

Available online at www.sciencedirect.com

Carbohydrate Research 338 (2003) 2557-2569

CARBOHYDRATE RESEARCH

www.elsevier.com/locate/carres

Synthesis of phosphatidylinositol mannosides (PIMs)

Andreas Stadelmaier, Richard R. Schmidt*

Fachbereich Chemie, Universität Konstanz, Fach M 725, D-78457 Konstanz, Germany

Received 2 April 2003; received in revised form 26 May 2003; accepted 23 June 2003

Abstract

Two strategies towards the synthesis of phosphatidylinositol mannosides (PIMs) were elaborated which permit selective access to the O-1-, O-2-, and the O-6 position of the *myo*-inositol residue. Starting materials are 1,2:5,6- and 1,2:4,5-di-O-cyclohexylidene-DL-*myo*-inositol, respectively. In the latter case, the required assignment to the D- or L-series is based on the transformation of one enantiomer into known (-)-liriodentritol. The efficiency and potential versatility of the two approaches is exemplified in the synthesis of PIMs (D)-1a and its pseudoenantiomer (L)-1b, both having myristoyl residues as part of the phosphatidyl moiety. \bigcirc 2003 Elsevier Ltd. All rights reserved.

Keywords: Phosphatidylinositol; Phosphatidylinositol mannoside; Synthesis; Glycosidation; Structural assignment

1. Introduction

Important constituents of the mycobacterial cell wall are arabinogalactan-peptidoglycan (AGP) and lipoarabinomannan (LAM) complexes. The LAM structure is composed of a phosphatidylinositol dimannoside (PIM₂) which carries a mannan (\rightarrow lipomannan, LM) or an arabinomannan moiety (\rightarrow LAM) (Scheme 1).¹ Precursors for the biosynthesis of LAMs are phosphatidylinositols (PIs) which are α -mannopyranosylated at O-2 (\rightarrow PIM) or at O-2- and O-6 (\rightarrow PIM₂).² Chain extension of the α -(1 \rightarrow 6)-linked mannopyranosyl residue with additional α -(1 \rightarrow 6)- and α -(1 \rightarrow 2)-linked mannopyranosyl residues will lead to LMs and by further adding arabinofuranosyl residues finally LAMs are obtained.

In mycobacterial infections, the lipoglycans localize to caveolae/lipid rafts of host membranes which serve as signal transduction platforms, thus eliciting a profound biological response. Such responses involve induced expression and secretion of TNF- α and IL-6 and inhibition of T-cell proliferative responses.^{1,3} LAMs have also been shown to inhibit expression of IL-2,

IL-5, and GM-CSF genes in human T-cells and the IFN- γ -mediated activation of macrophages.

Because the PIM substructure of LAMs is able to inhibit LAM insertion into caveolae, the PIM substructures may contain the necessary structural characteristics to target to caveolae. Therefore, such compounds have to be investigated if they are mimics of the naturally occurring PIMs, thus inducing biological responses normally attributed to the natural compound if they act as biologically inert carriers delivering specific pharmaceutically active compounds to caveolae. Hence, we initiated a program to the synthesis of PIMs and structural variants, thus requiring regioselective access to the O-1, O-2, and O-6 position of (D)- or (L)-myoinositol.^{4,5}

In this paper, the synthesis of phosphatidyl-(D)inositol mannoside with $\mathbf{R}^6 = \mathbf{H}$ (Scheme 1, (D)-1a) and of its pseudoenantiomer (L)-1b with (L)-inositol configuration (which is actually a diastereomer of (D)-1a) is reported. Structural analogs of (D)-1a were previously synthesized by routes which did not consider eventual attachments to the O-6 position of the inositol moiety.⁶ Also, the successful synthesis of PIM₂ was already reported starting from racemic inositol derivatives.⁷ The resolution of unsymmetrically substituted *myo*-inositol derivatives with the help of an α -linked mannosyl residue at the O-2 position turned out to be laborious. Therefore, in our synthesis, designed chiral

^{*} Corresponding author. Tel.: +49-7531-882538; fax: +49-7531-883135.

E-mail address: richard.schmidt@uni-konstanz.de (R.R. Schmidt).

HO HO OH (L)-1b HO Scheme 1. Structure of PIMs, LM and LAM and of target

auxiliaries for efficient resolution were employed. The designed synthesis takes also into account future regioselective attachment of residues at the O-6 position of the inositol moiety, thus permitting the synthesis of PIM₂, LMs, and LAMs and structural variants thereof.⁵

molecules (D)-1a and (L)-1b.

2. Results and discussion

Following a literature procedure,⁸ myo-inositol (Scheme 2) can be readily transformed into di-*O*-cyclohexylidene derivatives **2**–**4** which are separated by crystallisation (**3**) and by chromatography (**2** and **4**).

Compound 2 has been frequently employed for the synthesis of phosphatidylinositol derived compounds, particularly glycosylphosphatidylinositol (GPI) anchors^{8,9} which require access to the *O*-1 and *O*-6 position of *myo*-inositol. Therefore, resolution of (DL)-2 with the help of (-)-menthyloxycarbonyl derivatives (L)-5 and (D)-6 is well studied.^{8b,9} In order to take into account the desired selective access to the *O*-6 position for later PIM related syntheses, O-6 allylation with allyl bromide in the presence of silver oxide in DMF at 0 °C was carried out, thus avoiding menthyloxycarbonyl migration, which was observed under more drastic conditions. Excess silver ions were removed by treat-

Scheme 2. Reagents and conditions: (a) Ref. 8; (b) All-Br, Ag₂O, DMF, 0 $^{\circ}$ C; KI (86%); see also Ref. 9.

ment with potassium iodide; workup led to desired (D)- 7.9^{9}

Selective 4,5-O-cyclohexylidene group removal on (D)-7 under acid catalysis with pyridinium p-toluenesulfonate (PPTSA)-p-toluenesulfonic acid (PTSA) furnished 4,5-O unprotected (D)-8 (Scheme 3), which on treatment with benzyl bromide in the presence of silver oxide afforded cleanly 4,5-di-O-benzyl protected derivative (D)-9. Following 2,3-O-decyclohexylidenation with camphorsulfonic acid (CSA) as catalyst in methanol afforded 2,3-O unprotected (D)-10, which on treatment with acetyl chloride in the presence of dimethyltin dichloride¹⁰ in THF and potassium carbonate as base afforded a 7:3-mixture of desired monoacetylated (D)-11 and (D)-12. After chromatographic separation, reaction of (D)-11 as acceptor with known $13^{8a,9,11}$ as mannosyl donor and tin(II) trifluoromethanesulfonate as catalyst furnished, by applying the inverse procedure, $^{12} \alpha$ -linked inositol mannoside (D)-14 in 95% yield. O-Deacetylation of (D)-14 with dimethylamine in ethanol gave (D)-15 in 79% yield. Following O-benzylation with benzyl bromide and sodium hydride as base in DMF at room temperature furnished the hepta-O-benzyl derivative (D)-16 which is now accessible to selective modifications at O-1 and/or O-6 position. Full structural assignment could be based on NMR data. The α configuration of

Scheme 3. Reagents and conditions: (a) 13:1 PPTSA–PTSA, CH₂Cl₂, MeOH, 45 °C (68%); (b) BnBr, Ag₂O, CH₂Cl₂, rt (71%); (c) CSA, MeOH, 45 °C (89%); (d) AcCl, Me₂SnCl₂, THF, rt, K₂CO₃ (65%, 7:3); (e) Sn(OTf)₂, Et₂O, rt (95%); (f) HNMe₂ in EtOH (79%); (g) BnBr, NaH, DMF, rt (85%).

the mannosyl residue was ascertained by the $J_{C1b,H1b}$ coupling of 171.3 Hz.¹³

For the transformation of pseudodisaccharide (D)-16 into the phosphatidyl residue carrying target molecule, the menthyloxycarbonyl group at O-1 was removed by treatment with potassium carbonate in methanol at 60 °C, thus affording O-1 unprotected (D)-17 (Scheme 4). Reaction of (D)-17 with the known diacylglycerol carrying phosphitamide 18^{14} in the presence of tetrazole as catalyst and then oxidation with tert-butylhydroperoxide and base catalyzed removal of the cyanoethyl group furnished the O-protected target molecule (D)-19 which was structurally assigned by the NMR and MS data. O-Deallylation with palladium(0) as catalyst and sodium p-toluene sulfinate as nucleophile¹⁵ in acetic acid-dichloromethane at room temperature afforded (D)-20 in 58% yield. Hydrogenolytic O-debenzylation with palladium on carbon as catalyst led to the desired unprotected target molecule (D)-1a. Full structural

Scheme 4. Reagents and conditions: (a) K_2CO_3 , MeOH, 60 °C (86%); (b) tetrazole, CH₂Cl₂; *t*-BuO₂H; Me₂NH, EtOH (78%); (c) Pd(PPh₃)₄, Tol-SO₂Na, HOAc, CH₂Cl₂, rt (58%); (d) Pd/C, H₂, 7.5:7.5:1 CH₂Cl₂-MeOH-H₂O (73%).

assignment of this compound was based on NMR (HMQC, DQF-COSY, SED-³¹P, ROESY) and MS data.

Although the synthesis of (D)-1a from (DL)-2 is rather straightforward, the ready availability of (DL)-3 by crystallisation from the reaction mixture led us to design an alternative procedure for the synthesis of pseudoenantiomer (L)-1b; this procedure should be also applicable to the (D)-series of PIMs and LAMs. In the new procedure, the possible migration of the menthyloxycarbonyl or any other acyl group, thus requiring mild silver oxide-supported introduction of allyl and benzyl groups, should be avoided. The first steps followed a procedure by Vacca and coworkers¹⁶: (DL)-3 was selectively benzylated at the more reactive O-3 position $[\rightarrow (DL)-21]$ (Scheme 5) and then the (-)-camphanoyl residue was attached to the O-6 resulting in (D)- and (L)-22, which could be simply separated by crystallisation and flash chromatography on silica gel; thus (D)- and (L)-22 were readily obtained in >99% enantiomeric excess. Base catalyzed removal of the camphanoyl residues furnished (L)- and (D)-23. Because the previous

Scheme 5. Reagents and conditions: (a) Ref. 16; (b) $Pd(OH)_2/C$, H₂, THF (98%); (c) MeI, NaH, DMF, rt (92%); (d) CSA, CH₂Cl₂, MeOH, rt, 24 h (78%).

configurational assignment of these compounds was not clear,¹⁶ the configuration of (L)-23 was ascertained by transformation into known (-)-liriodentritol (26).¹⁷ Hydrogenolytic *O*-debenzylation of (L)-23 with Pearlman's catalyst in THF, thus avoiding partial *O*-decyclohexylidenation, gave 3,*O*-6 unprotected 24 in high yield. *O*-Methylation with methyl iodide and sodium hydride as base in DMF afforded di-*O*-methyl derivative 25, which on CSA-catalyzed *O*-decyclohexylidenation furnished 26 in 78% yield.

