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Abstract: Bis-(indolyl)methanes were synthesized by a simple, clean and highly efficient Tween-20 micelle promoted 
reaction of indole with aldehydes in water by the single step reaction. The absence of electrical double layer in the non-
ionic surfactant micelles makes them as potential model adsorbent in the interfacial processes. This approach had explored 
the present synthesis of bis-(indolyl)methanes. 
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INTRODUCTION 
Indole moiety is a major constituent in a wide variety of 

pharmaceuticals [1]. Many bis-indole alkaloids are 
recognized as one of the major groups of sponge metabolites 
because of their broad spectrum of biological properties [2-
7]. Bis-indolylmethanes are obtained by the reaction of 
indole with aldehydes through the azafulvanium salts as 
intermediate in their synthesis [8]. Several other methods are 
available for the preparation of bis-indolylmethanes using 
protic [9-15], and Lewis acids [16-20]. Also other reagents, 
such as P2O5/ SiO2 [21], and heteropolyacids [22-24] were 
used for their synthesis. Ionic liquids in conjugation with 
In(OTf)3 or FeCl3.6H2O [25] were acted as media for their 
synthesis. Recently oxalic acid [26, 27], as solid supported 
catalyst [28, 29] had also been successfully exploited for the 
preparation of bis-indolylmethanes. The Lewis and Brønsted 
acid surfactant catalyzed synthetic reactions are known for 
them [30]. But majority of the available methods suffer from 
several setbacks such as requirement of stoichiometric 
amount of the Lewis acids, generation harmful wastes, 
posing environmental problem and long reaction times 
associated with poor product yields. 

As the use of environmentally friendly reaction medium 
is one of the fundamental principles of green chemistry. In 
reactions such water as a reaction solvent had received much 
attention in the synthesis of organic compounds, because it 
would be considerably safe, non-toxic, environmentally 
friendly, and cheap as compared to organic solvents [31]. 
However, water is rarely considered as a solvent for organic 
reactions based on the reason of limited solubility of most 
organic compounds in water. As the solubility is important 
for good reactivity, alternatives for improving the solubility 
of organic substrates in water will ultimately expand the 
scope of water-based organic synthesis [32]. Incorporation of 
surface-active agents (surfactants) in aqueous media has 
proved to enhance the reactivity of water mediated reactions 
via the formation of micelles or vesicular cavities. The use of 
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micellar and vesicle forming surfactants as catalysts in water 
is widespread and has been studied for a number of different 
synthetic transformations/ multicomponent reactions in 
water [33]. Surfactant-type catalyzed organic reaction had 
motivated the organic synthesis in aqueous medium [33] like 
synthesis of benzylamino coumarins [34], Betti base [35]. 
Based on this back ground here in is reported a highly 
efficient green procedure for the preparation of bis-
(indolyl)methane derivatives.  

RESULTS AND DISCUSSION 
The highly efficient green procedure for the preparation 

of bis-indolylmethane derivatives (3a-r) proceeds by the 
single step reaction of two moles of indole (1) with one mole 
of aldehyde (2) using non-ionic surfactant Tween-20 as 
catalyst in aqueous media (Scheme 1). The absence of 
electrical double layer in the non-ionic surfactant micelles 
makes them as potential model adsorbent in the interfacial 
processes [36]. This property of non-ionic surfactant was 
explored in the present synthesis of bis-indolylmethanes 
from the reaction of indole with aldehydes. Tween-20 is also 
commonly used non-ionic detergent in water as solubilizer 
with a wide range of applications in biological systems [37, 
38]. Solubilization of lipid membranes triggered by Tween-
20 as a well-described phenomenon to use as an emulsifier 
and complexing agent in both aqueous and non-aqueous 
media is well known. 

In the selection of catalyst, several surfactants and boric 
acid catalysts in water medium were attempted for 
optimization of reaction between indole and benzaldehyde 
(Table 2, entry 1). The non-ionic surfactant catalysts like 
Triton CF-10, [benzyl-polyethylene glycol (1,1,3,3-tetra 
methylbutylphenyl) ether], Triton X-100 (t-octyl phenoxy-
polyethoxy-ethanol) and Tween-20 (t-octylphenoxypol-
yethoxyethanol) were found to be very effective promoters 
of the reaction, require a less reaction time and almost 
quantitative product yield of them Tween-20  drives the 
reaction very fast and affords the product in 98% yield. 

