Sterically Tuned *P*-Phosphanylamino Phosphaalkenes (Me₃Si)₂C=PN(*R*)PPh₂ and (*i*PrMe₂Si)₂C=PN(*R*)PPh₂

Roxana M. Bîrzoi,^[a] Daniela Lungu,^[a] Peter G. Jones,^[a] Rainer Bartsch,^[a] and Wolf-W. du Mont^{*[a]}

Abstract. Deprotonation of the aminophosphanes $Ph_2PN(H)R$ 1a–1h [R = tBu (1a), 1-adamantyl (1b), iPr (1c), CPh_3 (1d), Ph (1e), 2,4,6- $Me_3C_6H_2$ (Mes) (1f), 2,4,6- $tBu_3C_6H_2$ (Mes*) (1g), 2,6- $iPr_2C_6H_3$ (DIPP) (1h)], followed by reactions of the phosphanylamide salts Li[Ph_2PNR] 2a, 2b, 2g, and 2h with the *P*-chlorophosphaalkene (Me_3Si)_2C=PCl, and of 2a–2g with ($iPrMe_2Si$)_2C=PCl, gave the isolable *P*-phosphanylamino phosphaalkenes (Me_3Si)_2C=PN(R)PPh₂ 3a, 3b, 3g, and ($iPrMe_2Si$)_2C=PN(R)PPh₂ 4a–4g. ³¹P NMR spectra, sup-

Introduction

We have recently studied the "hybrid" *P*-phosphanylamino phosphaalkene ligands $(Me_3Si)_2C=PN(R)PR'_2$ (Scheme 1, **A**) with the intention of combining the features of classic small bite angle iminobisphosphane "PNP" ligands $RN(PR'_2)_2$ (**B**)^[1] with those of thermally more labile amino-bridged bis-phosphaalkenes (**C**).^[2]

The enhanced electrophilicity of the phosphaalkene phosphorus atom of the coordinated type **A** chelate ligand $(Me_3Si)_2C=$ PN(1-Ada)PPh₂ led to exceptional Cl \rightarrow P coordination (chlorotropy); reactions with PtCl₂ and PdCl₂ led to uncharged complexes $M[(Me_3Si)_2C=P(Cl)N(1-Ada)PPh_2]_2$ (M = Pd, Pt) that involved anionic chelate ligands [(Me_3Si)_2C=P(Cl)N(1-Ada) PPh_2]⁻ with P–Cl bonds.^[3] Subsequently, reactions of type **A** ligands with Rh^I chlorido complexes were shown to involve RhCO-assisted P–C coupling reactions with loss of (Me_3Si)_2C=C=O, leading from the type **A** compounds to dianionic tetradentate ligand units in the coordination sphere of an Rh^{III}Cl unit.^[4]

To obtain synthetic access to type **A** ligands, we initially attempted to use metallated *P*-aminophosphaalkenes (1-aza-2-phosphaallyl anions)^[5,6,7] for P–N coupling reactions with chlorodiphenylphosphane, analogous to P–N coupling reactions of metallated *P*-aminophosphaalkenes with *P*-chlorophosphaalkenes,^[2,8] which are known to deliver the "doubly unsaturated" type **C** ligands (Scheme 2, top).

ported by X-ray structure determinations, reveal that in compounds 2a, 2b, 3a, and 3b, with bulky N-alkyl groups the Si₂C=P–N–P skeleton is non-planar (orthogonal conformation), whereas 3g, 3h, and 4g with bulky N-aryl groups exhibit planar conformations of the Si₂C=P–N–P skeleton. Solid 3g and 4g exhibit *cisoid* orientation of the planar C=P–N–C units (planar I) but in solid 3h the *transoid* rotamer is present (planar II). From 3g, 4d, and 4g mixtures of rotamers were detected in solution by pairs of ³¹P NMR patterns (3h: line broadening).

Towards chlorodiphenylphosphane, however, the 1-aza-2phosphaallyl anions of Li[(Me₃Si)₂C=PNR] (R = tBu,^[2,6,7] Mes* [6]) acted as P-nucleophiles leading, according to ³¹P NMR spectroscopic data, preferentially to the type **D** P-diphenylphosphanylphosphorane isomers $[(Me_3Si)_2C=](RN=)P-$ PPh₂.^[3,6–8] From Li[(Me₃Si)₂C=PNtBu with chlorodiisopropylphosphane, the corresponding type **D** product was obtained, accompanied by the isomeric *P*-phosphanylazaphosphirane structure (type E) according to ³¹P NMR spectroscopy. With chloro(isopropyl)t-butylphosphane as substrate for $Li[(Me_3Si)_2C=PNtBu$, the reaction was selective leading to the single crystalline product (Me₃Si)₂C=PN(*t*Bu)(*t*Pr), which was characterized by X-ray crystallography as a new example of the type **D** structure (Scheme 2, center).^[7] Only one compound of the phosphanylphosphorane type D structure had previously been investigated crystallographically; it was synthesized by (Me₃Si)₂C transfer from a carbenoid precursor to the bulky P-phosphanyliminophosphane tBu₂PP=NMes* (Scheme 2, bottom).^[9] Since Li[(Me₃Si)₂C=PNtBu] acts selectively as a P-nucleophlile towards diphenyl and dialkyl chlorophosphanes, we chose, as an alternative access to type A PNP ligands, the *inverse* route using metallated aminophosphanes and *P*-chlorophosphaalkenes (Scheme 3).^[3] Fortunately, metallated aminophosphanes such as Li[Ph2PN(1-Ada)][3] act towards the P-chlorophosphaalkene (Me₃Si)₂C=PCl selectively as *N*-nucleophiles, delivering the desired type A ligands. In the following we present some novel synthetic results concerning this reaction route. These syntheses provide mono-unsaturated bidentate diphenylphosphanylamino-phosphaalkene ligands (type A) of varied steric encumbrance.^[8]

Results and Discussion

Aminophosphanes

Various aminophosphanes $Ph_2PN(H)R^{[10]}$ **1a–1h** [R = tBu (**1a**), 1-adamantyl (**1b**), *i*Pr (**1c**), CPh₃ (**1d**), Ph (**1e**), 2,4,6-

^{*} Prof. Dr. W.-W. du Mont Fax: +49-531-3915387

E-Mail: w.du-mont@tu-bs.de

 [[]a] Institut f
ür Anorganische und Analytische Chemie Technische Universit
ät Braunschweig Hagenring 30 38106 Braunschweig, Germany

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/zaac.201700446 or from the author.