This compound was in all aspects identical with natural (-)-liriodentritol, thus leading to unequivocal structural assignment of (L)- and (D)-23. Hence, the synthesis of (L)-1b could be based on (L)-23. Allylation of (L)-23 with allyl bromide in the presence of sodium hydride as base in DMF afforded fully protected *myo*-inositol derivative (L)-27 in high yield (Scheme 6). Selective removal of the 4,5-O-cyclohexylidene group with PPTSA/PTSA in the presence of methanol $[\rightarrow(L)-24]$

Scheme 6. Reagents and conditions: (a) All-Br, NaH, DMF, 1 h, rt (qu); (b) 13:1 PPTSA–PTSA, CH_2Cl_2 , MeOH, 40 °C (78%); (c) BnBr, NaH, DMF, rt (84%); (d) CSA, 10:1 MeOH, CH_2Cl_2 10:1, 24 h, rt (95%); (e) Bu_2SnO, Tol, 3 h, refl., MPMCl, TBAI, 1.5 h, 110 °C (79%).

28] and then *O*-benzylation under standard conditions afforded the tri-*O*-benzyl derivative (L)-**29**. CSA-catalyzed cleavage of the 1,2-*O*-cyclohexylidene group in the presence of methanol led to the 1,2-*O*-unprotected derivative (L)-**30**, again in high yield. Regioselective *O*-1 protection by treatment with dibutyltin oxide in refluxing toluene and then with 4-methoxyphenylmethyl (MPM) chloride in the presence of tetrabutylammonium iodide (TBAI) furnished *O*-2 unprotected (L)-**31** which—compared with (D)-**11**—offers also the desired regioselective access to the *O*-1, *O*-2, and *O*-6 position; however, (L)-**31** is much more reluctant to further transformation than (D)-**11**.

Mannosylation of (L)-31 with $13^{8a,9,11}$ as mannosyl donor in the presence of TMSOTf as catalyst in Et₂O as solvent at room temperature furnished the desired α linked pseudodisaccharide which on treatment with methylamine in ethanol led to *O*-deacetylation, thus furnishing (L)-32 in 71% yield (Scheme 7). The α configuration of the mannosyl residue was ascertained by the $J_{\text{C1b-H1b}}$ coupling of 173.3 Hz.¹³ Then *O*-6 deallylation of (L)-32 under standard conditions was carried out because selective access to *O*-6 was not required for the synthesis of (L)-1b. Thus, *O*-2b, *O*-6a unprotected (L)-33 was obtained, which was subjected to dibenzylation again under standard conditions to furnish octa-*O*-benzyl (L)-34 in 86% yield. Mild oxidative

Scheme 7. Reagents and conditions: (a) TMSOTf, Et_2O , rt; H_2NMe , EtOH (71%); (b) (Ph₃P)₃RhCl, DBU, EtOH, 90 °C; HCl, Me₂CO (87%); (c) BnBr, NaH, DMF, rt (86%); (d) CAN, MeCN, Tol, H₂O, 0 °C \rightarrow rt, 75 min (94%); (e) tetrazole, CH₂Cl₂; *t*-BuO₂H; Me₂NH, EtOH (76%); (f) Pd/C, H₂, CH₂Cl₂, MeOH, H₂O, rt (74%).

cleavage of the MPM group with ceric(IV)ammonium nitrate (CAN) furnished O-1 unprotected (L)-35 in high yield; transformation of (L)-34 into (L)-35 with DDQ as oxidizing agent was accompanied by decomposition of the starting material.⁵ Diacylglycerol containing phosphitamide 18^{14} could be successfully linked to (L)-35 in the presence of tetrazole as catalyst; ensuing oxidation with tert-butylhydroperoxide and then base-catalyzed removal of the cyanoethyl group led to O-benzylprotected target molecule (L)-36 in 76% yield. Hydrogenolytic removal of the eight O-benzyl groups could be successfully carried out with palladium on carbon as catalyst in a 7.5:7.5:1-mixture of dichloromethanemethanol-water providing pure (L)-1b in 74% yield. The structure of (L)-1b is fully supported by the NMR and MS data.

In conclusion, efficient syntheses of phosphatidylinositol mannosides (PIMs) could be developed. The decisive intermediates, particularly those obtained from 1,2:4,5-di-O-cyclohexylidene-*myo*-inositol, permit any structural variation at O-1, O-2, and/or O-6 position, thus giving access to a wide variety of PIMs, LMs, and LAMs.

3. Experimental

3.1. General methods

Solvents were purified by distillation and dried by normal procedures, except for distilled CH₂Cl₂ which was passed through a column of commercially available neutral alumina (ICN Alumina N, activity grade super I) as an alternative drying procedure. ¹³C Assignments were based on heteronuclear multiple-quantum correlation (HMQC). Boiling range of the petroleum ether: 35-70 °C. Thin layer chromatography (TLC) was performed on E. Merck Silica Gel 60 F₂₅₄ plates (0.2 mm). The plates were visualized by immersion in mostain [200 mL 10% H₂SO₄, 10 g (NH₄)₆Mo₇O₂₄·4 H_2O , 200 mg Ce(SO₄)₂] or ninhydrin soln 1% in EtOH) or 10% H₂SO₄ or KMnO₄ soln (1% in water, 1% NaHCO₃) followed by heating (165 °C). Preparative flash chromatography was carried out on Baker Silica Gel 60 (30-60 mm) at a pressure of 0.02-0.04 MPa. FABMS was recorded on a modified Finnigan MAT 312/AMD 5000. ¹H, ¹³C NMR and ³¹P spectra were recorded on a Bruker AC 250 Cryospec and a Bruker DRX 600 instrument. Proton chemical shifts are reported in ppm relative to Me₄Si as internal standard. Assignments of protons and carbons were carried out with the aid of 600 MHz spectra: COSY, HMQC, ROESY, TOCSY. Measurements of optical rotations were performed on a Perkin–Elmer polarimeter 241 MC (1 dm cell). Melting points: Gallenkamp metal block; not corrected. MALDIMS were obtained on a Kratos Analytical Kompac Maldi 2 instrument with 2,5-dihydroxybenzoic acid as matrix (positive mode) or 6-aza-2thiothymin (ATT) (negative mode).

3.2. 6-*O*-Allyl-2,3-*O*-cyclohexylidene-1-*O*-(1*R*)menthyloxycarbonyl-D-*myo*-inositol [(D)-8]

Bis-ketal (D)-7⁹ (48.75 g, 0.1 mol) was dissolved in a mixture of dry 1:1 CH₂Cl₂–MeOH (600 mL) and heated up to 45 °C. To this soln was added 10 mL of a mixture of 13:1 PPTSA–PTSA (0.86 m in dry DCM). The reaction was followed by TLC. Stirring was maintained for 1 h and 10 min before the reaction was quenched with NEt₃. The residue obtained upon evaporation was purified by flash chromatography (3:1 \rightarrow 1:1 petroleum ether–EtOAc) to yield (D)-8 (28.3 g, 68%) as a colourless foam; TLC (1:1 petroleum ether–EtOAc); R_f 0.47; [α]_D – 49° (*c* 1, CHCl₃); mp 129.2 °C; ¹H NMR (250 MHz,

CDCl₃): δ 0.75–1.16 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.38– 1.79 (m, 14 H, 10 H_{cyclohexylidene}, H_{Mnt}), 1.9–2.12 (m, 4 H, H_{Mnt}, 2 OH), 3.41 (dd, 1 H, J_{5,4} 10.3, J_{5,6} 8.6 Hz, H-5), 3.71 (dd, 1 H, J_{6,5} = J_{6,1} 8.5 Hz, H-6), 3.79 (dd, 1 H, J_{4,3} 7.4, J_{4,5} 10.3 Hz, H-4), 4.08 (dd, 1 H, J_{3,2} 5.5, J_{3,4} 7.3 Hz, H-3), 4.18–4.38 (m, 2 H, OCH₂CH=CH₂), 4.5 (dd, 1 H, J_{2,1} 4.1, J_{2,3} 5.4 Hz, H-2), 4.56–4.63 (m, 1 H, H_{Mnt}), 4.92 (dd, 1 H, J_{1,2} 4.1, J_{1,6} 8.4 Hz, H-1), 5.19– 5.36 (m, 2 H, CH=CH₂), 5.85–6.01 (m, 1 H, CH=CH₂). Anal. Calcd for C₂₆H₄₂O₈ (482.61): C, 64.71; H, 8.77. Found: C, 64.69; H, 8.60.

3.3. 6-*O*-Allyl-4,5-di-*O*-benzyl-2,3-*O*-cyclohexylidene-1-*O*-(1*R*)-menthyloxycarbonyl-D-*myo*-inositol [(D)-9]

To a mixture of (D)-8 (30.89 g, 64 mmol), silver (I) oxide (118 g, 8 equiv) and dry DCM (350 mL) was treated BnBr (45.6 mL, 6 equiv, exothermic). After stirring for 3 h at room temperature (rt), the mixture was filtered over celite and concentrated under diminished pressure. The obtained residue was purified on silica gel (20:1 petroleum ether-EtOAc) to give 29.8 g (71%) of (D)-9 as colourless oil; TLC (6:1 petroleum ether-EtOAc): R_f 0.7; $[\alpha]_D - 31.9^\circ$ (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 0.72–1.13 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.3– 1.75 (m, 14 H, 10 H_{cyclohexylidene}, H_{Mnt}), 1.9-2.12 (m, 2 H, H_{Mnt}), 3.45 (dd, 1 H, J_{5,6} 9.5, J_{5,4} 8.3 Hz, H-5), 3.79 (dd, 1 H, J_{6.5} 9.5 Hz, H-6), 3.81 (dd, 1 H, H-4), 4.19-4.23 (m, 3 H, CH₂CH=CH₂, H-3), 4.44 (dd, 1 H, J_{2.1} $3.8, J_{2.3}$ 5.7 Hz, H-2), 4.48-4.6 (m, 1 H, H_{Mnt}), 4.78 (m, 2 H, CH₂Ph), 4.8 (2 d, 2 H, CH₂Ph), 4.95 (dd, 1 H, J_{1,2} 3.8, J_{1.6} 8.3 Hz, H-1), 5.1–5.3 (m, 2 H, CH=CH₂), 5.82– 5.9 (m, 1 H, CH=CH₂), 7.2-7.4 (m, 10 H, Ph). Anal. Calcd for C₄₀H₅₄O₈ (662.86): C, 72.45; H, 8.21. Found: C, 72.55; H, 8.21; MALDIMS: m/z 685.3 $[M+Na]^+$, 701.3 $[M+K]^+$.

