BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 45, 1567—1568(1972)

The Synthesis of the 3-Substituted 1,4,2-Dithiazine 1,1-Dioxides¹⁾

Kiyoshi Hasegawa and Syuzi Hirooka

Department of Industrial Chemistry, Faculty of Engineering, Toyama University, Takaoka-shi (Received November 1, 1971)

Our previous report²⁾ has dealt with the synthesis, and structural elucidation of a new cleavage, heterocycle, 3-monoalkylamino-5-phenyl-1,1-dioxo-5, 6-dihydro-1,4, 2-dithiazine (5). This paper will describe the general procedures for the synthesis and cleavage of 3-sub-stituted 1,4,2-dithiazine-1,1-dioxides, which are outlined below:

R1C6H4CH=CHSO2NH2

$$\begin{array}{c|c} \mathbf{R}^{1}C_{6}H_{4}CH=CHSO_{2}NHC_{2}\\ \hline \\ \mathbf{I}\\ (A) \downarrow \\ SR^{2}\\ \hline \\ SR^{2}\\ \hline \\ R^{1}C_{6}H_{4} & SO_{2}\\ \hline \\ \mathbf{I}\\ CI\\ S & N\\ R^{1}C_{6}H_{4} & SO_{2}\\ \hline \\ \mathbf{I}\\ R^{2}OH \downarrow (F)\\ \hline OR^{2}\\ S & N\\ R^{1}C_{6}H_{4} & SO_{2}\\ \hline \\ \mathbf{I}\\ CI\\ NR^{2}R^{3}\\ \hline \\ R^{1}C_{6}H_{4} & SO_{2}\\ \hline \\ \mathbf{I}\\ R^{2}OH \downarrow (F)\\ \hline OR^{2}\\ \hline \\ R^{1}C_{6}H_{4}CH=CHSO_{2}NHCSNR^{2}R^{3}\\ \hline \\ \mathbf{I}\\ \mathbf{I}\\$$

Results

The reaction of R¹C₆H₄CH=CHSO₂NH₂ with NaOH, CS2, and R2X yielded 3-alkylthio-5-phenyl-1,1-dioxo-5,6-dihydro-1,4,2-dithiazines (2). The mechanism is as-

sumed to involve the intermediate of
$$R^1C_6H_4$$
— N , O_2

which is an intramolecular Michael cycloadduct of $R^1C_6H_4CH=CHSO_2N=C(SNa)_2$ (Step (A)). The structure of 2 was confirmed by studying its IR, NMR, and mass spectra and by elemental analyses. The

C-S bond in 2 could be split to yield N-(2-phenylethene-1-sulfonyl) dithiocarbamates, 3, in strongly basic media (pH ≥ 13.40). They tend to undergo ringclosure to 2 when preserved for long periods. Cycloadducts, 2, were again obtained from 3 by intramolecular Michael cycloaddition in weakly basic media (pH \le 12.55, Step (B)) and also by dissolving it in alcohol, even at room temperature. A mixture of 2 and 3 was obtained when the pH of the solution was between 12.55 and 13.40. The treatment of 2 with chlorine afforded 3-chloro derivatives, 4 (Step (C)). Ammonia, mono-, and dialkylamines attacked 4 at the chlorine atom to form 5 (Step (D)). They were also formed by the Michael cycloaddition of N-(2-phenylethene-1-sulfonyl)-N', N'-dialkylthioureas, $\mathbf{6}$, which are reverse Michael reaction products (Step (E)). N'hydrogen derivatives of 6 are unstable and undergo rapid ring-closure, giving a rather impure product. Thioureas, 6b and 6c, were cycloadded upon melting, and 6a, at 104—106°C before melting. Alcohols reacted with 4 to form 3-alkoxy derivatives, 7 (Step (F)). They were also prepared by the Michael cycloaddition of O-alkyl N-(2-phenylethene-1-sulfonyl)thiocarbamates, **8**, which are also reverse Michael reaction products of 7 (Step (G)). Solid 8 was stable at room temperature, but was easily cycloadded to give 7 when dissolved in warm alcohol. The results are summarized in Tables 1 and 2.