Among the ionic surfactant catalysts the anionic 
surfactants Sodium dodecyl sulfate (SDS) and 4-dodecylben-
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zenesulfonic acid (SDBS) were slightly less effective than 
the cationic surfactant cetyltrimethylammonium bromide 
(CTAB). The simple boric acid also catalyzes the reaction at 
a slow rate and affords the product in poor yield (Table 1). 
The necessity of catalyst in this reaction is proved by the fact 
that when the reaction is run without it, the starting materials 
are recovered even after running the reaction for a long time. 

The aqueous reaction medium turns turbid during the 
reaction due to precipitation of reactants encapsulated in 
non-ionic surfactant micelles 4. The amphiphilic surfactant 
molecule assemblies of the micelles 4 being sufficiently 
hydrophobic render the organic substances and reagents 
more soluble in the aqueous medium [39-42], bring them in 
close proximity and enhance chemical reaction between 
them. The boundary of the micelle 4 acts as a kind of one 

way chemical membrane. This seems to protect water liable 
zwitterion intermediates 5 from hydrolytic decomposition. 
At the same time it allows transfer of water molecule formed 
during the reaction to the surrounding aqueous environment 
(Fig. 1). This reaction situation acts favorably for the 
accelerated rate of electrophilic substitution of the carbonyl 
carbon of 2 on the C3 atom of Indole 1 regiospecifically 
leading to the coupling of two indole 1 moieties with a 
substituted methylene bridge.  

EXPERIMENTAL 
Chemicals were procured from Sigma-Aldrich and 

Merck, used without further purification. All solvents used 
for the spectroscopic and other physical studies were reagent 
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Scheme 1. Synthesis of bis-indolylmethanes using Tween-20 surfactant in water. 
 
Table 1. Screening of various types of catalysts for the synthesis of bis-indolylmethanes 
 

Entry Catalysta Time (h) Yield (%)b 

1 Boric acid 5.5 40 

2 SDS 4.0 60 

3 SDBS 4.5 70 

4 Triton X-100 4.5 90 

5 Triton CF-10 4.2 84 

6 Tween-20 4.0 98 

7 CTAB 5.0 20 
aReaction were carried out at 60-70 ºC for 4-5.5 h with aldehyde (1.0 mmol) and Indole (2.0 mmol) in a solution of catalyst (5 mol %) and water (2 mL). 
bIsolated yield. 

 
Fig. (1). Schematic representation of micelle promoted bis-indolylmethanes synthesis. 
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Table 2. Synthesis of bis-indolylmethanes by using tween-20 
 

Melting point (ᵒC) 
Entry Aldehyde Time (h) Yield (%) 

Literature Found 

3a CHO
 

4 98 125-127 124-126 24,26 

3b CHOCl
 

5 96 102-104 104-106 26 

3c 
CHO

Cl  

5 93 72-74 73-75 26 

3d CHOO2N
 

4 98 221-223 220-222 26 

3e 
CHO

NO2  

4.5 93 264-226 265-266 24,26 

3f CHOH3C
 

6 91 97-99 96-98 24,26 

3g 
CHOH3CO

OCH3  

6 95 191-193 191-193 24,26 

3h 
CHO

OCH3  

5.5 96 133-135 134-136 26 

3i 
CHO

H3CO

H3CO
 

5.5 91 195-197 197-199 44 

3j 
CHO

H3CO

HO
 

4.5 83 125-127 126-127 9 

3k CHO

Cl

OH  

4 87 218-220 ------ 

3l CHO

Br

OH  

4.25 90 228-230 228-230 4 

3m 
CHOCl

Cl  

4 90 102-104 103-105 26 
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(Table 2). Contd….. 

