vb.

Vb was determined on the basis of their ¹H and ¹³C NMR spectra and elemental analyses.

Presumably, thermolysis of diazo ketones I-III with formation of dihydrofuran-3-ones IV-VI follows concerted nitrogen elimination-alkyl (aryl) group migration mechanism without intermediate generation of oxocarbenes. The latter are believed to be the most probable intermediate species in the photolysis of such diazo ketones [3, 4], and they tend to undergo Wolff rearrangement and concomitant transformations which were not observed in the thermolysis of diazo ketones I-III. Acid-catalyzed decomposition of aliphatic diazo compounds is known to follow two main paths [5, 7]. However, taking into account appreciably higher stability of diazo ketones I-III with respect to organic acids, as compared to diazo alkanes, we presume that the initial step is reversible protonation of the carbonyl group in I-III, which is followed by elimination of nitrogen to produce finally dihydrofuran-3-ones IV-VI.

Thus, unlike photolysis, thermal and acid-catalyzed decomposition of 4-diazotetrahydrofuran-3-ones having alkyl or aryl substituents leads to the formation of unsaturated ketones **IV–VI**, and these reactions may be regarded as an efficient method for the preparation of tetrasubstituted dihydrofuran-3-ones.

Diazo ketone I was synthesized from commercial 2,5-dimethylhex-3-yne-2,5-diol according to [8]; diazo ketones II and III were obtained from 2-methylbut-3-yn-2-ol and benzophenone or 4,4'-difluorobenzophenone according to the procedures described in [9].

Thermolysis of diazo ketones I, IIa, IIb, IIIa, and IIIb (general procedure). The reactions were carried out in a 10–15-ml flask equipped with an air condenser. The progress of the process was monitored by TLC and ¹H NMR. Dihydrofuranones IV and V were isolated by chromatography on silica gel (gradient elution with petroleum ether–*tert*-butyl methyl ether) or recrystallization from petroleum ether.

2,2-Dimethyl-4,5-diphenyl-2,3-dihydrofuran-3-one (IVa). Yield 44 mg (88%; from 55 mg of IIa; 150° C, 7 h), mp 79–80°C (from petroleum ether), $R_{\rm f}$ 0.24 (petroleum ether–t-BuOMe, 5:1) [4].

4,5-Bis(4-fluorophenyl)-2,2-dimethyl-2,3-dihydrofuran-3-one (IVb). Yield 60 mg (72%; from 88 mg of **IIb**; 160°C, 9.5 h), mp 109–110°C (from petroleum ether), R_f 0.21 (petroleum ether–*t*-BuOMe, 4:1). ¹H NMR spectrum, δ , ppm: 1.62 s (6H, CH₃), 7.05–7.71 m (8H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 23.7 (CH₃), 88.6 (C²), 113.2 (C⁴), 116.4 d (C^m, ²J_{CF} = 21.9 Hz), 116.6 d (C^m, ²J_{CF} = 21.9 Hz), 125.4 d (Cⁱ, ⁴J_{CF} = 4.0 Hz), 125.9 d (Cⁱ, ⁴J_{CF} = 4.0 Hz), 131.5 d (C^o, ${}^{3}J_{CF} = 9.0 \text{ Hz}$), 131.9 d (C°, ${}^{3}J_{CF} = 9.0 \text{ Hz}$), 161.3 d (C^{*p*}, ${}^{1}J_{CF} = 248.3 \text{ Hz}$), 163.8 d (C^{*p*}, ${}^{1}J_{CF} = 248.3 \text{ Hz}$), 179.5 (C⁵), 207.9 (C=O). Found, %: C 72.06; H 4.68. C₁₈H₁₄F₂O₂. Calculated, %: C 72.03; H 4.66.

4,5-Dimethyl-2,2-diphenyl-2,3-dihydrofuran-3-one (Va). Yield 34 mg (76%; from 50 mg of **IIIa**; 150°C, 4 h), mp 108–109°C (from petroleum ether), $R_f 0.18$ (petroleum ether–*t*-BuOMe, 5:1) [4].

2,2-Bis(4-fluorophenyl)-4,5-dimethyl-2,3-dihydrofuran-3-one (Vb). Yield 52 mg (90%; from 65 mg of **IIIb**; 160°C, 8 h), mp 70–71°C (from petroleum ether), R_f 0.32 (petroleum ether–*t*-BuOMe, 2:1). ¹H NMR spectrum, δ , ppm: 1.75 s (3H, CH₃), 2.35 s (3H, CH₃), 7.01–7.07 m (4H, H_{arom}), 7.42–7.46 m (4H, H_{arom}). ¹³C NMR spectrum, δ_C , ppm: 6.2 (4-CH₃), 15.4 (5-CH₃), 107.8 (C⁴), 111.2 (C²), 115.7 d (C^m, ²J_{CF} = 21.9 Hz), 128.7 d (C^o, ³J_{CF} = 8.0 Hz), 134.6 (Cⁱ), 162.5 d (C^p, ¹J_{CF} = 247.4 Hz), 184.3 (C⁵), 205.5 (C=O). Found, %: C 72.16; H 4.71. C₁₈H₁₄F₂O₂. Calculated, %: C 72.03; H 4.66.