Scheme 1. Various types of iminoorganophosphorus species with P–N–P or P–P–N backbones.

Scheme 2. Access to PNP and PPN species via (top and center)^[2,7] N–P and P–P coupling reactions of 1-aza-2-phosphaallyl anions; (below) the reaction leading to the first low-coordinated phosphanyl(alkylidene)(imino)phosphorane.^[9]

Scheme 3. The route to *P*-phosphanylamino phosphaalkenes 3 and 4.

 $Me_3C_6H_2$ (Mes) (1f), 2,4,6- $tBu_3C_6H_2$ (Mes*) (1g), 2,6- $iPr_2C_6H_3$ (DIPP) (1h)], including a few examples with particularly bulky substituents, were chosen as starting materials for metallation reactions. The solid-state structures of 1b, 1f, and of oxidized 1f(P=O) were determined by X-ray crystallography (see Scheme 3, Experimental Section, Table 3, and Figures S1–S3, Supporting Information).

Synthesis of Phosphanylamino Phosphalkenes

Aminophosphanes were deprotonated at -40 °C with lithiumdiisopropyl amide (LDA) in mixtures of solvents containing THF; only for **1d** *n*BuLi was used. Solutions of the lithium derivatives **2a–2h** were added dropwise to the *P*-chlorophosphaalkenes (Me₃Si)₂C=PCl and / or (*i*PrMe₂Si)₂C=PCl at -40 °C leading with (partial) precipitation of LiCl to the *P*diphenylphosphanylamino phosphaalkenes **3** or **4** (Scheme 3), which are soluble in hydrocarbons.

All products were identified by ³¹P NMR, but only **3a**, **3b**, **3g**, **4b**, and **4e** were isolated in bulk as yellow solids. From all four products **3** (**3a**, **3b**, **3g**, and **3h**) single crystals were obtained, even though the bulk of **3h** was an impure solid. Similarly a single crystal of **4g** was picked from an impure solid sample. *P*-Diphenylphosphanylamino phosphaalkenes **3** and **4**

Zeitschrift für anorganische

are air- and moisture-sensitive compounds; pure samples can be stored under inert gas for an extended time.

NMR Spectroscopic Characterization

und allgemeine Chemie

³¹P NMR spectroscopic data of compounds **3** and **4** are collected in Table 1. ³¹P- and ¹³C-spectroscopic investigations on related *P*-aminophosphaalkenes $(Me_2Si)_2C=PN(R)R'$ (*R* = alkyl, R' = H, alkyl, or trimethylsilyl) have revealed that favorable $n(N) \rightarrow \pi(P=C)$ conjugation in 3-center, 4-electron π -bond systems correlates with significant upfield shifts in relation to isolated P=C bonds.^[5] P-Amino groups with two very bulky subsituents such as *tert*-butyl, trimethylsilvl, or 2.2.6.6-tetramethylpiperidyl, however, tend for steric reasons to conformations exhibiting orthogonal orientation of the amino groups with respect to the phosphaalkene plane Si₂C=P.^[5,11] When one of the bulky substituents is an aryl group, such as 2,4,6 $tBu_3C_6H_2$ - (Mes^{*}), the aromatic ring plane of the latter can rotate into a position orthogonal to the nitrogen plane, allowing the latter to adopt a conformation with nearly coplanar phosphaalkene and nitrogen planes; in the related compound (Me₃Si)₂C=PN(Mes*)SiMe₃ the dihedral angle between the amino group and the nodal plane Si₂C=P of the double bond is 11.2°.[11]

In our choice of *P*-diphenylphosphanylamino phosphaalkenes, the 1-adamantyl, *tert*-butyl and trityl groups are very bulky alkyls, and the PPh₂ groups are sterically comparable to SiMe₃ or SiMe₂Ph. All aminophosphaalkenes (Me₃Si)₂C= PN(H)*R* and (*i*PrMe₂Si)₂C=PN(H)*R* that are related to **3a**, **3b**, or **4a**–**4g** exhibit ³¹P-NMR shifts between $\delta = 310$ and 326 ppm and ¹³C NMR shifts between 70 and 77 ppm,^[8] whereas among the phosphanylamino phosphaalkenes **3** and **4**, the ³¹P(=C) nuclei of the 1-adamantyl and *tert*-butyl derivatives **4a**, **4b** exhibit significantly deshielded resonances in ³¹P and ¹³C NMR, indicating a loss of $n(N) \rightarrow \pi(P=C)$ conjugation (Scheme 4 and Experimental Section).^[5,11] The exchange of *R* = *t*Bu in **4a** for *R* = *i*Pr in **4c** leads in the ³¹P NMR to a 40 ppm upfield shift of the ${}^{31}P(=C)$ nucleus, whereas the ${}^{31}P(Ph_2)$ nucleus is scarcely affected (Table 1).

Scheme 4. Idealised coplanar and orthogonal conformations of phosphanylamino phosphaalkenes, Si (black circles) = Me_3Si or *i*PrMe₂Si, *R* (red Circles) = alkyl or aryl. Left: planar I, center: planar II, right: orthogonal.

In the cases of the bulky aromatic substituents and of the trityl group, two species are present in solution, as indicated by two sets of AM patterns in the ³¹P NMR spectra of **3g**, **4g** $(R = Mes^*)$ and of 4d $(R = CPh_3)$, and by line broadening in the spectra of **3h** and **4f**. The resonances of the ${}^{31}P(=C)$ nuclei from the two AM patterns of each of the compounds 3g and 4g differ by only 7 ppm, whereas the resonances of the ³¹P(Ph₂) nuclei differ by about 20 ppm. The varying magnitudes of the NMR couplings ${}^{2}J(P,P)$ in the range from 6.6 (4a) to 67.5 Hz (4e) allow to suggest different relative orientations of the phosphorus lone pairs in the P-N-P moieties.^[10a] The difference between the coupling constants ${}^{2}J(P,P)$ of the two species of **3g** is 14 Hz, but only 4 Hz in the case of **4g**. These differences reflect not only the different conformations of the C=P-N-P moieties (planar I or II, see Scheme 4), but also possible differences in the rotational preferences of the N-PPh₂ groups (rotation around this P-N bond, see Supporting Information, Figure S1).^[10a]

Oxidation of the PPh₂ phosphorus atom of **3b** [δ^{31} P = 373.5 and 37.7 ppm, ²*J*(P,P) = 12.0 Hz, δ^{13} C(=P) 190.5, ¹*J*(P=C) = 98.8 Hz] with selenium leads to the compound (Me₃Si)₂C= PN(1-Ada)P(=Se)Ph₂ [**3b**(P=Se), δ^{31} P = 350.4 and 45.7 ppm,

Table 1. ³¹P NMR spectroscopic data of *P*-phosphanylamino phosphaalkenes.

