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Figure 1. General structure of indole-7-carbo
Synthetic approaches are described for the synthesis of 4-alkoxyindole-7-carboxamides and 4-alkoxy-3-
cyanoindole-7-carboxamides, which are useful intermediates in medicinal chemistry research. Two strate-
gies were employed, highlighted by a Bartoli indole synthesis ora sequential andregioselective use ofchloro-
sulfonylisocyanatetoinstallboththe3-cyanoand7-carboxamidogroups.Theseroutesarescalableandafford
diversely functionalized indoles for further elaboration.
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Indoles are commonly found in natural products and medici-
nally active compounds, and the synthesis and functionalization
of the indole core is of great interest to the synthetic chemistry
community. During the course of a medicinal chemistry effort we
prepared indoles of general structure 1 (Fig. 1), in which R1 was
hydrogen or cyano, and R2 was a point of broad diversity. This com-
munication describes the chemistry that we developed for the syn-
thesis of these compounds. Noteworthy is the rapid and selective
functionalization of 4-alkoxyindoles using chlorosulfonyl
isocyanate.

Our initial route to compound 1 (R1 = H) is shown in Scheme 1.
The indole ring was formed by reaction of nitrobenzene 2 with
vinylmagnesium bromide according to the Bartoli method.1 Cyana-
tion of 3 using copper(I) cyanide followed by demethylation with
sodium ethanethiolate afforded the 4-hydroxyindole 4. The R2

group was then installed either by a Mitsunobu reaction or by
base-promoted alkylation. Hydration of nitrile 5 under Katritzky
conditions2 cleanly afforded indole-7-carboxamide 6.

Although this synthesis was relatively short, it was not very effi-
cient (3 steps, 18% yield to the key intermediate 4) and several of
the steps were problematic. The Bartoli reaction was low yielding
and difficult to purify, the copper(I) cyanide and sodium ethanethi-
ll rights reserved.

).

xamides of interest.
olate reactions involved toxic reagents and harsh conditions, and
the work-up of the cyanation reaction was very tedious even on
modest scales. Consequently, we sought an improved synthesis
of a key intermediate similar to 4 that could be used to explore
substitution of the indole ring at the 3-, 4-, and 7-positions.

A second generation synthesis was developed to circumvent
some of these shortcomings (Scheme 2). Exchanging the methyl
ether in 2 for a benzyl ether prior to indole formation averted
the later use of sodium ethanethiolate. The Bartoli reaction was re-
tained to generate indole 8, but the cyanation step was replaced
with a carbonylation reaction.3 This four-step sequence (22% yield)
was more scalable than the first generation route, providing >10 g
of ester 9, a useful intermediate for further elaboration of the 3-, 4-,
and 7-positions.

During the course of our work, we also required access to the
3-cyanoindole scaffold (1, R1 = CN). While many methods for the
synthesis of 3-cyanoindoles rely on prior aldehyde formation by
Vilsmeier formylation, direct cyanation protocols also exist.4 We
found that the desired 3-cyano group could be conveniently
installed in one step from indole 9 using chlorosulfonyl isocyanate5
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Scheme 1. Reagents and conditions: (a) vinylmagnesium bromide, THF, <5 �C, 41%;
(b) CuCN, DMF, 160 �C, 57%; (c) NaSEt, DMF, 120 �C, 76%; (d) R2OH, polymer-PPh3,
DIAD, THF; (e) R2X, Na2CO3, DMF; (f) H2O2, K2CO3, DMSO.
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Scheme 2. Reagents and conditions: (a) BBr3, DCM, �78 �C to rt, 83%; (b) BnBr,
K2CO3, acetone, 91%; (c) vinylmagnesium bromide, THF, <5 �C, 37%;
(d) Cl2Pd(dppf)�CH2Cl2, dppf, Et3N, EtOH, 35 bar CO, 130 �C, 78%.
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Scheme 3. Direct cyanation of indole 9 with CSI.
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(CSI) at 0 �C, according to the method developed by Vorbrüggen6

(Scheme 3), in 80% yield.7

While tri-substituted indole 10 was generated through the
routes shown in Schemes 2 and 3 (5 steps, 17% yield), we surmised
that targeting 3-substituted indoles would provide synthetic
opportunities to circumvent the Bartoli indole synthesis and/or
decrease the step count. We hypothesized that a mono-substituted
4-alkoxyindole could be functionalized sequentially at the 3- and
7-positions. Accordingly, direct cyanation of commercially avail-
able 4-benzyloxyindole with CSI led to 3-cyano-4-benzyloxyindole
in good yield (12, Scheme 4) when the intermediate N-chlorosulfo-
nylcarboxamide was quenched with DMF according to the Lohaus
method.8 In analogy to our 2nd generation synthesis, iodination of
the 7-position,9 followed by carbonylation10 with Mo(CO)6 affor-
ded ester 10. This sequence provided much more efficient access
to key intermediate 10 (3 steps, 39% yield).

In addition, we sought a facile route to the indole-7-carboxam-
ide, and considered a direct aminocarbonylation11 at C-7 of 12. We
recognized that CSI may be used for such a functionalization,5,12

and we hypothesized13 that we could employ it to directly access
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Scheme 4. Reagents and conditions: (a) CSI, CH3CN, �45 �C, then DMF, �45 �C to rt, 72%;
(d) CSI, CH3CN, 0 �C to rt; (e) 1 M HCl, 96%; (f) H2, 10% Pd/C, DMF, 96%.
the desired indole-7-carboxamide. Consequently, we resubjected
3-cyano-4-benzyloxyindole (12) to CSI, allowing the reaction to
warm to room temperature, which resulted in a second addition
of CSI. This time the intermediate N-chlorosulfonylcarboxamide
(14) was hydrolyzed with dilute acid, which led directly to the
indole-7-carboxamide 15.14 Thus, CSI was used to sequentially
and regioselectively install first a 3-cyano group followed by a
7-carboxamido group, as shown in Scheme 4. Interestingly, while
many examples exist of the addition of strong carbon electrophiles
to C-7 of an indole (e.g., Vilsmeier reactions,15 Friedel–Crafts reac-
tions,15c,16 and addition of oxalyl chloride15a,15c,17), this is the first
reported example of the use of chlorosulfonyl isocyanate to func-
tionalize C-7 of an indole.

Deprotection of the benzyl group of 15 provided intermediate
16 in only three steps from commercially available starting mate-
rials18 with an overall yield of 66%. By comparison, the synthesis of
compound 16 by the route described in Schemes 2 and 3 would
have required eight steps. Importantly, this short and efficient syn-
thesis was scalable, and was used for the synthesis of >50 g of 16, a
versatile intermediate for the preparation of diverse indoles.

In conclusion, we have developed synthetic routes for the prep-
aration of 4-alkoxyindole-7-carboxamides bearing either a hydro-
gen or cyano group at C-3. Of particular note, we developed an
operationally simple, three-step synthesis of 3-cyano-4-hydrox-
yindole-7-carboxamide (16) highlighted by the use of chlorosulfo-
nyl isocyanate to sequentially and regioselectively install both the
cyano and carboxamide groups. Compounds such as 4, 9, 13, and
16 posses multiple orthogonal functionalities amenable to exten-
sive elaboration and diversification.
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