3.4. 6-O-Allyl-4,5-di-O-benzyl-2,3-1-O-(1*R*)menthyloxycarbonyl-D-*myo*-inositol [(D)-10]

For the cleavage of the ketal protecting group, compound (D)-9 (16.74 g, 25 mmol) was dissolved in 10:1 MeOH-CH₂Cl₂ (220 mL). To this soln was added camphor-10-sulfonic acid (0.75 g, 3.23 mmol) and the reaction mixture was stirred for 8.5 h at 45 °C. Next, the mixture was neutralized with Et₃N diluted with toluene and concentrated under diminished pressure. The residue was purified on silica gel (6:1 petroleum ether-EtOAc) to give 13.1 g (89%) of product (D)-10 as a colourless foam; TLC (2:1 petroleum ether-EtOAc): R_f 0.55; ¹H NMR (250 MHz, CDCl₃): δ 0.72–1.13 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.32–1.72 (m, 4 H, H_{Mnt}), 1.88–2.3 (m, 4 H, H_{Mnt}, 2 OH), 3.49 (dd, 1 H, H-5), 3.55 (dd, 1 H, J_{3,2} 2.7, J_{3,4} 9.6 Hz, H-3), 3.76 (dd, 1 H, H-6), 3.89 (dd, 1 H, H-4), 4.15–4.35 (m, 3 H, $CH_2CH=CH_2$, $J_{2,3}=J_{2,1}=$ 2.6 Hz, H-2), 4.48-4.6 (m, 1 H, H_{Mnt}), 4.66-4.97 (4 d, 4 H, CH_2 Ph), 4.7 (dd, 1 H, $J_{1,2}$ 2.7, $J_{1,6}$ 10.1 Hz, H-1), 5.08–5.28 (m, 2 H, CH=C H_2), 5.8–5.98 (m, 1 H, CH= CH₂), 7.21–7.39 (m, 10 H, Ph). MALDIMS [M+Na]⁺: Calcd 605.7, Found 605.4; [M+K]⁺ Calcd 621.8, Found 621.4. Anal. Calcd for C₃₄H₄₆O₈ (582.7): C, 70.08; H, 7.96. Found: C, 69.67; H, 7.99.

3.5. 3-*O*-Acetyl-6-*O*-allyl-4,5-di-*O*-benzyl-1-*O*-(1*R*)menthyloxycarbonyl-*D*-*myo*-inositol [(D)-11]

The diol (D)-10 (10.58 g, 18 mmol), dissolved in dry THF (100 mL), was treated with anhyd K_2CO_3 (5.62 g, 2.24 equiv) and dimethyltin dichloride (4.39 g, 1.1 equiv) and stirred for 0.5 h under AP. To this reaction mixture was added acetyl chloride (1.56 mL, 1.2 equiv) and stirred overnight. Then K₂CO₃ was filtered off and the reaction mixture was concentrated under diminished pressure. Silica gel column chromatography (15:1 toluene-EtOAc) afforded (D)-11 (7.3 g, 65%) as a white solid; TLC (6:1 toluene–EtOAc): $R_f 0.56$; $[\alpha]_D - 23.5^\circ$ (c 1, CHCl₃); mp 144.5 °C. ¹H NMR (600 MHz, CDCl₃): δ 0.7–1.08 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.33– 1.63 (m, 4 H, H_{Mnt}), 1.8–1.9, 1.98–2.05 (m, 2 H, H_{Mnt}), 1.94 (s, 3 H, OAc), 3.48 (dd, 1 H, $J_{5,6} = J_{5,4}$ 9.5 Hz, H-5), 3.82 (dd, 1 H, $J_{6,1} = J_{6,5}$ 9.82 Hz, H-6), 3.93 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.82 Hz, H-4), 4.1–4.16, 4.23–4.27 (m, 2 H, $CH_2CH=CH_2$), 4.19 (dd, 1 H, $J_{2,3} = J_{2,1}$ 2.6 Hz, H-2), 4.45-4.52 (m, 1 H, H_{Mnt}), 4.57-4.82 (4 d, dd, 5 H, CH₂Ph, J_{1.2} 2.6, J_{1.6} 10.2 Hz, H-1), 4.85 (dd, 1 H, J_{3.4} 10.2, $J_{3,2}$ 2.8 Hz, H-3), 5.03–5.21 (m, 2 H, CH=CH₂), 5.8–5.9 (m, 1 H, CH=CH₂), 7.14–7.3 (m, 10 H, Ph). Anal. Calcd for C₃₆H₄₈O₉ (624.77): C, 69.21; H, 7.74. Found: C, 69.16; H, 7.74.

3.6. 3-O-Acetyl-6-O-allyl-4,5-di-O-benzyl-O-1-(1R)-menthyloxycarbonyl-2-O-(2-O-acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl)-D-*myo*-inositol [(D)-14]

To a soln of acceptor (D)-11 (8.02 g, 18 mmol), in anhyd ether (50 mL), was added under Ar Sn(OTf)₂ (268 mg, 0.05 equiv). Then donor 13^{8a,9,11} (16.35 g, 0.026 mol, dissolved in 50 mL anhyd ether) was added drop-wise over 5 min to the reaction mixture. Stirring was maintained for 1 h, then the reaction was quenched with triethylamine and the mixture concentrated. The residue was purified by flash chromatography (24:1 toluene-EtOAc) to give (D)-14 (13.4 g, 95%) as a colourless foam; TLC (12:1 toluene-acetone, 1% Et₃N): R_f 0.57. $[\alpha]_D$ +5.9° (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 0.7–1.11 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.3–1.7 (m, 4 H, H_{Mnt}), 1.78 (s, 3 H, OAc), 1.81– 2.16 (m, 2 H, H_{Mnt}), 2.1 (s, 3 H, OAc), 3.5–3.6 (m, 2 H), 3.66-3.95 (m, 6 H), 4.17-4.37 (m, 3 H, $OCH_2CH=$ CH₂), 4.4–4.68 (m, 6 H), 4.7–4.9 (m, 7 H), 5.0–5.05 $(d, 1 H, H-2b), 5.12-5.31 (m, 2 H, CH=CH_2), 5.45 (d, 1)$ H, H-1b), 5.8-5.99 (m, 1 H, CH=CH₂), 7.1-7.4 (m, 25 H, Ph). MALDI-MS: 1122.2 $[M+Na]^+$. Anal. Calcd for C₆₅H₇₈O₁₅ (1099.32): C, 71.02; H, 7.15. Found: C, 71.07; H, 7.20.

3.7. 6-*O*-Allyl-4,5-di-*O*-benzyl-1-*O*-(1*R*)menthyloxycarbonyl-2-*O*-(3,4,6-tri-*O*-benzyl-α-Dmannopyranosyl)-D-*myo*-inositol [(D)-15]

Compound (D)-14 (13.4 g, 12 mmol) was dissolved in 100 mL of methylamine soln (33% in anhyd EtOH) and stirred for 24 h at rt. The reaction mixture was concentrated, diluted with toluene and evaporated. Silica gel column chromatography of the residue (10:1 toluene-EtOAc) afforded (D)-15 (9.8 g, 79%) as a colourless foam; TLC (3:1 petroleum ether-EtOAc): $R_f 0.48; [\alpha]_D - 3.7^\circ$ (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 0.72–1.12 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.33– 1.72 (m, 4 H, H_{Mnt}), 1.8–2.2 (m, 4 H, H_{Mnt}, 2 OH), 3.4– 3.8 (m, 8 H), 4.01-4.12 (m, 2 H), 4.12-4.32 (m, 3 H, OCH₂CH=CH₂, H-2), 4.4-4.89 (m, 12 H), 4.96 (d, 1 H, H-1b), 5.09–5.3 (m, 2 H, CH=CH₂), 5.81–5.99 (m, 1 H, CH=CH₂), 7.11–7.4 (m, 25 H, Ph). MALDIMS: 1037.4 $[M+Na]^+$, 1053.3 $[M+K]^+$. Anal. Calcd for C₆₁H₇₄O₁₃ (1015.25.0.5 H₂O): C, 71.53; H, 7.38. Found: C, 71.63; H, 7.33.