	$\delta = {}^{31}P(=C) /ppm$	$\delta = {}^{31}\text{PPh}_2 /\text{ppm}$	$ ^{2}J(\mathbf{P},\mathbf{P}) $ /Hz
$\overline{(Me_3Si)_2C=PN(R)PPh_2}$			
3a (R = tBu)	372.9	44.4	11.5
3b $(R = 1$ -adamantyl) ^[3]	374.0	37.7	12.1
3b (P=Se) ($R = 1$ -adamantyl)	350.4	45.7 (P=Se)	
$3g (R = Mes^*)$	330.5	74.0	7.1
	337.7	55.1	21.0
3h (R = DIPP)	335.8 (broad), 58.8 (broad)	not resolved	
3j $(R = CH_2Ph)^{[4,12]}$	349.3	59.4	39.4
(<i>i</i> PrMe ₂ Si) ₂ C=PN(<i>R</i>)PPh ₂			
$4\mathbf{a} \ (R = t\mathbf{B}\mathbf{u})$	382.3	47.0	6.6
4b ($R = 1$ -adamantyl)	385.7	38.3	10.0
$4\mathbf{c} \ (R = i\mathbf{Pr})$	342.7	43.6 (broad)	13.8
$4d (R = CPh_3)$	366.5	25.6	32.8
	361.5	15.4	40.0
$4\mathbf{e} \ (R = \mathbf{Ph})$	351.3	60.9	67.5
4f (R = Mes)	331.4 (broad)	63.8 (broad)	not resolved
$4\mathbf{g} \ (R = \mathrm{Mes}^*)$	341.2	72.6	30.5
	337.7	50.2	26.2

 $\delta^{13}C(=P) = 183.4 \text{ ppm}, {}^{1}J(P,C) = 101.8 \text{ Hz}], \text{ which does not exhibit a resolvable coupling } {}^{2}J(P,P).$

Structure Determinations

The molecular structures of compounds **3a**, **3b**, **3g**, **3h**, **4b**, and **4g** are presented in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, and Figure 6. The structures can be assigned on the basis of the relative orientations of the PNCP and Si₂C=PN planes to the idealized cases of *planar I* or *II* or *orthogonal* (Scheme 4). According to structure determinations the topologies of the backbones of the compounds with NMes* groups (**3g**, **4g**) (the crystallized rotamers) are related to that of Chernegas' compound (Me₃Si)₂C=PN(Mes*)SiMe₃,^[11] corresponding to the planar I conformation with *cisoid* orientation of the P=*C*- and Mes*-*Cipso* carbon atoms at the P–N bond [torsion angles C1P1NP2 179.44(7)° (**3g**) and 179.55° (**4g**)]. Compound **3h**, with an N-DIPP group, however, exhibits a slightly distorted planar II conformation with a *transoid* orientation of the P=C- and DIPP*-C*ipso* carbon atoms at the P–N bond [torsion angle C1P1NP2 16.25(11)°]. In this structure, the angle P1–N–C*ipso* is particularly narrow, compared with the other compounds [110.8° (**3h**) versus 116.5° (**3b**) to 128.38° (**4g**)], whereas the angles P1–N–P2 (125.8°) and P2– N–C*ipso* (123.4°) are unusually wide (for selected distances and angles, see Table 2).

The large angles P1–N–C*ipso* of solid **3g** and **4g** may reflect the repulsions between bulky aryl groups and the neighboring pair of trialkylsilyl groups.^[11]

The structures of the compounds with N-*t*Bu and with N-1-Ada groups (**3a**, **3b**, and **4b**) exhibit distorted *orthogonal* conformations. The conformational differences *planar* vs. *or*-*thogonal* are reflected in the interplay of the P–N distances of C=PN and NPPh₂ groups in phosphanylamino phosphaalkenes, whereas the P=C distances are very similar at about 1.66 Å. In

Figure 1. Structure of compound 3a in the crystal. Ellipsoids represent 50% probability levels.

Figure 2. Structure of compound 3b in the crystal. Ellipsoids represent 50% probability levels.

Figure 3. Structure of compound 3g in the crystal. Ellipsoids represent 50% probability levels.

Figure 4. Structure of compound 3h in the crystal. Ellipsoids represent 30% probability levels.

Figure 5. Structure of compound 4b in the crystal. Ellipsoids represent 50% probability levels.

Figure 6. Structure of compound **4g** in the crystal. Ellipsoids represent 50% probability levels. Only one position of the disordered $SiMe_2iPr$ group is shown.

the structures **3a**, **3b**, and **4b** with large torsion angles C1–P1– N–P2 (105–111°) and slightly pyramidalized nitrogen atoms (angle sums of 352°), the distances between the nitrogen and the phosphaalkene phosphorus atoms (about 1.74 Å, single bond) are slightly longer than those of the P–N single bonds involving the PPh₂ groups (about 1.72 Å). However, in the

Scheme 5. Atom designation for the NMR assignment (bold letters) proposed for the 1 H and 13 C nuclei of 4a and related compounds.

structures assigned to the planar I and II types, P–N distances of the C=PN moieties are shorter (1.70–1.71 Å) and the P–N bonds involving the PPh₂ groups are lengthened to 1.74 Å (**3h**), 1.76 Å (**4g**), and 1.77 Å (**3g**). These effects, together with the ³¹P-NMR shifts of the latter (downfield from those of **3a**, **3b** and **4a**, **4b**) correlate with some degree of N–P=C conjugation. *N*-aryl conjugation does not play a role, since the aromatic planes of the bulky *N*-aryl groups in **3g**, **3h**, and **4g** are not coplanar with the planar C1–P1–N–P2 backbones of these phosphanylamino phosphaalkenes.