Melting point (ᵒC) 
Entry Aldehyde Time (h) Yield (%) 

Literature Found 

3n 
CHOCl

Cl  

4 88 152-154 153-154 44 

3o CHON
 

5 92 208-210 210-212 26 

3p 
CHO

OCH2C6H5  

4.5 93 264-266 ------ 

3q 
CHO  

5 95 96-98 98-100 21,26 

3r CHO
NO2  

4.5 96 150-152 ------ 

aIsolated yield. 

grade and further purified by literature methods [43]. The 
melting points (mp) were determined in open capillary tubes 
on a Mel-Temp apparatus (Tempo Instruments and Equip 
Pvt. Ltd., Mumbai, India), expressed in degrees centigrade 
(oC) and were uncorrected. Infrared (IR) Spectra were 
obtained on a Nicolet (San Diego, CA, USA) 380 Fourier 
transform infrared (FT-IR) spectrophotometer at the 
Environmental Engineering Laboratory, Sri Venkateswara 
University, Tirupati, India and samples were analyzed as 
potassium bromide (KBr) disks and absorptions (νmax) were 
reported in wave numbers (cm-1). The 1H, 13C, and 31P-NMR 
spectra were recorded on a Bruker (Ettlingen, Germany) 
AMX 400 MHz nuclear magnetic resonance (NMR) 
spectrometer operating at 400 MHz for 1H-NMR, 100.57 
MHz for 13C-NMR, and 161.9 MHz for 31P-NMR 
respectively and expressed in parts per million (ppm). All 
compounds were dissolved in DMSO-d6 and chemical shifts 
were referenced to TMS in 1H-NMR and 13C-NMR and 85% 
H3PO4 in 31P NMR. Mass spectra were recorded on a Jeol 
SX 102DA/600 (Tokyo, Japan) mass spectrometer using 
argon/xenon (6 keV, 10 mA) as the FAB gas. Microanalysis 
was performed with a Thermo Finnigan (Courtaboeuf, 
France) Flash EA 1112 I instrument at University of 
Hyderabad, Hyderabad, India. The purity of all the products 
was accomplished by TLC on silica gel polygram SIL G/UV 
254 plates.  

General Experimental Procedure for the Synthesis of 
Bis-(indolyl)methanes 

The aldehyde (1 mmol) and indole (2 mmol) were added 
to a solution of Tween-20 (5 mol %) and water (2 mL) in a 
round bottomed flask. The reaction mixture was 
continuously stirred at 70-80 oC. After completion of the 
reaction as indicated by TLC, the reaction mixture was 

extracted thrice with ethyl acetate (3 X10 mL). The 
combined organic extracts were dried over anhydrous 
Na2SO4, filtered, and concentrated under reduced pressure. 
The crude product was further purified by silica gel column 
chromatography using hexane/ethylacetate mixture as an 
eluent. 

The same experimental procedure was adopted for the 
synthesis of all the Bis-(indolyl)methanes 3a-r and their 
structural moieties are tabulated in Table 2 above. The 
spectral data of some of the representative compounds are 
given below.  

Spectral Data of the Selected Compounds 
3,3'-(phenylmethylene)bis(1H-indole) (3a) 

Solid; mp 124-126 °C; IR (KBr, cm-1): 3415 (NH), 3055, 
1620, 1600, 1455, 1095, 750; 1H NMR (400 MHz, DMSO-
d6): δ 7.95 (br s, 2H, NH), 7.35 (m, 6H), 7.30 (m, 2H), 7.22 
(m, 3H), 7.00 (t, 2H, J= 7.0), 6.65 (s, 2H), 5.90 (s, IH, Ar-
CH); Anal. Calc. for C23H18N2 (322.14): C, 85.7; H, 5.6; N, 
8.7 %; Found: C, 85.8; H, 5.5; N, 8.6 %. 
3,3'-((4-chlorophenyl)methylene)bis(1H-indole) (3b) 

Solid; mp 104-106 °C; IR (KBr, cm-1): 3415 (NH), 3055, 
1490, 1450, 1090; 1H NMR (400 MHz, DMSO-d6): δ 7.95 
(br s, 2H, NH), 7.35-7.25 (m, 8H), 7.15 (t, 2H, J= 7.9), 7.05 
(t, 2H, J= 8.3), 6.65 (s, 2H), 5.80 (s, I H, Ar-CH).  
3,3'-((2-chlorophenyl)methylene)bis(1H-indole) (3c) 

