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The conjugate addition of organocuprates to enones
represents an important fundamental approach to the elab-
oration of carbonyl-containing compounds through a C�C

bond-forming reaction.[1] This process is extremely versatile
for alkyl, alkenyl, and aryl group incorporation, however, the
inclusion of an alkynyl unit in this fashion is much more
limited.[2] Nonetheless, the conjugate addition of alkynyl
alanes does take place in the presence of a Ni catalyst.[3]

Additionally, the use of Lewis acids such as aluminum tris(2,6-
diphenylphenoxide) (ATPH),[4] silyl triflates,[5] and iodotri-
methylsilane[6] can promote the conjugate addition of alkynyl
metal compounds to cyclic enones, although the employment
of �-substituted substrates generally prevents addition com-
pletely or leads to very poor product yields.

We envisaged a strategically different approach to these
compounds (Scheme 1), whereby disconnection of the C2�C3
bond in the cyclic ketone would generate an enolate bearing a
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Scheme 1. Retrosynthetic analysis of the formation of cyclic ketones
through an enol ether rearrangement.

distal propargylic carbocation. We further surmised that this
intermediate might be generated from a cyclic enol ether. To
aid scission of the propargylic C�O bond of the enol ether, we
examined the effect of the hexacarbonyldicobalt unit on the
alkyne because of its ability to stabilize positive charge at the
�-position strongly.[7] Notably, related intramolecular addi-
tions of enolates to cobalt-stabilized carbocations have been
reported, however, these studies required the propargyl ether
and enolate moieties to be prepared independently and in a
linear fashion. Furthermore, problems associated with regio-
chemical enolate formation can result in poor cyclization
regioselectivity.[8] We anticipated that the proposed rear-
rangement technique would overcome some of these prob-
lems whilst providing a direct method for the preparation of
�-substituted products from appropriately armed enol ether
substrates. We report herein our initial findings on the scope
of the rearrangement process for the synthesis of �-alkynyl
substituted cyclic ketones.

We embarked on this study by examining the rearrange-
ment of readily available and easily handled gem dichloro
substituted enol ethers. These compounds were prepared
from the corresponding lactones following the method of
Lakhrissi and Chapleur (Scheme 2).[9] Addition of an alkynyl
zinc reagent to commercially available 1 provided keto esters
3a and 3b ; the homologous compound 3c was prepared in a
similar manner from 2. Substituted �-lactones 4a,b were
generated by a Luche reduction and saponification before
ring closure. The quaternary substituted analogue 5 was
prepared by an analogous procedure but with alkylation of
3b using MeLi/TiCl4[10] in the initial step. �-Lactone 6 was
prepared from keto ester 3c by a similar route. With the key
intermediates lactones 4 ± 6 in hand, we prepared the corre-
sponding enol ethers in one step using PPh3/CCl4.[9] Finally,
exposure of the enol ethers to octacarbonyldicobalt at room
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Scheme 2. a) � 78 �C± 0 �C, THF, 1 h. b) NaBH4, CeCl3 ¥ 7H2O, MeOH,
25 �C, 1 h. c) MeLi, TiCl4, Et2O, �78�� 10 �C. d) KOH, tBuOH/H2O
(1:1), 0.5 h. e) 2-Chloro-1-methylpyridinium iodide, Et3N, CH2Cl2, 40 �C,
2 h. f) DCC, DMAP, CH2Cl2, 25 �C, 2 h. g) PPh3, CCl4, 77 �C. h) [Co2-
(CO)8], CH2Cl2, 25 �C. DCC�N,N�-dicyclohexylcarbodiimide, DMAP�
4-dimethylaminopyridine.

temperature afforded complexes 7 ± 9 as deep red solids/
oils.[11]

We initially screened a wide variety of Lewis acid pro-
moters[12] such as silyl triflates, Et2AlCl, and SnCl4, but were
disappointed to find that these produced complex reaction
mixtures.[13] In contrast, BF3 ¥OEt2 and TiCl4 were excellent
promoters of the rearrangement process and furnished the
�,�-dichloroketone products in high yield (Table 1, entries 1
and 2). The rearrangement of 1-hexynyl substituted enol

ether 7b under our optimized
conditions proceeded much more
rapidly than that observed for 7a
(compare entries 1/2 with 3/4).
This may reflect reduced steric
congestion in I during C�C bond
formation with R1� nBu in com-

parison to R1�Ph.[14] Notably, this technique is applicable to
the formation of quaternary substituted �-alkynyl cyclohex-
anones, for example, the dichloroenol ether 8 smoothly
underwent rearrangement at 0 �C in the presence of TiCl4 to
provide the corresponding ketone 12 in 84% yield (entry 5).
We also found that the conversion of seven-membered cyclic
enol ethers to the corresponding ketones is possible and
indeed highly efficient in the one example studied (entry 6).[15]

Finally, ester-containing enol ether 10 was prepared from
lactone 4b by following the method of Shibasaki and co-
workers[16] and underwent rapid and clean rearrangement to
the corresponding keto ester 14 in excellent yield.