Conclusions

P-Phosphanylamino phosphaalkene ligands $(R'Me_2Si)_2C=$ $PN(R)PPh_2$ [R = Me (3), *i*Pr (4)] are available from reactions of lithium diphenylphosphanylamides $Li[Ph_2PNR]$ 2a-2h [R = tBu (1a), 1-adamantyl (1b), iPr (1c), CPh₃ (1d), Ph (1e), $2,4,6-Me_3C_6H_2$ (Mes) (1f), $2,4,6-tBu_3C_6H_2$ (Mes*) (1g), 2,6- $iPr_2C_6H_3$ (DIPP) (1h)] with *P*-chlorophosphaalkenes $(R'Me_2Si)_2C=PCl$ (R' = Me, iPr). Crystal structure determinations of the monounsaturated bidentate PNP ligands 3a, 3b, 3g, 3h, 4b, and 4g allow classification of the structures, according to the relative orientations of the PNCP and $Si_2C=PN$ planes, to the idealized cases of planar (coplanar phosphaalkene and nitrogen planes: 3g, 3h, 4g) and orthogonal (phosphaalkene and nitrogen planes with large torsion angles: 3a, **3b**, **4b**). **3g** and **4g** ($R = Mes^*$) exhibit *cisoid* orientation of the P=C- and Mes*-Cipso carbon atoms at the P-N bond (planar I), whereas **3h** (R = DIPP) crystallized with *transoid* orientation of the P=C- and DIPP*-Cipso carbon atoms at the P-N

Table 2. Selected distances /Å and angles $/^{\circ}$ within the backbones C1–P1–N(–C)–P2 of compounds 3 and 4.

	d(P=C)	d(P1-N)	<i>d</i> (P2–N)	<c1-p1-n< th=""><th><p1-n-c< th=""><th><p2-n-c< th=""><th><p1-n-p2< th=""></p1-n-p2<></th></p2-n-c<></th></p1-n-c<></th></c1-p1-n<>	<p1-n-c< th=""><th><p2-n-c< th=""><th><p1-n-p2< th=""></p1-n-p2<></th></p2-n-c<></th></p1-n-c<>	<p2-n-c< th=""><th><p1-n-p2< th=""></p1-n-p2<></th></p2-n-c<>	<p1-n-p2< th=""></p1-n-p2<>
3a	1.664(14)	1.748(12)	1.724(11)	112.8(7)	119.5(9)	115.4(9)	116.8(7)
3b	1.665(2)	1.748(12)	1.721(11)	111.5(5)	116.5(7)	118.37(7)	119.3(5)
3h	1.662(14)	1.706(11)	1.742(11)	116.9(6)	110.8(8)	123.4(8)	125.8(6)
3g	1.663(11)	1.712(9)	1.771(9)	120.9(5)	126.1(7)	116.6(7)	117.2(5)
4a	1.6609(12)	1.7393(10)	1.7227(10)	113.85(5)	118.89(5)	115.19(7)	117.67(6)
4g	1.6609(11)	1.7077(9)	1.7603(9)	121.55(5)	128.38(7)	113.24(7)	118.38(5)

bond (*planar II*). The structures of the compounds with N-*t*Bu and with N-1-Ada groups (**3a**, **3b**, and **4b**) exhibit distorted *orthogonal* conformations, comparable to aminophosphaalkenes with N(SiMe₃)₂ groups.^[5] The conformational differences *planar* versus *orthogonal* are reflected in the interplay of the P–N distances of C=PN and NPPh₂ groups in phosphanylamino phosphalkenes whereas the P=C distances are close to invariant at 1.66 Å. The lack of favorable π -overlap between the nitrogen lone pairs and the P=C π orbitals in the *orthogonal* conformations of **3a**, **3b**, and **4b** with *N*-PPh₂ and bulky *N*alkyl groups is also reflected in particularly low-field chemical shifts of the ³¹P(=C) nuclei in the ³¹P NMR spectra of these ligands.

Experimental Section

General Methods: All experiments were carried out in an oxygenfree dry nitrogen atmosphere by using standard Schlenk techniques. NMR spectra were recorded with Bruker spectrometers AC 200, Avance 200, Avance 400, and AMX 300, with 85 % H₃PO₄, and SiMe₄ as external or internal standards.

Aminophosphanes: All aminophosphanes Ph_2PNHR except the 1-adamantyl, the trityl, the mesityl, and the 2,6-diisopropylphenyl (DIPP) derivatives (**1b**, **1d**, **1f**, **1h**) were prepared according to published methods.^[10]

Ph₂PN(H)1-Ada (1b): A solution of adamantylamine (1.73 g, 11.43 mmol) in 35 mL pentane was treated with triethylamine (2.4 mL, 17 mmol) and chlorodiphenylphosphane (1.1 g, 5 mmol) at room temperature. After 1 h, a white precipitate had separated from the solution. Evaporation of all volatiles at reduced pressure provided 1a (5.34 g, 85%) as a white solid, m.p. 75-76 °C. ¹H NMR (200.1 MHz, C₆D₆): δ = 7.5–7.4 and 7.2–7.07 (multiplets, aryl H), 1,92 [d, J(P,H) = 3.7 Hz, Ada], 1.78 (s, br., Ada), 1.53 (s, br., Ada) ppm. ¹³C NMR $(50.32 \text{ MHz}, \text{ C}_6\text{D}_6)$: $\delta = 144.3 \text{ [d, } {}^1J(\text{P},\text{C}) = 13.3 \text{ Hz}, ipso-\text{C}], 130.9$ $[d, {}^{3}J(C,P) = 20.4 \text{ Hz}, m\text{-}C], 128.0 [s, p\text{-}C], 127.9 [d, {}^{2}J(C,P) = 6.2 \text{ Hz},$ o-C], 50.9 [d, ²*J*(C,P) = 18.0 Hz, Ada], 45.8 [d, *J*(C,P) = 8.9 Hz, Ada], 36.2 (s, Ada), 29.9 [d, J(C,P) = 0.9, Ada] ppm. ³¹P NMR (81.02 MHz, C_6D_6): $\delta = 18.9 \text{ ppm.}$ $C_{22}H_{26}NP$ (M = 335.42, exact mass = 335.18 g·mol⁻¹): calcd. C 78.78, H 7.81, N 4.18%; found C 78.33, H 7.82, N 4.29%. MS (EI, 90 eV) m/z (%): 335 (100) [M⁺], 135 (26, M⁺ - Ph₂PNH).