Experimental

3-Methylthio-5-phenyl-1, 1-dioxo-5, 6-dihydro-1, 4, 2-dithiazine Step (A): To a stirred solution of 2-phenylethene-1-sulfonamide (18.3 g, 0.100 mol) in DMF (180 ml), we added NaOH (4.0 g, 0.100 mol) in water (8 ml) at room temperature, and then CS₂ (5.7 g, 0.075 mol) was added at 20-30°C. After 10 min, NaOH (4.0 g, 0.100 mol) in water (8 ml) and CS_2 (5.7 g, 0.075 mol) were added, and the mixture was stirred for 2 hr; then (CH₃O)₂SO₂ (25.2 g, 0.200 mol) was added, portion by portion, at 20-35°C. The yellow reaction mixture was stirred for 2 hr at room temperature, poured into ice water (1000 ml), and left to stand overnight. The yellow solid which formed was filtered to give 26.0 g (95%) of 2a. Recrystallization from methanol gave colorless crystals. IR (KBr): 1535 ($\nu_{N=C}$), 1320 and 1135 cm $^{-1}$ (ν_{SO_2}). NMR (CDCl $_3$): δ 2.58 (s, 3H, CH $_3$), 3.43 (q, 1H, H_A), 3.80 (q, 1H, H_C), 5.16 (q, 1H, H_B), J_{AC} 14.0 Hz, $J_{AB} = 12.0$ Hz, $J_{BC} = 3.6$ Hz, 7.41 ± 0.03 (5H, phenyl). MS: m/e 121 (C₆H₅CS⁺), 273 (M⁺).

Step (B): When 3a (1.09 g, 0.004 mol) was dissolved in a warm 0.1 m K₂CO₃ solution (40 ml, 0.004 mol), the 2a began to separate out in a few minutes. After the mixture had then been kept overnight, it was filtered to give 0.98 g (90%) of **2a**.

Methyl N-(2-Phenylethene-1-sulfonyl) dithiocarbamate (3a). To 2a (6.90 g, 0.025 mol) in acetone (100 ml), we added a 1.0N NaOH solution (50 ml, 0.050 mol), and then the mixture was stirred for 1 hr at room temperature. The acetone was

¹⁾ Presented at the 25th Annual Meeting of the Chemical Society of Japan, Tokyo, October, 1971.

²⁾ K. Hasegawa and S. Hirooka, This Bulletin, 45, 525 (1972).

Compd	R¹	Х	Yield (%) Method		M (00)	Calcd (%)				Found (%)			
			A, C D, F	B, E	Mp (°C)	$\widehat{\mathbf{C}}$	Н	N	S	$\widehat{\mathbf{C}}$	Н	N	S
2a	Н	SCH ₃	95	90	157—158	43.96	4.06	5.13		44.07	4.10	5.31	
2ь	H	SC_2H_5	93	91	125—126	46.00	4.56	4.88	33.43	46.00	4.32	4.87	33.11
2c	p-Cl	SCH_3	95	92	164—165	39.00	3.27	4.55	31.24	38.98	3.01	4.42	31.52
2d	p -CH $_3$	SCH_3	98	93	194196	46.00	4.56	4.88	33.43	45.94	4.33	4.64	33.37
4a	Н	Cl	94		158160	41.30	3.08	5.35		41.16	3.10	5.41	
4b	p-Cl	Cl	87		112-113	36.49	2.38	4.76	21.65	36.36	2.13	4.54	21.89
4c	p-CH ₃	Cl	60		142-143	43.55	3.66	5.08		43.25	3.41	4.83	
5a	Н	NH_2	99		207208	44.63	4.16	11.57	26.43	44.41	4.28	11.51	26.35
5 b	H	$N(CH_3)_2$	98	89	185186	48.89	5.22	10.37	23.68	48.61	5.17	10.33	23.54
5 c	p-Cl	$N(CH_3)_2$	99	95	174—176	43.34	4.30	9.19	21.04	43.14	4.00	9.07	21.23
5 d	p-CH ₃	$N(CH_3)_2$	96	80	192-193	50.70	5.67	9.86	22.51	50.51	5.64	9.73	22.47
7a	Н	OCH ₃	96	90	176—178	46.70	4.31	5.45	24.88	46.86	4.49	5.67	24.93
7b	H	OC_2H_5	94	90	155—157	48.71	4.83	5.16	23.58	48.55	4.87	5.27	24.38
7c	p-Cl	OCH_3	92	83	174—175	41.16	3.45	4.80	21.98	41.40	3.64	4.87	22.04
7d	p -CH $_3$	OCH_3	57	57	188—190	48.71	4.83	5.16	23.58	48.45	4.63	4.91	23.50