Having demonstrated the feasibility of the rearrangement
process, we next turned our attention to examining alkyl
substituted enol ethers which would provide a direct means of
�-alkyl incorporation into the ketone products. Therefore,

lactone 4b was reduced to the corresponding lactol and
subsequently treated with PPh3 ¥HBF4, which provided the
requisite phosphonium salt for elaboration to alkyl substitut-
ed enol ethers by the method of Ley et al.[17] Generation of the
phosphonium ylide by treatment with n-butyllithium at
�85 �C, followed by addition of isobutyraldehyde, gave enol
ether 15a as a 7:1 mixture of E/Z isomers on complexation
with octacarbonyldicobalt. Additionally, the phenyl substitut-
ed enol ether complexes 15b were readily generated as an
equal mixture of E/Z isomers by an identical procedure
(Scheme 3).
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Scheme 3. a) 1) DIBAL-H, TMSCl, �78 �C, THF, 1 h. 2) K2CO3, MeOH,
84%. b) PPh3 ¥HBF4, CH3CN, 4 ä molecular sieves, 82 �C, 2 h. c) nBuLi;
RCHO, �85 �C, THF, 1 h. d) [Co2(CO)8], hexanes, 2 h, 25 �C. R� iPr: 15a,
61%; R�Ph: 15b, 78% (over three steps from b). DIBAL-H�diiso-
butylaluminum hydride, TMS� trimethylsilyl.

Unfortunately, the E/Z isomers of 15a were inseparable
and accordingly were subjected to the rearrangement reaction
as a mixture. Treatment of complexes (E/Z)-15a with TiCl4
led to rapid and clean rearrangement to provide the
corresponding �-substituted ketones 16 as a 5:1 mixture of

Table 1. Rearrangement of ester and gem dichloro-substituted enol ethers.[a]

Entry Lewis
acid

Enol ether Product Time Yield
[%]

1 BF3 ¥OEt2
O

Ph

Cl

Cl

(CO)6Co2

7a
Co2(CO)6

O
Cl

Cl

Ph11a

18 h 86
2 TiCl4 9 h 83

3 BF3 ¥OEt2
O

nBu

Cl

Cl

(CO)6Co2

7b Co2(CO)6

O
Cl

Cl

nBu11b

4 h 90
4 TiCl4 10 min 97

5 TiCl4
O

nBu

Cl

ClMe

(CO)6Co2

8
Co2(CO)6

O

nBuMe

Cl

Cl

12

4 h 84

6 BF3 ¥OEt2
(OC)6Co2

O

nBu

Cl

Cl9
Co2(CO)6

O
Cl

Cl

nBu
13

3 h 98

7 TiCl4 O
CO2Me

(CO)6Co2

(E)-10nBu

Co2(CO)6

O

nBu

CO2Me

14

30 min 92[b]

[a] All reactions were initiated at 0 �C in CH2Cl2 with 1.5 equivalents of Lewis
acid, allowed to warm to ambient temperature, and stirred until the starting
material was completely consumed. [b] Complexation and rearrangement were
carried out in one pot.
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isomers (Scheme 4; major isomer tentatively assigned as
trans) in high yield.[18] In contrast to 15a, the individual
E/Z isomers of 15b were readily separable by column
chromatography, which allowed the rearrangement of each
isomer to be studied individually. To our surprise, we found
that the rearrangement of complexes 15b proceeded stereo-
specifically such that (E)-15b provided the cis-substituted
ketone 17, whereas the trans-substituted ketone 18 was
formed exclusively from (Z)-15b.[19, 20]
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Scheme 4. Transformation of enol complexes 15 to alkynyl ketones.

The origin of these different stereochemical outcomes is
intriguing. At present, we are pursuing three possible ration-
ales: 1) Rearrangement of complexes 15a is mechanistically
distinct from that of 15b. 2) Enol ether isomerization (E�Z)
proceeds rapidly for 15a (or the intermediate metal enolate)
such that the relative ratios of cis/trans-16 are determined by
relative rates of rearrangement of each enol(ate) isomer.
3) Product 16 isomerizes under the reaction conditions.[21]

In conclusion, we report a novel approach to �-alkynyl
substituted cyclic ketones through a cobalt-mediated
rearrangement reaction of cyclic enol ethers. This tech-
nique allows the direct and regiospecific �-incorporation of
dichloro-, ester, aryl, and alkyl substituents which can be
readily controlled by judicious choice of the enol ether
substituent.