Ph₂PN(H)CMe₃ (1d): A solution of C-triphenylmethylamine (1.51 g, 5,81 mmol) in 10 mL THF was treated at -50 °C dropwise with nbutyllithium (2.5 M solution in hexane, 2.3 mL, 5.81 mmol). The stirred solution was allowed to warm up to room temperature and after 2 h the resulting solution was added at -40 °C dropwise to chlorodiphenylphosphane (1.28 g, 5.81 mol) in 10 mL THF. After warming up to room temperature the lithium salt residue was removed by filtration. Evaporation of the solvent at reduced pressure provided 1d (2.07 g, 81%) as a yellowish solid, m.p. 118-120 °C. ¹H NMR (200.1 MHz, C₆D₆): δ = 7.5–7.03 (multiplets, aryl H), 3.07 (s, H–N) ppm. ¹³C **NMR** (50.32 MHz, C_6D_6): $\delta = 146.8$ [d, J(C,P) = 3.5 Hz], 142.1 [d, J(C,P) = 12.7 Hz, 130.6 [d, J(C,P) = 20.8 Hz], 128.3 [d, J(C,P) = 20.8 Hz] 2.3 Hz], 127.5 [d, J(C,P) = 8.9 Hz], 127.1 (s), 125.9 (s), 70.5 [d, J(C,P) = 18.8 Hz]. ³¹P NMR (81.02 MHz, C₆D₆): δ = 27.1 ppm. C₃₁H₂₆NP (M = 443.52): calcd. C 83.95, H 5.91. N 3.16%; found C 80.95, H 5.90, N 3.18%.

Ph₂PN(H)(2,4,6-Me₃C₆H₂) (1f): Similarly to the preparation of **1b**, chlorodiphenylphosphane (3.52 g, 15.97 mmol) in 75 mL pentane with

triethylamine (4.5 mL, 31.0 mmol) and 2.52 g (11.43 mmol) 2,4,6-trimethylaniline gave after 12 h at room temperature 3.1 g (61%) yellowish **1f**, m.p. 87–89 °C. Single crystals suitable for X-ray diffraction were grown from pentane. ¹H NMR (200.1 MHz, C₆D₆):): δ = 7.5– 6.73 ppm (multiplets, aryl H), 3.61 [d, *J*(P,C) = 8.5 Hz, H–N], 2.2–2.1 (m, *o*-CH₃), 1.93 (s, *p*-CH₃). ¹³C NMR (50.32 MHz, C₆D₆): δ = 142.7 [d, *J*(P,C) = 15.7 Hz], 140.3 [d, *J*(P,C) = 14.2 Hz], 130.6 [d, *J*(C,P) = 3.6 Hz], 129.2 [d, *J*(P,C) = 17.4 Hz], 128.8 (s), 128.5(s), 128.2 [d, *J*(P,C) = 6.3 Hz], 20.2 [d, *J*(P,C) = 3.9 Hz], 18.8 [d, *J*(P,C) = 6.0 Hz], 17.1(s). ³¹P NMR (81.02 MHz, C₆D₆):: δ = 36.6. From an NMR tube a few single crystals of the oxide Ph₂P(=O)N(H)(2,4,6-Me₃C₆H₂) [**1**f(P=O)] were isolated.

Ph₂PN(H)(2,6-iPr₂C₆H₃) (1h): Chlorodiphenylphosphane (3 g, 13 mmol) in 60 mL pentane reacted with with 2,6-diisopropylaniline (4.6 g, 26 mmol) for 2 d at room temperature. The white precipitate was filtered off and the solvent evaporated at reduced pressure, to give 3.6 g (95%) **1h** as a white solid. ¹**H NMR** (200.1 MHz, C₆D₆): δ = 7.5–7.03 ppm (multiplets, aryl H), 3.82 [d, *J*(C,P) = 8.1 Hz], H-N), 3.0 (m, CH), 1.06 (s, CH₃), 1.04 (s, CH₃). ¹³C NMR (50.32 MHz, C₆D₆): δ = 142.5 (s), 142.4 [d, *J*(C,P) = 19.1 Hz], 139.7 [d, *J*(C,P) = 12.6 Hz], 131.3 [d, *J*(C,P) = 20.6 Hz], 128.8 (s), 128.3 [d, *J*(C,P) = 6.3 Hz], 122.7 (s), 118.4 (s), 27.0 [d, *J*(C,P) = 14.7 Hz], 23.8 (s, CH₃). ³¹P **NMR** (81.02 MHz, C₆D₆): δ = 43.1 ppm.

Reactions of Metallated Aminophosphanes with $(Me_3Si)_2C=PCI$ and with $(iPrMe_2Si)_2C=PCI$; General Procedure: To the solution of an alkyl- or arylaminodiphenylphosphane 1 in 10 mL of THF at -40 °C was added dropwise an equimolar amount of LDA (2 m *solution* in THF-heptane-ethylbenzene); subsequently the reaction mixture was allowed to warm up to room temperature. A singlet signal in the ³¹P NMR spectrum of the reaction mixture confirmed the presence of the deprotonated species 2. After removal of the volatiles in vacuo the residue was dissolved in THF and added dropwise at -40 °C to a solution of $(Me_3Si)_2C=PCI$ or of $(iPrMe_2Si)_2C=PCI$ in THF. After warming up slowly to room temperature and further stirring for 1 h, all volatiles were removed in vacuo and the residue was taken up in pentane. Removal of LiCl by filtration through Celite® 535, followed by concentrating the pentane solution to dryness, furnished the products 3 [from $(Me_3Si)_2C=PCI]$ or 4 [from $(iPrMe_2Si)_2C=PCI]$.