3.8. 6-*O*-Allyl-3,4,5-tri-*O*-benzyl-1-*O*-(1*R*)menthyloxycarbonyl-2-*O*-(2,3,4,6-tetra-*O*-benzyl-α-Dmannopyranosyl)-D-*myo*-inositol [(D)-16]

To a soln of (D)-15 (9.8 g, 9.65 mmol), in anhyd DMF (100 mL), was added BnBr (5.73 mL, 5 equiv). After cooling to 0 °C, NaH was added portion-wise (579 mg, 2.5 equiv). The reaction mixture was allowed to reach rt and after 2.5 h stirring the mixture was quenched with 1:3 CH₃COOH–EtOAc and the mixture concentrated under diminished pressure. The residue was purified on silica gel (10:1 petroleum ether-EtOAc) to give 9.75 g (85%) of (D)-16 as a colourless oil. TLC (3:1 petroleum ether-EtOAc): $R_f \ 0.73. \ [\alpha]_D \ -1.8^{\circ} \ (c \ 1, \ \text{CHCl}_3); \ ^1\text{H}$ NMR (600 MHz, CDCl₃): δ 0.61–1.08 (3 d, m, 12 H, 3 Me, H_{Mnt}), 1.25-1.64 (m, 4 H, H_{Mnt}), 1.8-1.9, 2.02-2.08 (m, 2 H, H_{Mnt}), 3.16–3.19, 3.36–3.42 (m, H, H-6b), 3.28-3.37 (m, 2 H, H-5a, H-3a), 3.52 (dd, 1 H, H-6a), 3.63 (dd, 1 H, H-4a), 3.64–3.73 (m, 2 H, H-2b, H-3b), 3.9-4.05 (m, 2 H, H-4b, H-5b), 4.08-4.2 (m, 2 H, CH₂CH=CH₂), 4.2-4.26, 4.33-4.4, 4.45-4.54, 4.66-4.85 (m, 15 H, CH2Ph, HMnt), 4.32 (dd, 1 H, H-2a), 4.6 (dd, 1 H, H-1a), 4.97-5.04, 5.1-5.2 (m, 2 H, CH= CH₂), 5.27 (d, 1 H, H-1b), 5.79–5.9 (m, 1 H, CH=CH₂), 6.98-7.48 (m, 35 H, Ph); ¹³C NMR (150.9 MHz, CDCl₃): δ 68.3 (C-6b), 70.1–75.6 (CH₂Ph), 71.7 (C-4b), 72.9 (C-2b), 73.5 (C-2a), 74.4 (C-5b), 74.5 (OCH₂CH=CH₂), 77.1 (C-1a), 78.5 (C-3a), 78.7 (C-3b), 79.0 (C-6a), 79.1 (C-Mnt), 80.9 (C-4a), 83.1 (C-5a), 98.2 (C-1b), 117.0 (CH=CH₂), 134.8 (CH=CH₂). Anal. Calcd for $C_{75}H_{86}O_{13}$ (1195.5): C, 75.35; H, 7.25. Found: C, 75.08; H, 7.49. MALDIMS: 1217.4 $[M+Na]^+$.

3.9. 6-OAllyl-3,4,5-tri-O-benzyl-2-O-(2,3,4,6-tetra-O-benzyl-α-D-mannopyranosyl)-D-*myo*-inositol [(D)-17]

To a soln of (D)-**16** (3.1 g, 2.6 mmol), in 10:1 anhyd MeOH–Et₂O (110 mL), was added K₂CO₃ (3 g, 21.7 mmol) and the mixture was stirred for 6 h at 60 °C. After evaporation, the residue was purified by silica gel column chromatography (6:1 toluene–EtOAc) to afford (D)-**17** (2 g, 86%) as a colourless oil. TLC (3:1 petroleum ether–EtOAc): R_f 0.17; $[\alpha]_D$ +35.1° (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃) δ 3.28–3.42 (m, 5 H), 3.52–3.6 (m, 1 H), 3.68–3.9 (m, 3 H), 3.98–4.15 (m, H), 4.31–4.98 (m, 16 H), 5.1–5.29 (m, 2 H, CH=CH₂), 7.11–7.4 (m, 35 H, Ph). MALDIMS: 1035.2 [M+Na]⁺, 1051.2 [M+K]⁺. Anal. Calcd for C₆₄H₆₈O₁₁ (1013.24): C, 75.87; H, 6.77. Found: C, 75.96; H, 7.02.

3.10. 6-*O*-Allyl-3,4,5-tri-*O*-benzyl-2-*O*-(2,3,4,6-tetra-*O*-benzyl-α-D-mannopyranosyl)-D-*myo*-inosit-1-yl-[(2*R*)-2,3-bis-(myristoyloxy)propyl]-phosphate [(D)-19]

Tetrazole (360 mg, 2.6 equiv) and cyanethoxy-N,Ndiisopropylphosphoramidite $(18)^{14}$ (2.82 g, 2 equiv) were dried for 1 h under high diminished pressure. Compound (D)-17 (2 g, 1.97 mmol, dissolved in 100 mL anhyd CH₂Cl₂) was added to the mixture of tetrazole and 18. Stirring was maintained at rt under Ar atmosphere for 2 h. The two diastereomers (3:1 petroleum ether-EtOAc, R_f 0.50 and 0.56) were then treated with tert-butylhydroperoxide (4.7 m in isooctane, 7.85 mL). After 1 h, the reaction mixture was concentrated to 10 mL, treated with dimethylamine soln (36 mL, 33% in anhyd EtOH) and stirred for 1 h. Then the reaction mixture was again concentrated to 10 mL, diluted with CH₂Cl₂, a satd NaHCO₃-soln was added, and the two layers were separated. The organic layer was washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by flash chromatography $(9:1 \rightarrow$ 1:10 toluene-acetone) to afford (D)-19 (2.6 g, 78%) as a slightly yellow oil; TLC (10:1 CHCl₃-MeOH): R_f 0.34; ³¹P NMR (242.9 MHz, 1:1 CD₃OD–CDCl₃): δ – 3.97 (s, 1P); ¹H NMR (600 MHz, 1:1 CDCl₃-CD₃OD): δ 0.8–0.95 (t, 6 H, Me), 1.04–1.4 (m, 40 H, CH₂-chain), 1.4-1.7 (m, 4 H, COCH₂-CH₂-R), 2.18-2.3 (m, 4 H, CO*CH*₂-CH₂-R), 3.1 (m, H-6b), 3.29-3.43 (m, 3 H, H-6b, H-5a, H-3a), 3.59 (dd, 1 H, H-6a), 3.72 (dd, 1 H, H-4a), 3.79 (dd, 1 H, H-2b), 3.82 (dd, 1 H, H-3b), 4.0-4.18 (m, 7 H, H-4b, H-5b, H-1a, H-1', H-3'), 4.25-4.4 (m, 2 H, $OCH_2CH=CH_2$), 4.2–4.25, 4.4–4.9 (m, 14 H, CH₂Ph), 4.58 (dd, 1 H, H-2a), 5.13–5.32 (m, 3 H, CH=CH₂, H-2'), 5.61 (d, 1 H, H-1b), 5.9–6.1 (m, H, CH=CH₂), 7.1–7.52 (m, 35 H, Ph); ¹³C NMR (1:1 150.9

MHz, CDCl₃–CD₃OD): δ 62.8 (C-3'), 64.2 (C-1'), 68.4 (C-6b), 70.6 (C-2'), 71.2–76.8 (CH₂Ph), 71.7 (C-5b), 73.7 (C-2b), 73.8 (C-2a), 74.5 (C-4b), 74.8 (OCH₂CH=CH₂), 77.0 (C-1a), 78.5 (C-3b), 79.0 (C-3a), 80.3 (C-6a), 81.1 (C-4a), 83.2 (C-5a), 98.0 (C-1b). C₉₅H₁₂₇O₁₈P (1587.09). MALDIMS: 1587.6 [M – H]⁻.

3.11. 3,4,5-Tri-*O*-benzyl-2-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)-D-*myo*-inosit-1-yl-[(2*R*)-2,3-bis[(myristoyloxy)-propyl]phosphate [(D)-20]

To a soln of (D)-19 (310 mg, 0.2 mmol), in CH₂Cl₂ (2 mL), was added under Ar atmosphere $Pd(PPh_3)_4$ (22) mg, 0.1 equiv), p-toluenesulfinic acid sodium salt (40.6 mg, 1.2 equiv) and AcOH (26.1 µL, 2.4 equiv). The reaction mixture was followed by TLC (4:1 CHCl3-MeOH, $R_f \ 0.73 \rightarrow 0.69$). After 2 h stirring at rt, the reaction was completed. The mixture was concentrated under diminished pressure and purified by silica gel column chromatography $(48:1 \quad CHCl_3 \rightarrow CHCl_3 -$ MeOH) to yield (D)-20 (180 mg, 58%) as a colourless oil; TLC (4:1 CHCl₃–MeOH); R_f 0.69; ¹H NMR (250 MHz, 1:1 CDCl₃–CD₃OD): δ 0.82–0.95 (t, 6 H, Me), 1.17-1.4 (m, 40 H, CH₂), 1.45-1.65 (m, 4 H, COCH₂-CH₂-R), 2.2-2.3 (m, 4 H, COCH₂-CH₂-R), 3.15-3.25 (m, 1 H), 3.3–3.5 (m, 3 H), 3.73–4.3 (m, 11 H), 4.39– 4.98 (m, 16 H), 5.22–5.35 (m, 1 H, H-2'), 5.53 (d, 1 H, H-1b), 7.1-7.5 (m, 35 H, Ph).

3.12. Triethylammonium $[2-O-(\alpha-D-mannopyranosyl)-D-myo-inosit-1-yl]-[(2R)-2,3-bis(myristoyloxy)propyl]-phosphate [(D)-1a]$

A stirred mixture of (D)-20 (170 mg, 0.1 mmol, 7.5:7.5:1 CH₂Cl₂-MeOH-water 3 mL) and Pd/C (0.2 equiv) was degassed under diminished pressure and saturated with H₂ (H₂-filled balloon) three times. The suspension was stirred at rt overnight, filtered over celite, washed with 7.5:7.5:1 CH₂Cl₂-MeOH-water (2 mL) and treated with some Et₂N. The solvents were removed under diminished pressure by lyophilization to afford (D)-1a (82 mg, 73%) as a white powder; TLC (65:35:8 CHCl₃-MeOH-0.2% CaCl₂): R_f 0.26; ³¹P NMR (242.9 MHz, Me₂SO- d_6): δ -1.31 (s, 1 P); ¹H NMR (600 MHz, Me₂SO- d_6): δ 0.75–0.91 (t, 6 H, Me), 1.05–1.37 (m, 49 H, CH₂-chain, Me_{Et3N}), 1.39–1.57 (m, 4 H, COCH₂CH₂R), 2.17–2.35 (m, 4 H, COCH₂CH₂R), 2.93 (dd, 1 H, H-5a), 3.08 (m, 6 H, HN(CH₂-CH₃)₃), 3.18 (dd, 1 H, H-3a), 3.32 (dd, 1 H, H-4a), 3.47 (m, 2 H, H-6a, H-6b), 3.48 (dd, H, H-4b), 3.51 (dd, 1 H, H-3b), 3.54 (m, 1 H, H-6b), 3.64 (dd, 1 H, H-2b), 3.72 (dd, 1 H, H-1a), 3.77 (m, 1 H, H-1,3), 3.84 (ddd, 1 H, H-5b), 3.89 (m, 1 H, H-1,3), 4.00 (dd, 1 H, H-2a), 4.1 (m, 1 H, H-1,3), 4.31 (m, 1 H, H-1,3), 5.02 (d, 1 H, H-1b), 5.09 (m, 1 H, H-2'). ¹³C NMR (150.9 MHz, Me₂SO-d₆): δ 9.3 (3C, Me_{Et3N}), 14.8 (2C, Me), 22.9, 29.8, 32.5 (20 C, (CH₂)_n) 25.1 (2 C, COCH₂CH₂R), 34.0 (2 C, COCH₂CH₂R), 45.9 (3 C, CH₂CH_{3NEt3}), 61.6 (C-6b), 63.1 (C-1,3), 63.6 (C-1,3), 68.2 (C-6a), 71.0 (C-2'), 71.1 (C-2b), 71.2 (C-3a), 71.4 (C-3b), 73.0 (C-4b), 73.3 (C-5b), 76.1 (C-5a), 72.2 (C-1a), 77.9 (C-2a), 100.7 (C-1b); MALDIMS: Calcd (M – H)⁻: m/z 915.7, Found m/z 914.9.

