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Kinesin, dynein, and some myosin motor proteins transport
cargoes within the cell by “walking” along polymeric fila-
ments, that is carrying out successive, repetitive, mostly
directional changes of their point of contact with the
molecular track without completely detaching from it.[1]

These extraordinary biomolecules are inspiring scientists to
mimic aspects of their dynamics to create artificial molecular
transport systems.[2,3] Recently, the first small molecules that
are able to walk down short molecular tracks were de-
scribed.[2] However, external intervention (the addition of
chemical reagents and/or irradiation with light) are required
to mediate each step taken by the walker units in the non-
DNA systems reported to date. Although migrations of
submolecular fragments occur in many different types of
chemical reaction,[4] few systems appear to offer the potential
for multiple successive and cumulative transport necessary for
developing small-molecule walkers.[5] An interesting excep-
tion are the so-called equilibrium transfer alkylating cross-
linking (ETAC) reagents introduced in the 1970s by Lawton
and co-workers for the dynamic cross-linking of biomole-
cules.[6,7] These reagents reversibly form covalent bonds
between pairs of accessible nucleophilic sites on proteins
through a series of inter- and intramolecular Michael and
retro-Michael reactions until the most thermodynamically
stable crosslink is located (Scheme 1 a).[6a] We wondered
whether it would be possible to apply a similar concept,
focusing instead on chemistry where the cross-linked products
are less stable than those attached by a single covalent bond,
to make synthetic small molecules that migrate with a high
degree of processivity[8] along a linear molecular track.

Herein we describe the attachment of a-methylene-4-
nitrostyrene to oligoethylenimine tracks and the dynamics of
its subsequent migration from amine group to amine group
without fully detaching by a sequence of intramolecular
Michael and retro-Michael reactions. In this way the a-
methylene-4-nitrostyrene units move towards the most ther-
modynamically favored distribution of walkers on oligoamine
tracks (Scheme 1 b).[9]

A model walker-track conjugate, 1, was synthesized in
which a-methylene-4-nitrostyrene was attached to an outer
amine group of a triamine track and then allowed to exchange
between the secondary amine footholds (Scheme 2a; see the
Supporting Information for experimental procedures and
characterization data). The reaction was followed by
1H NMR spectroscopy through the different chemical shift
of vinyl protons (Hc/c’ and Hd/d’) of isomers 1 and 2 (Figure 1).

The kinetics of the amine-to-amine migration of the a-
methylene-4-nitrostyrene unit (“walking”) is highly solvent-
dependent. Starting from pristine 1 (5 mm), no formation of 2
was observed in CDCl3 or CD2Cl2 over 15 h at room
temperature and the reaction only proceeded slowly in
CD3OD (< 10% conversion over 15 h) or CD3CN (< 25%
conversion over 15 h). However, the interconversion of 1 with
2 reached a close-to-1:1 steady-state ratio of 1:2 over 15 h in
[D7]DMF or 4.5 h in [D6]DMSO (298 K, 5 mm). Increasing

Scheme 1. a) The migration of an ETAC[6] reagent between nucleophilic
sites of a protein by Michael/retro-Michael reactions towards the most
thermodynamically stable cross-linked product. b) Processive (intra-
molecular) migration of a-methylene-4-nitrostyrene along a polyamine
track. Michael addition of a track amine group to the olefin of the
“two-legged walker” results in a bridged intermediate (both “feet”
attached to the track, shown in square brackets) that can subsequently
undergo a retro-Michael reaction to either side, unmasking the double
bond and leaving the walker attached to the track through a single
covalent bond.
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the concentration of the starting material tenfold (to 50 mm 1)
gave no change in the rate constant of the reaction or the 1:2
isomer ratio. Partial 1H NMR spectra of the exchange
between 1 and 2 in [D6]DMSO (298 K, 5 mm) are shown in
Figure 1. A half-life t1/2 = 1.5 h was determined for the
stepping process (see the Supporting Information).[10]

To determine the processivity of the migration reaction
(in other words, the degree to which the reaction is intra-
molecular or intermolecular),[8] the exchange between 1 and 2
(Scheme 2a) was performed in the presence of a different
walker-free track and the intermolecular migration moni-
tored by mass spectrometry (see the Supporting Information
for details). After 3 days, less than 6% of the walkers had
detached from the original track or transferred to the
different track. Accordingly, under these conditions, each a-
methylene-4-nitrostyrene unit takes an average of 530 “steps”
between amine groups before completely detaching from its
track, which is several times the processivity of most wild-type

kinesin motor proteins (typically mean step number 75–
175).[11]

To determine how likely the walker is to take a double
(1,7-) or triple (1,10-) step while migrating along the track, we
prepared diamine tracks with five (3) or eight (5) methylene
groups between the secondary amine sites (Scheme 2b).[12]

The initial site of attachment of the a-methylene-4-nitro-
styrene was deuterium-labeled to distinguish the walker
position (that is, 3 or 4 ; 5 or 6) by 1H NMR spectroscopy.
Under conditions where single (1,4-) stepping occurs for 1/2
with a t1/2 = 1.5 h, no reaction was observed for either 3 or 5
over 48 h (see the Supporting Information). This suggests that
on a longer polyamine track the walker should migrate
predominantly through exchange between adjacent amine
footholds. The large number of steps that the a-methylene-4-
nitrostyrene walker takes on average before competing
reactions occur (that is, over-stepping, completely detaching,
or exchange with other tracks) is presumably a consequence
of the relatively low-energy seven-membered-ring transition
state for 1,4-N,N-migration.