P-tert-Butyl(diphenylphosphanyl)amino-C-bis(trimethylsilyl)phosphaalkene (3a): *t*Butylaminodiphenylphosphane 1a (0.2565 g, 1 mmol) in 10 mL THF and LDA (0.5 mL of a 2 M solution in THFheptane-ethylbenzene, 1 mmol) led to **2a** ($\delta = {}^{31}P = 49.0$ ppm), which reacted with 0.2245 g (1 mmol) of (Me₃Si)₂C=PCl to give 387 g (87%) of 3a as a brown oil. Single crystals of 3a were obtained by storing a pentane solution at low temperature. ¹H NMR (C_6D_6 , 300 MHz): δ = 7.8–7–02 ppm (m, 10, Ph), 1.5 (s, 9 H, *t*Bu), 0.2 [d, 9 H, ${}^{4}J(P,H) = 2.6$ Hz, SiMe₃], 0.0 (s, 9 H, SiMe₃). ${}^{13}C$ NMR (C₆D₆, 75.46 MHz): $\delta = 189.5$ [d, ¹*J*(P,C) = 97.7 Hz, C=P], 140.0 [D,D, ¹*J*(P,C)] = 18.2, ${}^{3}J(P,C)$ = 2.6 Hz, *ipso*-C, Ph], 135.0 [d,d, ${}^{2}J(P,C)$ = 23, ${}^{4}J(P,C)$ = 4.8 Hz, o-C, Ph], 128.6 (s, p-C, Ph), 128.1 (d, ${}^{3}J(P,C) = 6.6$ Hz, m-C, Ph), 59.4 [dd,, ${}^{2}J(P,C) = 23$, ${}^{2}J(P,C) = 0.8$ Hz, $C_{\text{quart.}}$ tBu], 33.0 [d,d, ${}^{3}J(P,C) = 10.5, {}^{3}J(P,C) = 4.1 \text{ Hz}, CH_{3} (tBu)], 3.6 [d, {}^{3}J(P,C) = 16.8 \text{ Hz},$ SiMe₃], 2.8 [d, ${}^{3}J(P,C) = 3.3$ Hz, SiMe₃]. ${}^{31}P$ NMR (C₆D₆, 121.5 MHz): δ = 372.9 [d, ²*J*(P,P) = 11.5 Hz, P = C], 44.4 [d, ²*J*(P,P) = 11.5 Hz, PPh₂]. ²⁹Si NMR (C₆D₆, 59.6 MHz): δ = -3.7 [d, ²J(PSi) = 41.7 Hz], -10.1 [d, ${}^{2}J(PSi)$ = 10.6 Hz.]. MS (EI, 90 eV) m/z (%) = 445 (38) [M⁺], 372 (100, M - SiMe₃), 316 (40, M - SiMe₃, -tBu). $C_{23}H_{37}NP_2Si_2$ (*M* = 445.67 g.·mol⁻¹): calcd. C 61.99, H 8.37, N 3.14%; found C 61.72, H 8.01, N 3.40%.

Selenium Addition to P-1-Adamantyl(diphenylphosphanyl)amino-C-bis(trimethylsilyl)phosphaalkene (3b): 3b was prepared as described.^[8a] A solution of 0.673 g (1.28 mmol) 3b in 5 mL CH₂Cl₂ was added dropwise to a suspension of grey selenium (0.253 g, 3.2 mmol) in 5 mL CH₂Cl₂. After 3 h ³¹P NMR confirmed the complete consumption of 3b in favor of *P*-1-adamantyl[diphenyl(selenoxo)phosphoranyl]amino-*C*-bis(trimethylsilyl)phosphaalkene {1-Ada[Ph₂P(=Se)]NP= C(SiMe₃)₂, 3b=Se}. Removal of unconsumed selenium by filtration and evaporation under high vacuum afforded a yellow solid (0.733 g, 95%) containing 3b=Se. Solutions of 3b=Se in CDCl₃ contained, by ³¹P NMR, about 10% of the decomposition products 1-Ada[Ph₂P(= Se)]NH and [(Me₃Si)₂C=P]Se.^[13]

3b=Se: ¹**H NMR** (CDCl₃, 300 MHz): $\delta = 7.9-7.24$ (aryl multiplets), 2.46 [s, br., CH₂ (Ada)], 1.86 [br., CH (Ada)], 1.56 [m, CH₂ (Ada)], 0.37 (s, SiMe₃), 0.04 [d, ³J(P,H) = 3.0 Hz, SiMe₃). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 183.4$ [d, d, ${}^{1}J(P,C) = 101.8$, ${}^{3}J(P,C) = 4.6$ Hz, C=P], 135.9 [d, d, ${}^{1}J(P,C) = 87.4$, ${}^{3}J(P,C) = 1.8$ Hz, *ipso*-C, Se = PPh₂], 133.8 $[d, d, {}^{2}J(P,C) = 10.9, {}^{4}J(P,C) = 4.6 \text{ Hz}, o-C, \text{ Se} = PPh_{2}], 131.5 \text{ [d,}$ ${}^{4}J(P,C) = 2.0 \text{ Hz}, p-C, \text{ Se} = PPh_{2}, 128.1 \text{ [d, } {}^{3}J(P,C) = 12.9 \text{ Hz}, m-C,$ Se = PPh₂], 65.5 (s, br., C-P, Ada), 44.2 [pseudo-t, N(1-3) = 9.3 Hz, CH₂, Ada], 36.0 (s, CH₂, Ada), 30.1 (s, CH, Ada), 3.4 [d, ${}^{3}J(P,C) =$ 3.4 Hz, SiMe₃], 2.9 [d, ${}^{3}J(P,C) = 18.3$ Hz, SiMe₃]. ³¹P NMR (CDCl₃, 121 MHz): δ = 350.4 (s, P=C), 45.7 [s, ³J(SeP) = 742 Hz, Se=PPh₃]. ²⁹Si NMR (CDCl₃, 59 MHz): $\delta = -4.4$ [d, ²J(PSi) = 45.2 Hz, -10.3 $[d, {}^{2}J(PSi) = 9.7 \text{ Hz}] \text{ ppm. } C_{29}H_{43}NP_2SeSi_2$ (*M* = 602.16, exact mass 602.74): calcd. C 57.79, H 7.19, N 2.32%; found C 57.79, H 7.32, N 2.45 %. **MS** (EI, 90 eV) m/z (%) = 415 (10, Ph₂PSeNHAda⁺), 369 (36, $M^+ - Ph_2Se$), 73 (100, SiMe₃⁺).

1-Ada[Ph_2P(=Se)]NH: ³¹**P NMR** (CDCl₃, 121 MHz): δ = 44.8 [s, ¹*J*(SeP) = 752.1 Hz. ⁷⁷Se NMR (CDCl₃, 57 MHz): δ = -185.6 [d, ¹*J*(SeP) = 752.2 Hz] ppm. C₂₂H₂₆NPSe (*M* = 414.38, exact mass 415.10): calcd. C 63.77, H 6.32, N 3.38%; found C 63.12, H 6.11, N 3.35%. **MS** (EI, 90 eV) *m/z* (%) = 415 (100) [M⁺], 334 (36) [M⁺ - Se].