3.13. 3-O-Benzyl-1,2:4,5-di-O-cyclohexylidene-6-O-camphanoyl-L-*myo*-inositol [(L)-22]

Compound (D)-22 was synthesized following a procedure of Vacca and coworkers.^{16a} Separation procedure: The mother liquors were evaporated and flash chromatography (8:1 petroleum ether–EtOAc) yielded 11 g of crude (L)-22 which was dissolved in CH₂Cl₂, treated with 100 g silica gel and evaporated to dryness. Column chromatography (\emptyset 7 cm, 1 = 40 cm) yielded pure (L)-22 (8.6 g) as a colourless solid. TLC (3:1 petroleum ether– EtOAc): R_f 0.44.

3.14. 3-*O*-Benzyl-1,2:4,5-di-*O*-cyclohexylidene-6-*O*-camphanoyl-D-*myo*-inositol [(D)-22]

TLC (3:1 petroleum ether-EtOAc): R_f 0.37.

3.15. 1,2:4,5-Di-*O*-cyclohexylidene-L-*myo*-inositol [(L)-24]

A mixture of (L)-**23** (950 mg, 2.21 mmol), anhyd THF (25 mL) and Pearlman's catalyst (10 mol%) was degassed under diminished pressure and saturated with H₂ three times. The suspension was stirred at rt for 2 h, then neutralized with Et₃N, filtered over celite, washed with THF and concentrated. Compound (L)-**24** (736 mg, 98%) was obtained as a white solid; TLC (1:1 petroleum ether–EtOAc): R_f 0.32; mp 190 °C; $[\alpha]_D$ +17.3° (*c* 0.75, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.25–1.86 (m, 20 H, H_{cyclohexylidene}), 3.39–2.7 (2 s, 2 H, OH), 3.32 (dd, 1 H, *J* 10.7, *J* 9.3 Hz, H-5), 3.72–3.93 (m, 2 H), 3.95–4.12 (m, 2 H), 4.49 (dd, 1 H, $J_{2,3} = J_{2,1}$ 4.8 Hz, H-2). Anal. Calcd for C₁₈H₂₈O₆·0.25 H₂O (344.9): C, 62.68; H, 8.33. Found: C, 62.76; H, 8.35.

3.16. 2,3:5,6-Di-*O*-cyclohexylidene-1,4-di-*O*-methyl-D*myo*-inositol (25)

To a soln of compound **24** (440 mg, 1.29 mmol), in dry DMF (5 mL), were added ICH₃ (200 μ L, 3.2 mmol) and NaH (116 mg, 4.8 mmol). After 3 h stirring at rt, the reaction mixture was diluted with satd aq NH₄Cl-soln and CH₂Cl₂. The organic layer was washed with water (×2), dried (MgSO₄) and concentrated. The residue was purified by column chromatography (2:1 petroleum ether–EtOAc) to afford **25** (438 mg, 92%) as a white solid. TLC (1:1 petroleum ether–EtOAc): R_f 0.76; mp 118 °C; [α]_D +8° (*c* 1, CHCl₃); ¹H NMR (600 MHz,

CDCl₃): δ 1.25–1.5, 1.51–1.82 (m, 20 H, H_{cyclohexylidene)}, 3.31 (dd, 1 H, *J*5,6 = *J*5,4 9.8 Hz, H-5), 3.47 (dd, 1 H, *J*4,5 10.6, *J*4,3 6.4 Hz, H-4), 3.58 (s, 3 H, OMe), 3.60 (s, 3 H, OMe), 3.62 (dd, 1 H, *J*_{1,2} 4.2, *J*_{1,6} 10.1 Hz, H-1), 3.96 (dd, 1 H, *J*_{6,1} = *J*_{6,5} 9.8 Hz, H-6), 4.06 (dd, 1 H, *J*_{3,4} = *J*_{3,2} 5.6 Hz, H-3), 4.52 (dd, 1 H, *J*_{2,3} = *J*_{2,1} 4.6 Hz, H-2). Anal. Calcd for C₂₀H₃₂O₆ (368.5): C, 65.19; H, 8.75. Found: C, 65.16; H, 8.75.

3.17. 1,4-Di-*O*-methyl-D-*myo*-inositol/(-)-Liriodentritol (26)

To a soln of 25 (160 mg, 0.41 mmol) in 1:1 MeOH-CH₂Cl₂ (2 mL), was added camphor-10-sulfonic acid (15 mg, 0.065 mmol) at rt and the soln was stirred for 24 h. The white precipitate, which was formed, was filtered, washed with CH₂Cl₂ and dried under high diminished pressure. Compound 26 was obtained in 78% yield (67 mg); TLC (5:1 CHCl₃-MeOH): R_f 0.07; mp 226 °C. $[\alpha]_{\rm D} = -25^{\circ}$ (c 1.5, water); $[\alpha]_{\rm D} = -25^{\circ}$ (c 2, water); ¹H NMR (600 MHz, Me₂SO-d₆): δ 2.78 (dd, 1 H, J_{1,2} 2.5, $J_{1,6}$ 9.6 Hz, H-1), 3.0 (ddd, 1 H, $J_{5,6} = J_{5,4}$ 9.1, J_{5-OH} 4.7 Hz, H-5), 3.08 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.4 Hz, H-4), 3.18 (ddd, 1 H, J_{3,4} 9.4, J_{3,2} 2.7, J_{3-OH} 6.4 Hz, H-3), 3.28 (s 3 H, Ome at O-1), 3.43 (s, 3 H, OMe at O-4), 3.43 (ddd, 1 H, J_{6.1} 9.6, J_{6.5} 9.1, J_{O-6H} 4.9 Hz, H-6), 3.88 (ddd, 1 H, J_{2.3} 2.72, J_{2.1} 2.5, J_{O-6H} 4.0 Hz, H-2), 4.54 (d, 1 H, J 6.7 Hz, OH-3), 4.56 (d, 1 H, J 4.0 Hz, OH-2), 4.58 (d, 1 H, J 4.9 Hz, OH-6), 4.65 (d, 1 H, J 4.7 Hz, OH-5); ¹³C NMR (150.9 MHz, Me₂SO- d_6): δ 56.59 (OMe_{C-1}), 56.68 (OMe_{C-4}), 68.53 (C-2), 71.08 (C-3), 71.93 (C-6), 74.67 (C-5), 81.39 (C-1), 83.10 (C-4). Anal. Calcd for C₈H₁₆O₆ (208.2): C, 46.14; H, 7.75. Found: C, 46.00; H, 7.71.

3.18. 6-O-Allyl-3-O-benzyl-1,2:4,5-di-O-cyclohexylidene-L-*myo*-inositol [(L)-27]

A soln of (L)-23 (23 g, 54 mmol), in dry DMF (580 mL), was treated with allyl bromide (5.9 mL, 75.43 mmol), then NaH (2.3 g, 0.90 mmol) was added. The reaction mixture was stirred at rt for 45 min, quenched with MeOH and concentrated under diminished pressure. The residue was diluted with EtOAc, washed with water and brine. The organic layer was dried with MgSO₄ and concentrated under diminished pressure. The resulting syrup was applied to a short column of silica gel which was eluted with $9:1 \rightarrow 3:1$ petroleum ether-EtOAc to give (L)-27 (25.1 g, quant.) as a white solid; TLC (3:1 petroleum ether-EtOAc): R_f 0.67; mp 90.2 °C; $[\alpha]_D$ + 41.7° (*c* 1, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 1.3– 1.85 (m, 20 H, H_{cyclohexylidene}), 3.27 (dd, 1 H, $J_{5.6} = J_{5.4}$ 10 Hz, H-5), 3.63 (dd, 1 H, J_{6,1} 6.5, J_{6,5} 10.6 Hz, H-6), 3.73 (dd, 1 H, J_{3,4} 10.3, J_{3,2} 4.1 Hz, H-3), 4.00 (dd, 1 H, $J_{1,2}$ 5.0, $J_{1,6}$ 6.8 Hz, H-1), 4.03 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.7 Hz, H-4), 4.25–4.31 (m, 2 H, CH₂CH=CH₂), 4.33 (dd, 1 H, $J_{2,3} = J_{2,1}$ 4.4 Hz, H-2), 4.80–4.91 (m, 2 H, C H_2 –Ph), 5.14–5.21, 5.3–5.35 (m, 2 H, CH₂CH=CH₂), 5.90–5.99 (m, 1 H, CH₂CH=CH₂), 7.24–7.44 (m, 5 H, ArH). Anal. Calcd for $C_{28}H_{38}O_6$ (470.6): C, 71.46; H, 8.14. Found: C, 71.43; H, 8.14.

