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The transition-metal-catalyzed carbometalation of alkenes is
a powerful synthetic tool for the selective formation of
carbon–carbon bonds. Through sequential electrophilic trap-
ping of the intermediate organometallic species, regio- and
stereoselective construction of contiguous sp3 carbon centers
can be achieved in a single-pot procedure.[1] Although iron
catalysts are attracting increased attention because of their
economical and environmental benefits,[2] their application in
stereoselective carbometalation (followed by electrophilic
trapping) has been limited to only alkyne[3] and cyclopro-
pene[4] substrates.[5] Herein, we report a highly diastereose-
lective iron-catalyzed carbometalation of oxa- and azabicyclic
alkenes with arylzinc reagents using the newly developed
ortho-phenylene diphosphine ligands (Scheme 1); these
ligands were found to suppress the b-heteroatom elimination
pathway and enable sequential electrophilic trapping
(Scheme 2, path a versus path b).[6–8]

Heterobicyclic alkenes have been shown to be useful
starting materials to synthesize stereochemically complex
molecules, as exemplified by palladium, rhodium, and copper-
catalyzed asymmetric ring-opening reactions.[9, 10] In the ring-
opening reactions, rapid b-heteroatom elimination of the

carbometalation intermediate (2 or 2’) affords the corre-
sponding cycloalkenols or cycloalkenylamines (4) under
reaction conditions in most cases, and the elimination
reaction hampered sequential trapping of the organometallic
intermediate (2) with electrophiles (Scheme 2, path a[7,8]

versus path b[6, 11]). To date, iron catalysis has also been
found to promote the ring-opening reaction of the olefinic
substrates when used< in combination with Grignard
reagents.[4a, 12] Our research group has recently found that
chelating diphosphine ligands, such as 1,2-bis(diphenylphos-
phino)benzene) (dppbz, L1; Scheme 1),[13] are particularly
effective for the iron-catalyzed cross-coupling of alkyl (pseu-
do)halides possessing b hydrogen atoms.[14,15] We envisioned
that certain tetrahedral organoiron intermediates proposed in
the cross-coupling reactions would also resist b-heteroatom
elimination because of the open shell (high spin) nature of the
metal center,[16] and hence, we synthesized new dppbz
congeners (L2–L5 ; Scheme 1) for the present carbometala-
tion reaction.

We carried out the reactions of 1,4-dihydro-1,4-epoxy-
naphthalene (1a) with diphenylzinc prepared from anhydrous
ZnCl2 and PhMgBr for ligand screening.[17] While all the
reactions were conducted using 99.99 + % grade anhydrous
FeCl3 (Aldrich) to avoid contamination with trace amount of
the other transition metals, lower grade anhydrous FeCl3 and
anhydrous FeCl2 gave virtually identical results. We con-
firmed that copper salts, such as Cu2O and CuCl, did not
catalyze the carbozincation reactions by themselves and gave
no product.[18, 19]

In the absence of a ligand, the ring-opening product, 2-
phenyl-1,2-dihydronaphthalen-1-ol (4a), was isolated as the
sole product (Table 1, entry 1). The ligands widely used for
iron-catalyzed cross-coupling reactions such as N,N,N’,N’-
tetramethylethylenediamine (tmeda)[15,20] and N-methylpyr-
rolidine (nmp)[21] also led to the formation of 4a (Table 1,
entries 2 and 3); these results are consistent with prior
reports.[12] On the other hand, chelating diphosphine ligands

Scheme 1. Diphosphine ligands used for the iron-catalyzed carbometa-
lation of oxa- and azabicyclic alkenes.

Scheme 2. Reactions of oxa- and azabicyclic alkenes with organometal-
lic nucleophiles under transition-metal catalysis. E = electrophile.
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significantly affect the product distributions: in the presence
of 1,2-bis(diphenyphosphino)ethane (dppe; Table 1, entry 4),
l,3-bis(diphenylphosphino)propane (dppp; Table 1, entry 5),
dppbz (L1; Table 1, entry 7), and related diphosphine ligands
(L2–L4 ; Table 1, entries 8–10), the exo-arylated compound
1,2,3,4-tetrahydro-2-phenyl-1,4-epoxynaphthalene (3a) was
isolated as the main product. Given that dppb exhibited no
positive effect on the yield of 3a (Table 1, entry 6), the bite
angle of diphosphine ligands is essential to attenuate the
reactivity of the iron catalyst. Regarding the dppbz congeners,
electron-donating ligand L2 decreased the yield of 3 a
(Table 1, entry 8), whereas electron-deficient phosphine L3
significantly improved the yield. Thus, the reaction of 1a with
diphenylzinc proceeded at 0 8C in the presence of FeCl3 and
L3 and afforded 3 a in 95% yield (Table 1, entry 9). The
ligand with difluorophenyl groups L4 was slightly less
effective and the one with trifluorophenyl groups L5 slowed
down the reaction and inversed the carbometalation/ring-
opening selectivity (Table 1, entries 10 and 11). Furthermore,
(R)-2,2’-bis(diphenylphosphino)-1,1’-binaphthyl [(R)-binap],
which was effective in the enantioselective carbozincation of
cyclopropenone acetals,[4a] promoted the ring-opening reac-
tion to obtain 4a, but unfortunately, in a racemic form
(Table 1, entry 12).