P-(2,4,6-Tri-tert-butylphenyl)(diphenylphosphanyl)amino-C-bis-(trimethylsilyl)phosphaalkene (3g): 2,4,6-Tri-tert-butylphenylaminodiphenylphosphane (1g) (1.8 g, 4.05 mmol) in 10 mL THF reacted with an equimolar amount of LDA (2.1 mL of a 2 M solution in THFheptane-ethylbenzene, 4.2 mmol) to give $2g (\delta = {}^{31}P = 58.0 \text{ ppm})$, which in turn reacted with 0.9 g (4.05 mmol) (Me₃Si)₂C=PCl, furnishing **3g** (2.3 g, 90%) as a yellowish solid. ¹**H** NMR (C_6D_6 , 300 MHz): $\delta = 8.04-6.95$ (m, aromatic H), 1.65 [s,*o*-tBu (Mes^{*})], 1.35 [s, *p*-tBu (Mes*)], 0.62 [d, ${}^{4}J(P,H) = 3.5$ Hz, SiMe₃], 0.0 (s, SiMe₃). ${}^{13}C$ NMR $(C_6D_6, 75.46 \text{ MHz}): \delta = 147.6 \text{ [d}, {}^{3}J(P,C) = 4.1 \text{ Hz}, o-C (Mes^*)\text{]}, 147.6$ (s, p-C, Mes^{*}), 143.1 [d,d, ${}^{2}J(P,C) = 16.7$ and 9.9 Hz, *ipso*-C (Mes^{*}), 139.9 [d,d, ${}^{1}J(P,C) = 29.2$, ${}^{3}J(P,C) = 6.9$ Hz, *ipso*-C (PPh₂)],135.3 [d,d, ${}^{2}J(P,C) = 28.9, {}^{4}J(P,C) = 8.3 \text{ Hz}, 129.4 \text{ (s, } p-C, PPh_2], 128.1 \text{ [d,}$ ${}^{3}J(P,C) = 9.3 \text{ Hz}, m-C, PPh_{2}], 126.8 \text{ [d, } {}^{4}J(P,C) = 2.3 \text{ Hz}, m-C, \text{Mes*}],$ 37.9 [d, ${}^{3}J(P,C) = 0.9$ Hz, o-C], 34.7 [t, line distance 2.6 Hz, CH₃ (otBu, Mes*)], 34.5 [s, p-tBu, Cquart.], 31.1 [s, CH₃, p-tBu (Mes*)], 5.0 $[d, {}^{3}J(P,C) = 20.3 \text{ Hz}, \text{ SiMe}_{3}], 3.3 [d, {}^{3}J(P,C) = 2.2 \text{ Hz}, \text{ SiMe}_{3}]. {}^{31}P$ **NMR** (C₆D₆, 121.5 MHz): δ = 337.7 [d, ²J(P,P) = 21 Hz, P = C, I = ca. 1.5], 330.5 [d, ${}^{2}J(P,P) = 57.1$ Hz, P = C, I = ca. 7], 74.0 [d, ${}^{2}J(P,P)$ = 57.1 Hz, PPh₂, I = ca. 13.5], 55.1 [d, ${}^{2}J(P,P)$ = 20.9 Hz, PPh₂, I = ca. 2.6]. $C_{37}H_{57}NP_2Si_2$ [*M* = 633.97 (exact mass 633.35)]. **MS** (EI, 90 eV) m/z (%): 633 (44) [M⁺], 618 (35, M⁺- CH₃), 576 (20, $M^+ - tBu$), 448 (64, $M^+ - PPh_2$), 388 (30, $M^+ - Mes$), 73 (100, SiMe₃).

P-(2,6-Diisopropylphenyl)(diphenylphosphanyl)amino-C-bis(trimethylsilyl)phosphaalkene (3h): *P*-2,6-Diisopropylphenylaminodiphenylphosphane (**1h**) (2.5 g, 7.44 mmol) in 10 mL THF was metallated with an equimolar amount of *n*-butyllithium (2.5 M solution in hexane) leading to **2h** ($\delta = {}^{31}P = 42.4$ ppm). This reacted with 1.67 g (7.44 mmol) (Me₃Si)₂C=PCl delivering a yellow impure oil that contained, according to ${}^{31}P$ NMR, about 60% of **3h**, 20% of the starting material **1h**, and 20% of *P*-2,6-diisopropylphenylamino-*C*-bis(trimethylsilyl)phosphaalkene. A few pale yellow crystals of **3h** were grown from a THF/pentane mixture. ${}^{31}P$ NMR (C₆D₆, 81 MHz): $\delta = 335.8$ (s, br., P=C), and 58.8 (s, br., PPh₂), **3h** (about 60%), 316.5 (s, probably the DIPP-aminophosphaalkene, about 20%), 42. 9 (s, **1h**, about 20%).