3.19. 6-*O*-Allyl-3-*O*-benzyl-1,2-*O*-cyclohexylidene-L-*myo*-inositol [(L)-28]

Bis-ketal (L)-27 (12 g, 25.5 mmol) was dissolved in 1:1 dry CH₂Cl₂-MeOH (200 mL) and heated up to 40 °C. To this soln was added 0.3 mL of a mixture of 13:1 PPTSA–PTSA (0.86 m) in dry DCM. The reaction was followed by TLC (1:1 petroleum ether-EtOAc, R_f 0.2). Stirring was maintained for 1 h 10 before the reaction was quenched with Et₃N. The residue obtained upon evaporation was purified by flash chromatography (1:1 petroleum ether-EtOAc, dissolved in a minimum of EtOAc-MeOH) to yield (L)-28 (7.8 g, 78%) as a white solid; mp 138 °C; $[\alpha]_D - 18.1^\circ$ (*c* 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.3-1.8 (m, 10 H, H_{cyclohexylidene}), 2.73 (s, 2 H, OH), 3.33 (dd, 1 H, *J*_{5,6} = *J*_{5,4} 9.7 Hz, H-5), 3.46 (dd, 1 H, J_{4.5} 9.7, J_{4.3} 7.0 Hz, H-4), 3.52 (dd, 1 H, $J_{1,2}$ 4.1, $J_{1,6}$ 9.7 Hz, H-1), 3.94 (dd, 1 H, $J_{6,1} = J_{6,5}$ 9.4 Hz, H-6), 4.01 (dd, 1 H, J_{3,4} 7.0, J_{3,2} 5.0 Hz, H-3), 4.18-4.21, 4.39–4.42 (m, 2 H, CH₂CH=CH₂), 4.31 (dd, 1 H, $J_{2,3} = J_{2,1}$ 4.7 Hz, H-2), 4.73–4.79 (m, 2 H, CH₂–Ph), 5.17-5.20, 5.27-5.30 (m, 2 H, CH₂CH=CH₂), 5.91-5.98 (m, 1 H, CH₂CH=CH₂), 7.25-7.44 (m, 5 H, ArH). Anal. Calcd for C₂₂H₃₀O₆ (390.5): C, 67.67; H, 7.74. Found: C, 67.48; H, 7.61.

3.20. 6-*O*-Allyl-3,4,5-tri-*O*-benzyl-1,2-*O*-cyclohexylidene-L-*myo*-inositol [(L)-29]

To a soln of (L)-28 (14.43 g, 37 mmol), in dry DMF (430 mL), was added BnBr (11 mL, 92.6 mmol). NaH (2.7 g, 113 mmol) was slowly added to the soln and after stirring for 4 h at rt, the reaction mixture was treated with MeOH. After usual workup (EtOAc-water) the organic layer was dried (MgSO₄) and concentrated under diminished pressure. Flash chromatography (10:1 petroleum ether-EtOAc) gave (L)-29 (84%) as a colourless syrup; TLC (8:1 petroleum ether-EtOAc): R_f 0.35; $[\alpha]_D$ +43.1° (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 1.3-1.88 (m, 10 H, H_{cyclohexylidene}), 3.35 (dd, 1 H, J 8.6, J 9.8 Hz, H_{inositol}), 3.63-3.75 (m, 2 H, Hinositol), 3.91 (dd, 1 H, J 8.6 Hz, Hinositol), 4.0 (dd, 1 H, J 5.5, J 7.1 Hz, H_{inositol}), 4.2-4.31, 4.32-4.43 (m, 2 H, H-2, CH₂CH=CH₂), 4.70-4.89 (m, 6 H, CH₂-Ph), 5.12-5.36 (m, 2 H, CH₂CH=CH₂), 5.89-6.08 (m, 1 H, $CH_2CH = CH_2$, 7.20–7.47 (m, 15 H, ArH). Anal. Calcd for C₃₆H₄₂O₆ (570.7): C, 75.76; H, 7.42. Found: C, 75.78; H, 7.40.

3.21. 6-*O*-Allyl-3,4,5-tri-*O*-benzyl-L-*myo*-inositol [(L)-30]

For cleavage of the ketal, compound (L)-29 (20.8 g, 25 mmol) was dissolved in 10:1 MeOH-CH₂Cl₂ (330 mL). To this soln was added camphor-10-sulfonic acid (1.1 g, 4.73 mmol) and the reaction mixture was stirred for 24 h at rt. Next the mixture was neutralized with Et₃N diluted with toluene and concentrated under diminished pressure. The obtained residue was purified on silica gel (1:1 petroleum ether-EtOAc) to give 17 g (95% yield) of product (L)-30 as a white solid; TLC (2:1 petroleum ether-EtOAc): R_f 0.25; mp 123 °C; $[\alpha]_D$ $+31^{\circ}$ (c 1, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 2.5 (s, 2 H, OH), 3.41 (dd, 1 H, J_{5,6} = J_{5,4} 9.4 Hz, H-5), 3.44–3.47 (m, 2 H, H-1, H-3), 3.70 (dd, 1 H, $J_{6,1} = J_{6,5}$ 9.4 Hz, H-6), 3.92 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.4 Hz, H-4), 4.21 (dd, 1 H, $J_{2,3} = J_{2,1}$ 3.0 Hz, H-2), 4.22–4.28, 4.39-4.44 (m, 2 H, CH₂CH=CH₂), 4.68-4.70, 4.76-4.89 (m, 6 H, CH₂-Ph), 5.16-5.18; 5.25-5.29 (m, 2 H, CH₂CH=CH₂), 5.92-5.98 (m, 1 H, CH₂CH= CH₂), 7.25-7.34 (m, 15 H, ArH). Anal. Calcd for C₃₀H₃₄O₆ (490.6): C, 73.45; H, 6.99. Found: C, 73.50; H, 6.87.

3.22. 6-*O*-Allyl-3,4,5-tri-*O*-benzyl-1-*O*-(4-methoxybenzyl)-L-*myo*-inositol [(L)-31]

Compound (L)-30 (15.1 g, 30.77 mmol), in anhyd toluene (500 mL), was treated with dibutyltin oxide (8.43 g, 1.1 equiv) and the reaction mixture was refluxed in a Dean and Stark apparatus for 3 h. To the reaction mixture was added TBAI (17 g, 46 mmol) and 4methoxybenzyl chloride (9.1 mL, 67 mmol). Stirring was maintained at 110 °C for 1.5 h, then evaporated and diluted with EtOAc, washed with water, brine, dried $(MgSO_4)$ and concentrated. Silica gel column chromatography of the residue $(6:1 \rightarrow 5:1 \text{ petroleum ether})$ EtOAc) yielded (L)-31 (14.85 g, 79%) as a slightly brown solid; TLC (2:1 petroleum ether-EtOAc): R_f 0.43; mp $106 \,^{\circ}\text{C}; \, [\alpha]_{\text{D}} + 9.1^{\circ} \, (c \ 1, \text{CHCl}_3); \,^{1}\text{H NMR} \, (250 \text{ MHz},$ CDCl₃): δ 2.41 (s, 1 H, OH), 3.29 (dd, 1 H, J 9.6, J 2.7 Hz, H_{inositol}), 3.36 (dd, 1 H, J 9.7, J 2.8 Hz, H_{inositol}), 3.38 (dd, 1 H, J 9.5 Hz, H_{inositol}), 3.81 (s, 3 H, OMe), 3.81 (dd, 1 H, J 9.5 Hz, H_{inositol}), 3.94 (dd, 1 H, J 9.6 Hz, H_{inositol}), 4.16 (dd, 1 H, J 2.7 Hz, H_{inositol}), 4.28, 4.95 (m, 2 H, CH₂CH=CH₂), 4.59-4.74, 4.78-4.93 (m, 8 H, CH₂-Ph), 5.12–5.34 (m, 2 H, CH₂CH= CH₂), 5.90–6.08 (m, 1 H, CH₂CH=CH₂), 6.83–6.92 (m, 2 H, H_{PMB}), 7.22-7.40 (m, 17 H, ArH). Anal. Calcd for C₃₈H₄₂O₇ (610.8): C, 73.64; H, 6.99. Found: C, 73.70; H, 6.74.

3.23. 6-*O*-Allyl-3,4,5-tri-*O*-benzyl-1-*O*-(4methoxybenzyl)-2-*O*-(2,4,6-tri-*O*-benzyl- α -Dmannopyranosyl)-(1 \rightarrow 2)-L-*myo*-inositol [(L)-32]

A mixture of imidate $13^{8a,9,11}$ (20 g, 31.4 mmol), and acceptor (L)-31 (11.6 g, 19 mmol) was dissolved in anhyd ether (220 mL, ultrasound). Trimethylsilyl triflate (0.52 mL) was added and the mixture was stirred for 10 s, then guenched with triethylamine, diluted with toluene and concentrated. The residue was purified by flash chromatography (5:1 \rightarrow 4:1 petroleum ether-EtOAc) to give the crude product. TLC: (2:1 petroleum ether-EtOAc, 1% Et₃N), R_f 0.72. Without further purification, the crude product was dissolved in 200 mL 33% methylamine soln in anhyd EtOH and stirred for 6 h at rt. The reaction mixture was concentrated, diluted with toluene and evaporated. Silica gel column chromatography of the residue $(3:1 \rightarrow 2:1 \text{ petroleum ether})$ EtOAc) afforded (L)-32 (14 g, 71% over 2 steps). TLC (3:1 petroleum ether-EtOAc): $R_f 0.40$. $[\alpha]_D + 41^\circ$ (c 1, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ 2.38 (s, 1 H, OH), 3.20 (dd, 1 H, $J_{1,2}$ 2.0, $J_{1,6}$ 9.9 Hz, H-1a), 3.28– 3.40 (m, 3 H, H-5a, H-3a, H-6b), 3.50 (dd, 1 H, J_{gem} 10.7, J_{vic} 3.2 Hz, H-6b), 3.69 (dd, 1 H, $J_{6,1} = J_{6,5}$ 9.5 Hz, H-6a), 3.76 (s, 3 H, OMe), 3.78-3.86 (m, 2 H, H-4a, H-3b), 3.92 (dd, 1 H, $J_{4.5} = J_{4.3}$ 9.7 Hz, H-4b), 4.06 (m, 1 H, H-2b), 4.12–4.17 (m, 1 H, H-5b), 4.25–4.31 (m, 1 H, $CH_2 = CH - CH_2$, 4.32 (m, 1 H, H-2a), 4.34–4.40, 4.5– 4.56, 4.57–4.73, 4.74–4.88 (m, 15 H, CH_2 –Ph, CH_2 = CH-CH₂), 5.13 (dd, 1 H, J_{gem} 10.3 Hz, $CH_2 = CH$ -CH₂), 5.25 (dd, 1 H, $CH_2 = CH - CH_2$), 5.38 (d, 1 H, J < 1 Hz, H-1b), 5.89–6.0 (m, 1 H, CH₂ = CH–CH₂), 6.72-6.81 (m, 2 H, H_{PMB}), 7.06-7.38 (m, 32 H, ArH); ¹³C NMR (150.9 MHz, CDCl₃): δ 55.20 (OMe), 68.55 (C-6b), 68.65 (C-2b), 70.90 (C-5b), 72.10-76.19 (9C, CH₂-CH=CH₂, CH₂Ph, C-4b), 78.44 (C-1a), 79.61 (C-3b), 80.75 (C-3a), 81.04 (C-6a), 81.42 (C-4a), 83.44 (C-5a), 99.97 (C-1b), 113.65 (C_{PMB}), 116.57 (CH₂-CH= CH₂), 127.46–138.70 (40 C, Ph, CH₂–CH=CH₂), 159.00 (C_{OMe}). Anal. Calcd for C₆₅H₇₀O₁₂ (1043.3): C, 74.80; H, 6.76. Found: C, 74.92; H, 6.51.