Solid; mp 73-75 °C; IR (KBr, cm-1): 3410 (NH), 3050, 
1620, 1455, 1415, 1340, 1095, 1045, 1015; 1H NMR (400 
MHz, DMSO-d6): δ 7.97 (brs, 2H, NH), 7.41-7.35 (m, 4H), 
7.20-7.10 (m, 6H), 7.05 (t, 2H), 6.70 (s, 2H), 6.30 (s, 1H, Ar-
CH). 
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3,3'-((4-nitrophenyl)methylene)bis(1H-indole) (3d) 

Solid; rnp 220-222 °C; IR (KBr, cm-1): 3420 (NH), 3050, 
1595, 1510, 1455, 1340; 1H NMR (400 MHz, DMSO-d6): δ 
8.15 (d, 2H, J= 8.8). 8.05 (brs, 2H, NH), 7.50 (d, 2H, J= 8.8), 
7.40 (d, 2H, J= 8.2), 7.35 (d, 3H, J= 8.0), 7.05-7.00 (m, 3H), 
6.70 (s, 2H), 5.98 (s, IH, Ar-CH); Anal. Calc. for 
C23H17N3O2 (367.40): C, 75.2; H, 4.7; N, 11.4 %; Found: C, 
75.3; H, 4.5; N, 11.6 %. 

3,3'-(p-tolylmethylene)bis(1H-indole) (3f) 

Solid; mp 96-98 °C; IR (KBr, cm-1): 3415 (NH), 3040, 
2930, 1610, 1515, 1220, 1055, 775; 1H NMR (400 MHz, 
DMSO-d6): δ 7.98 (brs, 2H, NH), 7.5 (d, 17.6, 2H), 7.29-
7.25 (rn, 6H), 7.1 (d, 2H, J= 7.6), 7.05 (t, 2H, J= 7.2), 6.70 
(s, 2H), 5.85 (s, 1H, Ar-CH), 2.35 (s, 3H, Ar-CH3); Anal. 
Calc. for C24H20N2 (349.45): C, 85.7; H, 6.0; N, 8.3 %; 
Found: C, 85.4; H, 5.9; N, 8.0 %. 

3,3'-((4-methoxyphenyl)methylene)bis(1H-indole) (3g) 

Solid; mp 191-193 °C; IR (KBr, cm-1): 3415 (NH), 2930, 
1610, 1505, 1455, 1240, 1220; 1H NMR (400 MHz, DMSO-
d6): δ 3.75 (s, 3H, CH3), 5.80 (s, 1H, Ar-CH), 6.65 (s, 2H), 
6.80 (d, 2H, J= 8.2), 7.05 (t, 2H, J= 7.2), 7.15 (t, 2H, J= 7.2), 
7.20 (s, 2H), 7.35-7.40 (m, 4H), 7.98 (brs, 2H, NH). Anal. 
Calc. for C24H20N2O (352.43): C, 81.8; H, 5.7; N 8.0 %; 
Found: C, 81.7; H, 5.8; N, 8.0 %. 

3,3'-((3,4-dimethoxyphenyl)methylene)bis(1H-indole) (3i) 

Solid; mp 197-199 °C; IR (KBr, cm-1): 3445 (NH), 3060, 
2980, 1620, 1495, 1235, 1005, 765; 1H NMR (400 MHz, 
DMSO-d6): δ 10.45 (br s, 2H, NH), 7.35 (t, 4H, J= 8.2), 7.05 
(t, 2H, J= 8.0), 6.90 (d, 2H, J= 8.2), 6.85 (s, 1H), 3.75 (s, 
3H), 6.80 (d, 2H, J= 8.2), 6.72 (d, 2H, J= 2.4), 5.75 (s, 1H), 
3.82 (s, 3H).  