Reaction of diazo ketones I-III with trifluoroacetic acid (general procedure). Trifluoroacetic acid, 0.4–0.8 mmol, was added dropwise to 0.3–0.6 mmol of diazo ketone I, IIa, IIb, IIIa, or IIIb. When the exothermic reaction ceased and evolution of nitrogen terminated, the mixture was cooled, volatile components were removed under reduced pressure (10-15 mm), and the residue was purified by chromatography on silica gel or by recrystallization from petroleum ether. From 97 mg (0.6 mmol) of I and 96 mg (0.8 mmol) of CF₃COOH we obtained 80 mg (95%) of VI; from 100 mg (0.34 mmol) of IIa and 58 mg (0.42 mmol) of CF₃COOH, 83 mg (92%) of IVa; from 100 mg (0.3 mmol) of **IIb** and 60 mg (0.5 mmol) of CF₃COOH, 88 mg (98%) of **IVb**; from 100 mg (0.3 mmol) of IIIa and 70 mg (0.61 mmol) of CF₃COOH, 81 mg (90%) of Va; from 100 mg (0.3 mmol) of IIIb and 60 mg (0.5 mmol) of CF₃COOH, 86 mg (95%) of Vb.

The ¹H and ¹³C NMR spectra were recorded on a Bruker DPX-300 spectrometer at 300 and 75.5 MHz, respectively (CDCl₃, TMS). Reaction mixtures were separated by chromatography on Silicagel L (40– 100 μ m, activity grade I). The progress of reactions was monitored, and $R_{\rm f}$ values were determined, by TLC on Silufol UV-254 plates (Kavalier, ČSSR).

REFERENCES

 Krimse, W., *Eur. J. Org. Chem.*, 2002, p. 2193; Meier, H. and Zeller, K.P., *Angew. Chem.*, *Int. Ed. Engl.*, 1975, vol. 14, p. 324; Rodina, L.L. and Korobitsyna, I.K., *Usp. Khim.*, 1967, vol. 36, p. 260.

- Korobitsyna, I.K. and Rodina, L.L., *Zh. Org. Khim.*, 1965, vol. 1, p. 932; Korobitsyna, I.K., Rodina, L.L., and Shuvalova, V.G., *Zh. Org. Khim.*, 1968, vol. 4, p. 201.
- Rodina, L.L., Mishchenko, V.L., Malashikhin, S.A., Platts, M.S., and Nikolaev, V.A., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 1530; Rodina, L.L., Galkina, O.S., Supurgibekov, M.B., Grigor'ev, Ya.M., and Utsal', V.A., *Russ. J. Org. Chem.*, 2010, vol. 46, p. 1542; Nikolaev, V.A., Galkina, O.S., Sieler, J., and Rodina, L.L., *Tetrahedron Lett.*, 2010, vol. 51, p. 2713.
- Rodina, L.L., Malashikhin, S.A., Galkina, O.S., and Nikolaev, V.A., *Helv. Chim. Acta*, 2009, vol. 92, p. 1990.
- 5. Regitz, M. and Maas, G., Diazo Compounds. Properties and Synthesis, Orlando: Academic, 1986, pp. 65, 96;

Regitz, M. and Bartz, W., Chem. Ber., 1970, vol. 103, p. 1477.

- Popik, V.V. and Nikolaev, V.A., J. Chem. Soc., Perkin Trans. 2, 1993, p. 1791.
- Bethell, D., *Adv. Phys. Org. Chem.*, 1969, vol. 7, p. 153; Jugeld, W. and Brseck, L., *Tetrahedron*, 1970, vol. 26, p. 5557.
- Korobitsyna, I.K. and Rodina, L.L., *Zh. Obshch. Khim.*, 1964, vol. 34, p. 2851; Korobitsyna, I.K., Rodina, L.L., and Stashkova, L.M., *Zh. Obshch. Khim.*, 1963, vol. 33, p. 3109.
- Rodina, L.L., Malashikhin, S.A., Linden, A., Heimgartner, H., and Nikolaev, V.A., *Helv. Chim. Acta*, 2008, vol. 91, p. 1662.