The scope of the present iron-catalyzed carbometalation
is summarized in Table 2. Treatment of 1 with 1.5 equivalents
of diarylzinc reagents were typically performed at 0 8C in the
presence of FeCl3 (1 mol %) and L3 (2 mol%). A range of
oxabicyclic alkenes bearing fluoro groups (1b ; Table 2,
entry 2) and methoxy groups (1 c and 1d ; Table 2, entries 3
and 4) reacted smoothly and gave the arylated products 3b–
3d in excellent yield. Electron-rich (Table 2, entries 5–7) and
electron-deficient (Table 2, entries 8–10) arylzinc reagents as
well as a heteroarylzinc reagents (Table 2, entry 11), can

participate in the carbometalation reaction. Notably, highly
reactive functional groups, such as methoxycarbonyl (Table 2,
entry 9) and cyano groups (Table 2, entry 10),[22] were com-
patible under the present reaction conditions. When less
reactive oxabicyclic alkenes such as 1 l (Table 2, entry 12) and
1m (Table 2, entry 13) were employed, a higher catalyst
loading and longer reaction time were required to achieve
smooth conversion. Azabicyclic alkenes 1n and 1o also take
part in the reaction, thereby affording the arylated products
3n and 3o in 94% and 96 % yield, respectively (Table 2,
entries 14 and 15). The reaction of nonsymmetrical substrate
1p took place such that the aryl group is introduced to the
olefinic terminus distal from the methyl group to give a
mixture of regioisomers 3p and 3p’. The regioselectivity of
carbometalation is estimated at approximately 4:1 (3 p/3p’),
thus suggesting that the steric interaction between the methyl
group and the introduced phenyl group is dominant (Table 2,
entry 16).[23]

The carbometalation intermediate 2a was sufficiently
stable at 0 8C and it could be trapped with various electro-
philes. The treatment of 2a with CD3COOD gave the
corresponding deuterated product 5a in 92% yield with
greater than 96 % deuterium incorporation and more than
99% cis selectivity (Scheme 3). The cis configuration was

confirmed by the fact that both bridgehead protons of 5a
were observed as a pair of singlets in the 1H NMR spectrum.
This observation is consistent with the fact that no 1H–1H
coupling was generally observed between bridgehead protons
and vicinal endo protons in similar heterobicyclic com-
pounds.[10b,d,e] Other electrophiles such as iodine, allyl bro-
mide, and acetyl chloride worked well and gave the corre-
sponding products 5b–5d in 91 %, 93 %, and 77 % yield,
respectively, with good cis selectivity. Notably, the use of
ArZnCH2SiMe3 for the generation of 2a (Y= CH2SiMe3) was
essential to trap 2 a with acetyl chloride to obtain 5d in high
yield.

In summary, we have developed an iron-catalyzed, highly
diastereoselective carbometalation of various oxa- and aza-

Table 1: Effect of ligands or additives on the product selectivity and
reactivity.[a]

Entry Ligand t [h] Yield [%][b]

3a 4a 1a

1 none 15 0 87 12
2 tmeda (1.5 equiv) 2 0 99 0
3 nmp (1.5 equiv) 15 6 90 1
4 dppe 5 87 8 3
5 dppp 5 70 22 6
6 dppb 5 3 95 0
7 L1 (dppbz) 5 88 12 0
8 L2 4 83 17 0
9 L3 2 95 5 0
10 L4 5 89 11 0
11[c] L5 6 <1 27 71
12 (R)-binap 5 2 59[d] 33

[a] The reactions of 1a with diphenylzinc (1.5 equiv) were carried out in
THF/toluene (1:1) at 0 8C for 2–15 h in the presence of FeCl3 (1 mol%)
and ligand (2 mol%). [b] Yield based on 1H NMR spectroscopy. [c] The
reaction was performed at 25 8C. [d] No chiral induction was observed.

Scheme 3. Electrophilic trapping of carbozincation product 2a.[18] Reac-
tion conditions: a) the same procedure as described in Table 1
(Y = Ph); b) the same procedure as (a) but using PhZnCH2SiMe3

instead of PhZn (Y = CH2SiMe3); c) CD3COOD; d) I2; e) allyl bromide,
cat. CuBr·SMe2; f) MeCOCl, CuBr, CuBr·SMe2.
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bicyclic alkenes with arylzinc reagents. The carbozincation
products 2 were quenched with acid or trapped with electro-
philes, thereby giving the corresponding products 3 or 5,
respectively, in excellent yield. Among a series of novel dppbz
derivatives, electron-deficient L3 was found particularly
effective to facilitate the carbometalation and suppress the
b-heteroatom elimination. Further study on the reaction
mechanism and the development of enantioselective variants
are currently under way.

Experimental Section
A typical procedure: In a dry reaction
vessel, a mixture of L3 (0.10 mmol),
ZnCl2 (a 1.0m THF solution, 7.5 mL,
7.5 mmol) and phenylmagnesium bro-
mide (a 1.17m THF solution, 12.8 mL,
15.0 mmol) in toluene (THF/toluene =

1:1) was stirred at room temperature
for 0.5 h. The resulting suspension was
cooled to 0 8C before FeCl3 (a 0.10m
THF solution, 0.50 mL, 0.050 mmol)
and oxabicyclic alkene 1a (0.72 g,
5.0 mmol) were added and the reaction
was stirred at 0 8C for 2 h. The reaction
mixture was quenched with an ice-
cooled, degassed solution of 5%
AcOH/MeOH and then extracted with
n-hexane and 30 % Et2O/n-hexane,
passed through a pad of Florisil, and
concentrated in vacuo. Compound 3a
(1.02 g, 92% yield) was obtained as a
colorless solid after column chromatog-
raphy on silica gel (n-hexane/EtOAc =

20:1, Rf = 0.36).
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