Table 2. R¹C₆H₄CH_B=CH_ASO₂NHCS-Y

Compd	R¹	Y	Yield (%)	Mp (°C)	2	cd (%)		Found (%)				
					$\widehat{\mathbf{c}}$	Н	N	S	$\hat{\mathbf{c}}$	Н	N	s
3a	Н	SCH ₃	98	106—108	43.96	4.06	5.13		44.09	4.01	4.84	
3ъ	p-Cl	SCH_3	94	114—117	39.00	3.27	4.55	31.24	39.11	3.30	4.38	30.63
6a	Н	$N(CH_3)_2$	85	176178	48.89	5.22	10.37	23.68	48.84	5.09	10.04	23.97
6 b	p -Cl	$N(CH_3)_2$	95	119—120	43.34	4.30	9.19	21.04	43.31	4.36	9.23	20.77
6 c	$p\text{-CH}_3$	$N(CH_3)_2$	99	121-123	50.70	5.67	9.86	22.51	50.85	5.72	9.98	22.16
8a	H	OCH_3	85	91 92	46.70	4.31	5.45	24.88	46.51	4.27	5.21	24.44
8b	p-Cl	OCH_3	98	128—129	41.16	3.45	4.80	21.98	41.39	3.55	4.96	21.81
8c	$p\text{-CH}_3$	OCH_3	100	117—119	48.71	4.83	5.16	23.59	49.01	4.56	5.04	23.52

removed in vacuo, and the residual solution was acidified with concd. HCl to give 6.80 g (98%) of **3a**. Recrystallization from benzene–petroleum ether gave yellow crystals. IR (KBr): 3170 ($\nu_{\rm NH}$), 1620 ($\nu_{\rm C=C}$), 1360 and 1150 cm⁻¹ ($\nu_{\rm SO_2}$). NMR (CDCl₃): δ 2.59 (s, 3H, CH₃), 7.14 (d, 1H, H_A), 7.84 (d, 1H, H_B), $J_{\rm AB}$ =15.0 Hz, 7.48±0.03 (5H, phenyl).

3-Chloro-5-phenyl-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (4a). Excess chlorine was bubbled through a solution of 2a (16.4 g, 0.060 mol) in chloroform (120 ml) cooled to 0—5°C over a 1-hr period. The colorless solution turned orange and yielded methanesulfenyl chloride. The chloroform was removed in vacuo, CCl₄ (20 ml) was added to the crystals, and the mixture was filtered to give 14.8 g (94%) of 4a. Recrystallization from CCl₄ gave colorless crystals.

3-Dimethylamino-5-phenyl-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (5b). Step (D): To 4a (1.60 g, 0.006 mol) in chloroform (20 ml), we added 40% aqueous dimethylamine (1.37 g, 0.012 mol), after which the reaction mixture was stirred for 1 hr at room temperature. The chloroform was then removed in vacuo, and water (20 ml) was added to the residue. The cooled precipitate was filtered to give 1.62 g (98%) of 5b. Recrystallization from methanol gave colorless crystals.

3-Methoxy-5-phenyl-1,1-dioxo-5,6-dihydro-1,4,2-dithiazine (7a). Step (F): A solution of **4a** (2.62 g, 0.010 mol) in methanol (30 ml) was refluxed for 2 hr, diluted with water (10 ml), and then cooled overnight. The crystals which formed were filtered to give 2.47 g (96%) of **7a**. Recrystallization from methanol gave colorless crystals.