Experimental Section

Typical experimental procedure as exemplified by the rearrangement of
complex 7b : To a solution of 7b (2.0 g, 3.75 mmol) in CH2Cl2 (20 mL) at
0 �C was added TiCl4 (616 �L, 10.0 mmol, 1.5 equiv) by syringe under
nitrogen. The reaction mixture was stirred at 0 �C for 10 min and quenched
by addition of saturated aqueous NaHCO3 solution. The reaction mixture
was poured into water, extracted with CH2Cl2, dried with MgSO4, and the
solvent removed in vacuo. Recrystallization of the crude complex afforded
11b as a deep red solid (1.95 g, 97%), m.p. 77.1 ± 78.3 �C; 1H NMR
(400 MHz, CDCl3): �� 0.99 (3H, t, J� 7.2 Hz), 1.46 ± 1.56 (2H, m), 1.58 ±
1.72 (2H, m), 1.75 ± 1.86 (1H, m), 2.06 ± 2.24 (3H, m), 2.64 (1H, dd, J� 9.0,
1.2 Hz), 2.91 ± 3.04 (2H, m), 3.18 (1H, td, J� 14.4, 5.8 Hz), 3.63 ppm (1H,
dd, J� 11.4, 3.7 Hz); 13C NMR (100.6 MHz, CDCl3): �� 13.9, 22.7, 24.1,
32.7, 33.9, 34.5, 35.5, 57.0, 92.9 (2�C), 101.2, 194.3, 199.8 ppm (br); �� � 2962
(s), 2936 (s), 2875 (s), 2092 (s), 2036 (s), 2022 (s), 1739 cm�1 (s); HR-MS
calcd for C18H16O7Cl2Co2: 531.8937, found: 531.8941.
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Rapid Phase Fluxionality as the
Determining Factor in Activity and
Selectivity of Highly Dispersed,
Rh/Al2O3 in deNOx Catalysis**
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Rhodium has for many years been a
primary component in the make up of auto-
exhaust catalysts because of its ability to
catalyze the selective reduction of NOx to
N2.[1, 2] A historical view of this type of system
is of an active, but essentially static, phase
comprising particulate metal; it is from this
axiom that studies of metal single crystals[2]

have been accepted as models of macroscopic
catalyst behavior. However, it has been
established by IR[3] and XAFS[4] (X-ray
absorption fine structure) spectroscopy that
small rhodium particles (on alumina) undergo

corrosive chemisportion to yield a mononuclear {RhI(CO)2}
species. In addition, the oxidation of Rh/Al2O3 under an
atmosphere of air and oxygen has also been demonstrated by
XAFS.[5] Recently, using in situ, microreactor-based, energy-
dispersive EXAFS (EDE)[6] and mass spectrometry[7] we have
used the improved time resolution of these techniques to
demonstrate that Rh on alumina is rapidly oxidized by NO.[8]

Herein we utilize these procedures to probe the correlation
between metal structure and catalytic performance for the
reduction of NO by H2.

Figure 1 shows the total NO conversion and N2O (mass 44)
production as a function of reaction temperature and feed-
stock composition. The net conversions and selectivity of the

Toromanoff, Tetrahedron 1985, 41, 5045. Spectral and analytical data
for all new compounds can be found in the Supporting Information.
CCDC-177450 (7a) and CCDC-177451 (11a) contain the supplemen-
tary crystallographic data for this paper. These data can be obtained
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the Cambridge Crystallographic Data Centre, 12, Union Road,
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in 15a�16 cannot be fully explained by rapid equilibration at the �-
alkyl moiety of the product.
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Figure 1. a) NO conversion as a function of reaction temperature and active feedstock
composition in the reduction of NO/He by H2/He over 5 wt% Rh/�-Al2O3 catalysts derived
from RhCl3 ¥ 3H2O: catalyst charge: 20 mg; NO±H2/He� 4/96; total gas flow�
10 mLmin�1, GHSV ca. �104 h�1. b) N2O production (mass 44) as a function of reaction
temperature and active feedstock composition in the reduction of NO byH2 over 5 wt%Rh/
�-Al2O3 catalysts derived from RhCl3 ¥ 3H2O: conditions as for Figure 1a.