3.24. 3,4,5-Tri-*O*-benzyl-1-*O*-(4-methoxybenzyl)-2-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-L*myo*-inositol [(L)-33]

Compound (L)-**32** (3 g, 2.88 mmol) was dissolved in EtOH (45 mL) by heating, then DBU (43 μ L, 0.29 mmol) and (Ph₃P)₃RhCl (750 mg, 0.81 mmol) were added. The mixture was stirred for 1.5 h under reflux and then concentrated under diminished pressure (propenyl intermediate: R_f 0.54, 2:1 petroleum ether–EtOAc). The residue was dissolved in 1:9 1 m HCl–acetone (50 mL), and the soln was heated under reflux for 15 min. Acidity was neutralized by adding triethylamine, then the mixture was diluted with EtOAc,

washed with water, dried (MgSO₄) and concentrated. Flash chromatography $(4:1 \rightarrow 5:2 \text{ petroleum ether})$ EtOAc) of the residue gave (L)-33 (2.5 g, 87%); TLC (2:1 petroleum ether-EtOAc): R_f 0.38. $[\alpha]_D$ +8.5° (c 0.25, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ 2.39 (s, 2 H, OH), 3.06 (dd, 1 H, J_{1,2} 2.4, J_{1,6} 10.0 Hz, H-1a), 3.32 (dd, 1 H, $J_{5,6} = J_{5,4}$ 9.1 Hz, H-5a), 3.34 (dd, 1 H, $J_{3,4}$ 10.0, $J_{3,2}$ 2.4 Hz, H-3a), 3.42 (dd, 1 H, $J_{gem} = 10.4$, $J_{\text{vic}} = 2.1 \text{ Hz}, \text{H-6b}$, 3.56 (dd, 1 H, $J_{\text{gem}} = 10.6, J_{\text{vic}} = 3.8 \text{ Hz}$, H-6b), 3.77 (s, 3 H, OMe), 3.8 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.4 Hz, H-4a), 3.84 (dd, 1 H, J_{3,4} 9.4, J_{3,2} 3.2 Hz, H-3b), 3.9 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.7 Hz, H-4b), 3.94 (dd, 1 H, $J_{6,1} =$ *J*_{6,5} 9.7 Hz, H-6a), 4.05 (dd, 1 H, *J*_{2,3} < 1 Hz, H-2b), 4.15 (ddd, 1 H, $J_{\rm vic}$ 1.8, 3.5, $J_{5,4}$ 10.0 Hz, H-5b), 4.35 (dd, 1 H, *J*_{2,3} = *J*_{2,1} 2.4 Hz, H-2a), 4.36–4.47, 4.56–4.61, 4.63– 4.73, 4.77–4.88 (m, 14 H, CH₂–Ph), 5.37 (d, 1 H, J < 1 Hz, H-1b), 6.78-6.80 (m, 2 H, H_{PMB}), 7.08-7.39 (m, 32 H, ArH); ¹³C NMR (150.9 MHz, CDCl₃): δ 55.24 (OMe), 68.65 (C-2b), 68.79 (C-6b), 71.02 (C-5b), 71.35-75.79 (10 C, CH₂Ph, C-2a, C-6a, C-4b), 77.63 (C-1a), 79.68 (C-3b), 80.81 (C-3a), 81.28 (C-4a), 83.31 (C-5a), 100.0 (C-1b), 113.86 (C_{PMB}), 127.52–138.62 (39 C, Ph), 159.18 (C_{OMe}). Anal. Calcd for C₆₂H₆₆O₁₂·0.25 H₂O (1007.7): C, 73.90; H, 6.65. Found: C, 73.81; H, 6.67.

3.25. 3,4,5,6-Tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-2-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-L-*myo*-inositol [(L)-34]

To a soln of (L)-33 (2.5 g, 2.49 mmol), in dry DMF (50 mL), was added BnBr (0.75 mL, 6.31 mmol) and NaOH (150 mg, 6.25 mmol). The reaction mixture was stirred at rt for 3 h, quenched with MeOH and concentrated. The residue was partitioned between EtOAc and water. The organic layer was washed with brine, dried (MgSO₄) and evaporated under diminished pressure. Silica gel column chromatography (4:1 petroleum ether-EtOAc) afforded (L)-34 (2.5 g, 86%) as a colourless syrup; TLC (4:1 petroleum ether-EtOAc): R_f 0.27; $[\alpha]_{\rm D}$ +20° (c 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 3.23-3.49 (m, 4 H), 3.59 (dd, 1 H, J_{gem} 10.6, J_{vic} 3.5 Hz, H-6b), 3.66-3.88 (m, 4 H), 3.76 (s, 3 H, OMe), 4.0-4.2 (m, 2 H), 4.32–4.96 (m, 19 H, CH₂–Ph, H-2a), 5.42 (d, 1 H, J 1.4 Hz, H-1b), 6.70-6.80 (m, 2 H, H_{PMB}), 7.09-7.42 (m, 42 H, ArH). Anal. Calcd for C₇₆H₇₈O₁₂ (1183.5): C, 77.10; H, 6.64. Found: C, 77.06; H, 6.73.

3.26. 3,4,5,6-Tetra-O-benzyl-2-O-(2,3,4,6-tetra-O-benzyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-L-*myo*-inositol [(L)-35]

A soln of (L)-**34** (2.6 g, 2.20 mmol), in 60:3:4 MeCNtoluene-water (3 mL), was cooled to 0 $^{\circ}$ C and treated with Ce(NH₄)₂(NO₃)₆ (6 g, 10.94 mmol). After 0.5 h at 0 °C, the reaction was allowed to reach rt. The mixture was stirred for 1.5 h, diluted with EtOAc, washed with satd aq NaHCO₃-soln, dried (MgSO₄) and concentrated. Flash chromatography (4:1→3:1 petroleum ether–EtOAc) of the residue gave (L)-**35** (2.2 g, 94%) as a colourless syrup; TLC (5:2 petroleum ether–EtOAc): R_f 0.26. [α]_D +10.8° (*c* 1, CHCl₃); ¹H NMR (250 MHz, CDCl₃): δ 2.45 (s, 1 H, OH), 3.37–3.49 (m, 3 H), 3.53–3.81 (m, 6 H), 3.90 (dd, 1 H, *J* 8.7 Hz), 4.01–4.11 (m, 1 H), 4.21 (dd, 1 H, $J_{2,1} = J_{2,3}$ 2.3 Hz, H-2a), 4.42–4.93 (m, 16 H, CH₂–Ph), 5.22 (d, 1 H, *J* 1.20 Hz, H-1b), 7.13–7.41 (m, 40 H, ArH). MALDIMS⁺ (matrix DHB, THF):, m/z 1086.3 [M+Na]⁺. Found: m/z 1086.8. Anal. Calcd for C₆₈H₇₀O₁₁·H₂O (1081.3): C, 75.53; H, 6.71. Found: C, 75.48; H, 6.50.

3.27. Dimethylammonium [3,4,5,6-tetra-*O*-benzyl-2-*O*-(2,3,4,6-tetra-*O*-benzyl- α -D-mannopyranosyl)-L-*myo*inosit-1-yl]-[(2*R*)-2,3-bis(myristoyloxy)propyl]-phosphate [(L)-36]

Tetrazole (172 mg, 2.46 mmol) was dried for 1 h under high diminished pressure. Compound (L)-35 (1 g, 0.94 mmol) was dissolved in anhyd CH₂Cl₂ (50 mL), added to the tetrazole and stirred at rt under Ar. To this reaction mixture was added dropwise benzyl N,Ndiisopropylphosphoramidite (18)¹⁴ (1.35 g, 1.89 mmol) and the soln was stirred for 2 h, then treated with tertbutylhydroperoxide in isooctane (4.7 M, 3.76 mL). After 15 min, the reaction mixture was concentrated to 10 mL, treated with dimethylamine soln (20 mL, 33% in anhyd EtOH) and stirred for 1 h. Then the reaction mixture was again concentrated to 10 mL, diluted with CH₂Cl₂, saturated NaHCO₃-soln was added and the two layers were separated. The organic layer was washed with brine, dried (MgSO₄) and concentrated. The residue was purified by flash chromatography $(9:1 \rightarrow 1:10 \text{ toluene})$ acetone) to afford (L)-36 (1.17 g, 76%) as a colourless syrup; ³¹P NMR (242.9 MHz, 1:1 CD₃OD–CDCl₃): δ -2.927 (s, 1P); ¹H NMR (600 MHz, 1:1 CD₃OD-CDCl₃): δ 0.89 (t, 6 H, Me), 1.1–1.40 (s, 40 H, $(CH_2)_n$, 1.45–1.60 (m, 4 H, COCH₂CH₂R), 2.15–2.30 (m, 4 H, COCH₂CH₂R), 3.40-3.54 (m, 2 H, H-3a, H-5a), 3.67 (dd, 1 H, $J_{4,5} = J_{4,3}$ 9.4 Hz, H-4a), 3.71–3.78 (m, 2 H, H-2b, H-6a), 3.79–3.84 (m, 1 H, H-3b), 3.87– 3.99 (m, 4 H, H-1, H-3, H-6b), 4.0-4.07, (m, 2 H, H-1a, H-1), 4.09–4.18 (m, 2 H, H-4b, H-5b), 4.19–4.25 (m, 1 H, H-3), 4.38–4.93 (m, 17 H, CH₂–Ph, H-2a), 5.14–5.20 (m, 1 H, H-2), 5.31 (d, 1 H, J < 1 Hz, H-1b), 7.10-7.42 (m, 40 H, ArH). MALDIMS⁻ (matrix ATT, water): $[M - H]^{-}$, m/z 1636.2. Found: m/z 1635.8. FABMS⁺ (matrix NBOH+NaI, CHCl₃): $[(M^-Na^+)+Na]^+$, m/z1684. Found: m/z 1684.