3,3'-((5-chloro-2-hydroxyphenyl)methylene)bis(1H-indole) 
(3k) 

Solid; mp 218-220 ºC; 1H NMR (500 MHz, DMSO-d6): δ 
10.80  (brs, 2H, NH), 9.60 (s, 1H, OH), 7.50-6.70 (m, 13H, 
Ar-H), 6.25 (s, 1H, Ar-CH), 5.14 (s, 2H, O-CH2); 13C NMR 
(125 MHz, DMSO-d6): δ 157.2, 139.4, 134.2, 131.5, 129.5, 
127.5, 126.6, 125.3, 124.6, 120.2, 119.8, 118.2, 112.7, 111.8, 
43.4; Anal. Calc. for C23H17ClN2O: C, 74.09; H, 4.60; N, 
7.51; Found: C, 73.96; H, 4.56; N, 7.45; LCMS m/z: 373. 

3,3'-((3,4-dichlorophenyl)methylene)bis(1H-indole) (3n) 

Solid; mp; 153154 °C; IR (KBr, cm-1): 3450 (NH), 3050, 
2975, 1610, 1475, 1250, 1015, 775; 1H NMR (500 MHz, 
DMSO-d6): δ 7.92 (brs, 2H, NH), 7.40 (d, 1H), 7.25 (t, 2H, 
J= 8.2), 7.2 (s, 1H), 7.02-6.92 (m, 4H), 6.95 (m, 2H), 6.87 
(rn, IH), 6.75 (d, 2H, 12.4), 5.83 (s, IH), LCMS m/z: 391 
(M+.).  

3,3'-((2-(benzyloxy)phenyl)methylene)bis(1H-indole) (3p) 

Solid; mp 264-266 ºC; 1H NMR (500 MHz, DMSO-d6): δ 
10.78 (brs, 2H, NH), 7.37-6.77 (m, 19H, Ar-H), 6.31 (s, 1H, 
Ar-CH), 5.14 (s, 2H, O-CH2); 13C NMR (125 MHz, DMSO-
d6): δ 155.7, 137.8, 137.0, 133.7, 129.5, 128.6, 127.9, 127.5, 
127.4, 127.2, 124.1, 121.2, 120.7, 119.3, 118.5, 118.2, 112.8, 
111.8, 69.7, 32.3; LCMS m/z: 429 (+ve), 427 (-ve). 

3,3'-(3-phenylprop-2-ene-1,1-diyl)bis(1H-indole) (3q) 
Semisolid; IR (KBr, cm-1): 3450 (NH), 3110, 2960, 1595, 

1475, 1050, 990, 765; 1H NMR (500 MHz, DMSO-d6): 7.95 
(br s, 2H, NH), 7.75 (d, 1H, J= 16.0), 7.55 (m, 2H), 7.40 (m, 
3H), 7.30 (m, 4H), 7.15 (t, 2H, J= 8.0), 7.05 (t, 2H, J= 8.0), 
6.65 (d, 2H, J= 2.2), 6.42 (d, 1H, J= 16.0), 5.95 (s, 1H); 
LCMS m/z: 346 (M+).  
3,3'-(3-(2-nitrophenyl)prop-2-ene-1,1-diyl)bis(1H-indole) 
(3r) 

Solid; mp 150-152 ºC; 1H NMR (500 MHz, DMSO-d6): δ 
8.02 (brs, 2H, NH), 7.91 (dd, 1H, J= 8 & 1.5 Hz,), 7.66-7.00 
(m, 14H, Ar-H & one =CH), 6.77 (dd, J= 15.5 & 7.5 Hz, 1H, 
=CH-C), 5.48 (d, 1H, J= 7.5 Hz, Ar-CH);  13C NMR (125 
MHz, DMSO-d6): δ 147.7, 137.7, 136.7, 133.7, 132.9, 129.0, 
127.5, 126.8, 125.8, 124.4, 122.7, 122.0, 119.8, 119.3, 117.6, 
111.1, 37.7; Anal. Calcd. for C15H20NO7P: C, 50.42; H, 5.60; 
N, 3.92 %. Found: C, 50.38; H, 5.67; N, 3.99%; LCMS m/z: 
394. 

CONCLUSION 
In summary, a simple, highly efficient and eco-friendly 

Tween-20 micelle promoted procedure for the preparation of 
bis-(indolyl)methanes by the reaction of indoles with 
aldehydes in aqueous medium is reported. The significance 
is that it serves as a versatile method for coupling two indole 
moieties at their C3-position with a substituted methylene 
bridge. 
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