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Asymmetric total synthesis of nonenolide stagonolide-B has been presented in this Letter. The main high-
light of our synthetic strategy is the application of hydroxynitrile lyase (ParsHNL) mediated asymmetric
synthesis of cyanohydrin, Sharpless asymmetric dihydroxylation, cross metathesis (CM) reaction, stere-
oselective Keck allylation reaction and Yamaguchi macrolactonization at a late stage enables us to
achieve the synthesis of the target molecule in an efficient way.
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Stagonolides are a class of naturally occurring nonenolides iso-
lated from a fungal pathogen Stagonospora cirsii. These small ring
macrolides possess interesting biological activities (mainly phyto-
toxic). In a preliminary study, it was observed that S. cirsii is capa-
ble of producing phytotoxic metabolites, because isolated culture
filtrates demonstrated phytotoxic activity. Five new nonenolides,
named stagonolides B–F, were isolated and characterized using
spectroscopic methods.1 Further four nonenolides were isolated la-
ter on and characterized by spectroscopy. Three were new com-
pounds named stagonolides G–I, and the fourth was identified as
modiolide A, previously isolated from Paraphaeosphaeria sp., a fun-
gus separated from the horse mussel (Fig. 1).2 In our continuous ef-
fort toward the synthetic studies of the small ring macrolides, we
have already reported the total synthesis of stagonolide C,3 stagon-
olide D & G,4 stagonolide-E,5 chloriolide,6 and achaetolide.7 The
main highlight of our previous synthetic strategy was chemoenzy-
matic kinetic resolution coupled with Mitsunobu inversion and
chemoenzymatic dynamic kinetic resolution to access some valu-
able chiral secondary alcohol intermediates. These intermediates
are then employed successively to gain access of more advanced
intermediates which have close resemblance to the target mole-
cule. In the final step of synthesis we often apply RCM reaction
by Grubbs catalyst as well as several macrolactonization protocols.
The success of our synthetic strategy depends on the optimization
of RCM method and macrolactonization protocol.

Till today three asymmetric syntheses of stagonolide-B are re-
ported in the literature.8,9 All the synthetic strategies involve the
ll rights reserved.
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anda).
successful application of RCM (ring closing metathesis) reaction at
late stage with Grubbs olefin metathesis catalyst.10 In this Letter
we would like to report our synthetic strategies for the asymmetric
total synthesis of stagonolide-B by the successful application of
Yamaguchi macrolactonization. Our retrosynthetic analysis of stag-
onolide-B is presented in Scheme 1.

We have planned to adopt a Yamaguchi macrolactonization11 at
the penultimate step from the properly substituted seco acid (2),
which in turn can be accessed from intermediate 3 by asymmetric
catalytic allylation reaction.12 Cross metathesis reaction was
thought to be applied to construct the C6–C7 olefinic unsaturation
from the intermediate 4.13 The intermediate 4 can be achieved from
(Z)-ester 5 by asymmetric dihydroxylation reaction.14 Ester 5 can be
prepared from aldehyde 7, synthesized by ParsHNL catalyzed hydro-
cyanation reaction (Scheme 2).

We have started our synthetic journey from the commercially
available n-butanal. Asymmetric hydrocyanation reaction with Pru-
nus armeniaca hydroxynitrile lyase (ParsHNL) and HCN in DIPE
(diisopropyl ether) solvent afforded the corresponding (R)-cyanohy-
drin in a 92% yield (ee = 96%).15 The enzymatic hydrocyanation with
hydroxynitrile lyase is a well documented strategy for the asymmet-
ric synthesis of cyanohydrins, and we have explored the methodol-
ogy extensively in our group by using a (R)-HNL (hydroxynitrile lyase
from Prunus armeniaca) from Himalayan apricot (Prunus armeniaca,
Shakarpara cultivar).16 The reaction is very efficient in terms of
chemical yield as well as excellent enantioselection in the product
cyanohydrins. The secondary hydroxyl group in (R)-6 is protected
as its TBDPS ether by treatment with TBDPS-Cl and imidazole fol-
lowed by treatment with DIBAL-H at �78 �C afforded the aldehyde
7 in a 72% yield (two steps). cis-Selective HWE (Horner–Wads-
worth–Emmons) olefination reaction by Ando protocol17 yielded
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Figure 1. Naturally occurring stagonolides.
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Scheme 1. Retrosynthetic analysis of stagonolide-B.
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the Z-olefin 5 in an 82% yield.18 Asymmetric dihydroxylation reac-
tion of olefin 5 with ADmix-b afforded the diol 8 in a 79% yield.19

The diol 8 is protected as its acetonide 9, by treatment with 2,2-
DMP (2,2-dimethoxypropane) in an 87% yield. The ester functional-
ity in compound 9 was reduced with DIBAL-H to afford aldehyde 10
in an 82% yield. Wittig olefination with triphenylphosphoniumm-
ethyl iodide in the presence of LHMDS at 0 �C afforded the olefin 4
in an 80% yield. Cross metathesis reaction with freshly distilled acro-
lein in the presence of Hoveyda–Grubbs metathesis catalyst (HG-II,
5 mol %) afforded the unsaturated aldehyde (exclusively E) 3 in an
85% yield.20 Catalytic asymmetric allylation under Keck condition
with allyltributylstanane and (R)-BINOL afforded compound 11 in
a 76% yield.21 The secondary hydroxyl group is protected as its
MOM ether22 by treatment with MOM-Cl and DIPEA to yield 12 in
an 88% yield. Regioselective hydroboration with BH3/SMe2 yielded
the alcohol 13 (72%). PDC oxidation23 of alcohol 13 afforded the car-
boxylic acid 14 in a 78% yield. Deprotection of the TBDPS group is
achieved by treating 14 with TBAF to afford the seco acid 2 in an
88% yield. The crude seco acid is subjected to macrolactonization
reaction under Yamaguchi condition to afford the cyclized lactone
product 15 in a 62% yield.24 Finally deprotection of the MOM group
is achieved by treating compound 15 in presence of PTSA in DCM to
afford stagonolide-B (1) in an 80% yield (overall yield = 4.2% from n-
butanal; Scheme 2). The spectral characteristic values (1H & 13C
NMR) of our synthesized stagonolide-B match perfectly with the
natural stagonolide-B.2,7

In conclusion an efficient chemoenzymatic asymmetric synthe-
sis of the target molecule stagonolide-B has been accomplished in a
linear way. The main highlights of our synthetic strategy involves
the application of hydroxynitrile lyase mediated asymmetric
cyanohydrin synthesis, asymmetric dihydroxylation reaction,
stereoselective cross metathesis reaction, catalytic asymmetric
allylation, and finally macrolactonization of properly functional-
ized hydroxyl acids yields the target molecule in an efficient way.
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