3.28. Triethylammonium-[2-O-(α -D-mannopyranosyl)-lmyo-inosit-1-yl]-[(2R)-2,3-bis(myristoyloxy)propyl]phosphate [(L)-1b]

A vigorously stirred mixture of (L)-36 (394 mg, 0.24 mmol), 7.5:7.5:1 CH₂Cl₂-MeOH-water (5 mL) and Pearlman's catalyst (0.2 equiv) was degassed under diminished pressure and saturated with H₂ (H₂-filled balloon) three times. The suspension was stirred at rt overnight, filtered over celite and washed with 7.5:7.5:1 CH₂Cl₂-MeOH-water (2 mL). The filtrate was diluted with water, treated with Et₃N and further removal of the solvents by lyophilization afforded (L)-1b (162 mg, 74%) as a white solid; ³¹P NMR (242.9 MHz, Me₂SO- d_6): δ 0.963 (s, 1P); ¹H NMR (600 MHz, Me₂SO- d_6): δ 0.76– 0.91 (t, 6 H, Me), 1.0-1.40 (m, 49 H, (CH₂)_n, Me_{Et,N}), 1.41–1.57 (m, 4 H, COCH₂CH₂R), 2.15–2.32 (m, 4 H, COCH₂CH₂R), 2.85-2.95 (dd, 1 H, H-5a), 2.96-3.15 (m, 6 H, HN(CH₂-CH₃)₃), 3.22 (dd, 1 H, H-4b), 3.23 (m, 1 H, H-6b), 3.24 (m, 1 H, H-3a), 3.34, (dd, 1 H, H-4a), 3.45 (dd, 1 H, H-3b), 3.46 (dd, 1 H, H-6a), 3.61 (dd, 1 H, H-1), 3.64 (dd, 1 H, H-2b), 3.72 (m, 1 H, H-6b), 3.76 (m, 1 H, H-1), 3.9 (m, 1 H, H-1), 4.00 (dd, 1 H, H-2a) 4.06 (m, 1 H, H-3), 4.08 (ddd, 1 H, H-5b), 4.28 (m, 1 H, H-3), 4.95 (d, 1 H, H-1b), 5.09 (m, 1 H, H-2); ¹³C NMR (150.9 MHz, Me₂SO-d₆): δ 8.5 (3 C, Me_{Et₂N}), 13.87 (2 C, Me), 22.04/28.42–29.03/31.26 (CH₂)_n) 24.36/ 24.47 (2 C, COCH₂CH₂R), 33.34/33.57 (2 C, COCH₂CH₂R), 45.1 (3 C, CH₂CH_{3Et,N}), 62.04 (C-3'), 62.55 (C-1'), 62.6 (C-6b), 68.53 (C-4b), 70.05 (C-2b), 70.24 (C-2'), 70.51 (C-6a), 71.65 (C-3a), 71.95 (C-3b), 72.16 (C-4a), 72.28 (C-5b), 73.85 (C-1a), 75.21 (C-5a), 76.97 (C-2a), 100.2 (C-1b), 172.25/172.51 (2C, COR). FABMS⁻ (matrix 1:1:1 Me₂SO-glycerol-NBOH): $[M - H]^{-}$, m/z 915.7. Found: m/z 915, $[M - M]^{-}$ C₁₄H₂₇O]⁻, *m*/*z* 705.3. Found: 705.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, the Rademacher Group Ltd, and the Fonds der Chemischen Industrie. The authors thank Professor Thomas W. Rademacher (University College London Medical School) for fruitful discussions.

References

- (a) Draper, P. In *The Biology of Mycobacteria*; Ratledge, C.; Standford, J., Eds. *The Anatomy of Mycobacteria*; Vol. 2; Academic Press: London, 1982; pp 9–52;
 - (b) Brennan, P. J.; Nikaido, H. Annu. Rev. Biochem. 1995, 64, 887-888;
 - (c) Chatterjee, D.; Khoo, K.-H. Cell. Mol. Life Sci. 2001, 58, 2018–2042;

(d) Chatterjee, D.; Khoo, K.-H. *Glycobiology* **1998**, 8 (2), 113–120.

- (a) Brennan, P. J.; Ballou, C. E. J. Biol. Chem. 1967, 242, 3046-3056;
 (b) Besra, G. S.; Morehouse, C. B.; Rittner, C. M.; Waechter, C. J.; Brennan, P. J. Am. Soc. Biochem. Mol. Biol. 1997, 272, 18460-18466.
- Theler, J. -M.; Brennan, P. J.; Nasir-ud-Din; Ilangumaran, S.; Arni, S.; Poincelet, M.; Hoessli, D. C. *J. Immunol.* 1995, 155, 1334–1342.
- 4. Stadelmaier, A. *Diplomarbeit*, Universität Konstanz, **1999**.
- 5. Stadelmaier, A. Dissertation, Universität Konstanz, 2003.
- 6. (a) Stepanov, A. E.; Shvets, V. I.; Evstigneeva, R. P. Zh. Obshch. Kim. 1977, 47, 1653–1656;
 (b) Zamyatina, A. Y.; Shvets, V. I. Chem. Phys. Lipids 1995, 76, 225–240;
 (c) Elie, C. J. J.; Dreef, C. E.; Verduyn, R.; Van der Marel, G. A.; Van Boom, J. H. Tetrahedron 1989, 45, 3477–3486.
 7. (a) Elie, C. J. J.; Verduyn, R.; Dreef, C. E.; Van der Marel,
- (a) Elle, C. J. J.; Verduyn, R.; Dreet, C. E.; Van der Marel, G. A.; Van Boom, J. H. J. Carbohydr. Chem. 1992, 11, 715–739;

(b) Watanabe, Y.; Yamamoto, T.; Ozaki, S. J. Org. Chem. **1996**, *61*, 14–15;

- (c) Watanabe, Y.; Yamamoto, T.; Okazaki, T. *Tetrahedron* **1997**, *53*, 903–918.
- 8. (a) Massy, D. J. R.; Wyss, P. Helv. Chim. Acta 1990, 73, 1037-1057;
 (b) Mayer, T. G.; Schmidt, R. R. Liebigs Ann. Recueil

(b) Mayer, 1. G.; Schmidt, K. K. *Liebigs Ann. Recueit* **1997**, 859–863;

(c) Pekari, K.; Schmidt, R. R. In *Lipases and Lipids: Structure, Function and Biotechnological Applications*; Kokotos, G.; Constantinou-Kokotou, V., Eds. Recent results in glycosyl phosphatidyl inositol (GPI) anchor synthesis; Crete University Press: Heraklion, 2000; pp 233–252.

- Pekari, K.; Tailler, D.; Weingart, R.; Schmidt, R. R. J. Org. Chem. 2001, 66, 7432–7442.
- Maki, T.; Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 1998, 39, 5601–5604.
- (a) Mayer, T. G.; Kratzer, B.; Schmidt, R. R. Angew. Chem. 1994, 106, 2289–2293; Angew. Chem. Int. Ed. Engl. 1994, 33, 2177–2181.;
 (b) Kartha, K. P. R.; Jennings, H. J. J. Carbohydr. Chem. 1990, 777–781;
 (c) Borén, H. B.; Ekborg, G.; Ekland, K. Acta Chem. Scand. 1973, 27, 2639–2644;
 (d) Kaur, K. J.; Hindsgaul, O. Carbohydr. Res. 1992, 226, 219–231;
 (e) Ponpipom, M. M. Carbohydr. Res. 1977, 59, 311– 317;
 (f) Yamazaki, F.; Kitajima, T.; Nukada, T.; Ito, Y.; Ogawa, T. Carbohydr. Res. 1990, 201, 31–50.
- 12. Schmidt, R. R.; Toepfer, A. Tetrahedron Lett. 1991, 32, 3353-3356.
- (a) Bock, K.; Pederson, C. J. Chem. Soc. Perkin Trans. II 1974, 293–297;
 (b) Yonezawa, T.; Morishma, I. J. Mol. Spectrosc. 1968,

27, 210-217;

(c) Albrand, J. P.; Cogne, A.; Gagnaire, D.; Robert, J. B. *Tetrahedron* **1971**, *27*, 2453–2461.

14. (a) Mayer, T. G.; Weingart, R.; Münstermann, F.; Kawada, T.; Teymuras, T.; Schmidt, R. R. *Eur. J. Org. Chem.* 1999, 10, 2563–2572;
(b) Beaucage, S. L.; Caruthers, M. H. *Tetrahedron Lett.* 1981, 22, 1859–1862;
(c) Beaucage, S. L.; Iyer, R. P. *Tetrahedron* 1993, 49,

10441–10488; (d) Bannwarth, W.; Trzeciak, A. *HeIv. Chim. Acta* **1987**, 70, 175–186.

- 15. Honda, M.; Morita, H.; Nagakura, I. J. Org. Chem. 1997, 62, 8932–8936.
- (a) Vacca, J. P.; deSolms, S. J.; Huff, J. R.; Billington, D. C.; Baker, R.; Kulagowski, J. J.; Mawer, I. M. *Tetrahedron* **1989**, *45*, 5679–5702;

(b) Billington, D. C.; Baker, R.; Kulagowski, J. J.; Mawer, I. M. J. Chem. Soc., Chem. Commun. 1987, 314-316.

(a) Aguiló, A.; Martín-Lomas, M.; Penadés, S. Tetrahedron Lett. 1992, 33, 401-404;
(b) Anderson, L. The Carbohydrates, Chemistry and Biochemistry, 2nd ed.; Pigman, W., Horton, D., Eds.; Academic Press, New York, 1972, Vol. 1A, pp. 519-579.;
(c) Plouvier, V. Bull. Soc. Chim. Biol. 1963, 45, 1079-1118;

(d) Angyal, S. J.; Bender, V. J. Chem. Soc. 1961, 4718–4720;

(e) Post, G. G.; Anderson, L. J. Am. Chem. Soc. 1962, 84, 471–478;

(f) Post, G. G.; Anderson, L. J. Am. Chem. Soc. 1962, 84, 478–480.