Having established that an a-methylene-4-nitrostyrene
walker can exchange between the amino groups of a di- or
triamine track in a stepwise fashion with a high degree of
processivity, we sought to demonstrate that the walker could
migrate along a longer track through this mechanism and
perform an observable task. A five-foothold walker–track
conjugate 7, incorporating an anthracene group situated at
the far end of the pentaethylenimine track from the initial site
of attachment of the walker, was prepared as shown in
Scheme 3. Pentamine 8 was desymmetrized by reductive
amination with 3-phenylpropionaldehyde and subsequent
reaction with 9-anthraldehyde to give 9. The a-methylene-4-
nitrostyrene walker unit (10) was introduced exclusively to

Scheme 2. Transfer of a-methylene-4-nitrostyrene between secondary
amine groups through a) 1,4-N,N-migration and b) possible 1,7- or
1,10-N,N-migration. The experimental results show that under condi-
tions ([D6]DMSO, 298 K, 5 mm) where t1/2 =1.5 h for (a), the double
(1,7-) and triple (1,10-) “over-stepping” shown in (b) is not detectable
over 48 h, suggesting that they would be rare events during walker
migration along a poly(ethylenimine) track.

Figure 1. Partial 1H NMR spectra (400 mhz, [D6]DMSO, 5 mm, 298 K)
of exchange between 1 and 2 at: a) t =5 min, 1:2 ratio 1:0.06;
b) t = 2 h, 1:2 ratio 1:0.6; c) t = 15 h, 1:2 ratio 1:0.9. The lettering
corresponds to the proton labeling shown in Scheme 2.

Scheme 3. Synthesis of five-foothold walker–track conjugate 7. i) 3-
phenylpropionaldehyde, EtOH, RT, 72 h; ii) NaBH4, RT, 24 h, 60% (two
steps); iii) 9-anthraldehyde, EtOH, RT, 72 h; iv) NaBH4, RT, 24 h, 55%
(two steps); v) MeOH, N,N-diisopropylethylamine (DIPEA), 50 8C,
72 h, 30%; vi) CH2Cl2, CF3CO2H, 5 h, quantitative. See the Supporting
Information for details.

Angewandte
Chemie

5481Angew. Chem. Int. Ed. 2012, 51, 5480 –5483 � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.org

http://www.angewandte.org


the amine furthest from the anthracene group. Subsequent
deprotection gave compound 7 in which the walker was free
to migrate along the five-foothold track from its original
position.

Model compounds showed that the distance between the
a-methylene-4-nitrostyrene unit and the anthrylmethyl
moiety in the track influences its fluorescence.[13] Fluores-
cence lifetime measurements showed that static quenching by
the nitrostyrene group quenches the anthracene fluorescence
(see the Supporting Information). Dilution experiments
confirmed that the quenching observed was from an intra-
molecular mechanism.

Molecular walker–track conjugate 7 was submitted to
walking conditions (DMSO, 7.14 � 10�5

m, 298 K) and its
fluorescence emission spectrum recorded periodically.[14]

The fluorescence intensity diminished by 54 % over 6.5 h,
after which time the fluorescence intensity became almost
invariant (Figure 2a).

The walker migration in 7 was also monitored by 1H NMR
spectroscopy, albeit under more concentrated conditions to
give a suitable signal-to-noise ratio ([D6]DMSO, 20 mm,
298 K, Figure 2b). The reaction was monitored every 0.5 h
and, after 3 h, signals indicating that a proportion of the

walker units had reached the fifth foothold of the track were
observed (Figure 2 b). After 6.5 h, no further changes were
observed in the 1H NMR spectrum until signals attributed to
degradation of the anthracene moiety started to appear.[15]

Accordingly, both 1H NMR and fluorescence measurements
(Figure 2) indicate that the walking of the a-methylene-4-
nitrostyrene unit proceeds back and forth along the pentae-
thylenimine track, producing a steady distribution of walkers
over the five-foothold track after 6.5 h.

In conclusion, we have described a system in which a small
synthetic molecular walker migrates along oligoamine tracks
without external intervention, moving towards an equilibrium
distribution of walkers over all possible positions on the track.
In terms of synthetic molecular machine properties, this
walker–track system is reminiscent of a rotaxane-based
molecular shuttle with degenerate stations:[16] The walker–
track system uses a transferable covalent linkage between the
a-methylene-4-nitrostyrene and the oligoethylenimine to
ensure processivity and determine the preferred positions of
the substrate on the track; in a rotaxane-based molecular
shuttle a mechanical linkage confers the former property and
attractive non-covalent interactions between a macrocycle
and specific sites on the thread can be used to achieve the
latter.

The small-molecule walking process is processive and
takes place predominantly in a stepwise fashion by a Michael–
retro-Michael addition mechanism between adjacent amines.
The position of the walker can be precisely determined on
short tracks by 1H NMR spectroscopy, and on longer tracks
the progress of walker migration can be inferred by perfor-
mance of a simple task: quenching of the fluorescence of an
anthracene group at one end of the track by the walker. Work
towards developing walkers that consume a fuel to move
directionally, and which carry cargoes along extended and
branched tracks, is currently ongoing in our laboratory.
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