P-tert-Butyl(diphenylphosphanyl)amino-C-bis(isopropyldimethylsilyl)phosphaalkene (4a): *t*Butylaminodiphenylphosphane (1a) (1.20 g, 4.66 mmol) in 10 mL THF reacted with LDA (2.4 mL of a 2M solution in THF-heptane-ethylbenzene, 4.8 mmol) to give 2a (δ = ${}^{31}P = 49.7 \text{ ppm}$), which in turn reacted with $(iPrMe_2Si)_2C=PCl (1.31 \text{ g}, 1.31 \text{ g})$ 4.66 mmol), yielding 2.0 g (85%) of 4a as a brown viscous oil. For proposed ¹H and ¹³C NMR assignments, see Scheme 5. ¹H NMR (300 MHz, C_6D_6): $\delta = 7.66-7.60$ (m, aryl H i), 7.13-6.97 (m, aryl H **k**, **j**), 1.46 (s, CH₃, **m**), 1.21–1.09 (m, C-H, **e**, **f**), 0.99 [d, ${}^{5}J(P,H) =$ 6.8 Hz, CH₃, **d**], 0.81 [d, ${}^{5}J(P,H) = 4.0$ Hz, CH₃, **c**], 0.21 [d, ${}^{4}J(P,H) =$ 2.3 Hz, CH₃Si b], 0.0 ppm (s, CH₃Si a). ¹³C NMR (75.5 MHz, C₆D₆): $\delta = 179.1$, (d, d-like X-part of AMX, N = 98.7 Hz and 6 Hz, P=C, g), 139.4 [d, ${}^{1}J(P,C) = 21.0$ Hz, aryl-C, h], 134.1 [d, d-like X-part of AMX, N = 22.7 Hz and 3.6 Hz, aryl-C, i), 128.9 [d, ${}^{3}J(P,C) = 6.4$ Hz, aryl-C, j], 128.3 (s, aryl p-C, k), 60.3 [d, d, ${}^{2}J(P,C) = 16.8$ Hz and 1.6 Hz, N-C, I], 32.8 [d, d-like X-part of AMX, ${}^{3}J(P,C) = 8.4$ Hz and 5.2 Hz, CH₃ (*t*Bu), **m**], 17.9 [s, CH₃ (*i*Pr), **c**], 17.8 [d, ${}^{4}J(P,C) = 2.2$ Hz, CH₃ (*i*Pr), **d**], 15.4 [d, ${}^{3}J(P,C) = 12.6$ Hz, CH (*i*Pr), **f**], 14.3 [s, CH (iPr), e), -0.4 [d, ²J(P,C) = 18.6, CH₃Si, b), -1.7 (s, CH₃Si, a). ²⁹Si **NMR** (59.6 MHz, C₆D₆): $\delta = 1.8$ [d, ²J(PSi) = 35.2 Hz], -4.4 [d, $^{2}J(PSi) = 9.5 \text{ Hz}]$. ³¹**P NMR** (121.5 MHz, C₆D₆): $\delta = 382.3$ (d) and 47.0 [d, ${}^{2}J(P,P) = 6.6 \text{ Hz}$]. C₂₇H₄₅NP₂Si₂ (M = 501.77; exact mass 501.26 g.mol⁻¹): calcd. C 64.63, H 9.04, N 2.79 %; found C 62.99, H 8.95, N 2.70%. MS (EI, 90 eV) m/z (%); 501 (4) [M⁺], 400 (100, $M^+ - iPrMe_2Si$, 344 (16, $M^+ - iPrMe_2Si$, $-C_4H_8$).

P-1-Adamantyl(diphenylphosphanyl)amino-C-bis(isopropyldimethylsilyl)phosphaalkene (4b): 1-Adamantylaminodiphenylphosphane (1b) (0.93 g, 2.76 mmol) in 10 mL THF reacted with LDA (1.4 mL of a 2 M solution in THF-heptane-ethylbenzene, 2.8 mmol) to give **2b** ($\delta = {}^{31}P = 45.3 \text{ ppm}$), which in turn reacted with (*i*PrMe₂Si) ₂C=PCl (0.78 g, 2.76 mmol), yielding 1.3 g (82%) of **4b** as a yellow solid, m.p. 97-98 °C. Recrystallization from hexane at -20 °C gave yellow crystals suitable for X-ray diffraction. ¹H NMR (300 MHz, C_6D_6): $\delta = 7.73-7.68$ (m, aryl H i), 7.10-6.94 (m, aryl H k, j), 1.92 (s, Ada,), 1.51-1.39 (m, Ada,), 1.13-0.95 (m, Ada), 1.13-0.95 (m, C-H, c, e, f), 0.83 [d, ${}^{5}J(P,H) = 7.2$ Hz, CH₃, d], 0.20 [d, ${}^{4}J(P,H) = 2.5$ Hz, CH₃Si b), 0.0 ppm (s, CH₃Si a). ¹³C NMR (75.5 MHz, C₆D₆): δ = 183.7, (d, ${}^{1}J$ = 102.6 Hz, P = C, g), 139.8 [d, d-like X-part of AMX, ${}^{2}J(P,C) = 19.1, {}^{4}J(P,C) = 2.5 \text{ Hz, aryl-C, } \mathbf{h}$], 134.6 [d, d-like X-part of AMX, ${}^{2}J(P,C) = 22.9$, ${}^{4}J(P,C) = 4.5$ Hz, aryl-C, i], 128.2 (s, aryl p-C, **k**), 127.8 [d, ${}^{3}J(P,C) = 6.5$ Hz, aryl-C, **j**], 61.1 [d, ${}^{2}J(PC) = 19.6$ Hz, N-C, I], 45.8 [d, d-like X-part of AMX, ${}^{3}J = 10.7$ Hz and 4.0 Hz, Ada], 36.3 (s, Ada), 30.9 (s, Ada), 18.0 [s, CH₃ (*i*Pr), c], 17.8 [d, ${}^{4}J(P,C) =$ 2.8 Hz, CH₃ (*i*Pr), **d**], 15.5 [d, ${}^{3}J(P,C) = 13.6$ Hz, CH (*i*Pr), **f**], 14.6 [s, CH (*i*Pr), **e**], -0.3 [d, ${}^{2}J(P,C) = 17.8$, CH₃Si, **b**], -1.6 (s, CH₃Si, **a**). ²⁹Si NMR (59.6 MHz, C₆D₆): $\delta = 1.5$ [d, ²J(PSi) = 36.0 Hz], -4.7 [d, ${}^{2}J(PSi) = 9.7 \text{ Hz}$]. ³¹**P NMR** (121.5 MHz, C₆D₆): $\delta = 385.7$ (d) and 38.3 [d, ${}^{2}J(P,P) = 10.0 \text{ Hz}$] ppm. C₃₃H₅₁NP₂Si₂ (M = 579.99, exact mass = 359.30 g·mol⁻¹): calcd. C 68.35, H 8.86, N 2.42%; found C

66.51, H 8.80, N 2.45%. **MS** (EI, 90eV) m/z (%) = 579 (4) [M⁺], 564 (2, M⁺ -CH₃), 478 (100, M⁺ - *i*PrMe₂Si).

P-Isopropyl(diphenylphosphanyl)amino-C-bis(isopropyldimethylsilyl)phosphaalkene (4c): Isopropylaminodiphenylphosphane (1c) (1.04 g, 4.26 mmol) in 10 mL THF reacted with LDA (2.2 mL of a 2 M solution in THF-heptane-ethylbenzene, 4.4 mmol) to give 2c ($\delta =$ ${}^{31}P = 41.9 \text{ ppm}$), which in turn reacted with $(iPrMe_2Si)_2C=PCl (1.2 \text{ g}, 1.2 \text{ g})_2C=PCl (1.2 \text{ g})_2C=PCl (1$ 4.26 mmol), yielding 1.77 g (86%) of 4c as a brown viscous oil. ¹H **NMR** (300 MHz, C_6D_6): $\delta = 7.30-7.23$ (m, aryl H i), 6.94–6.82 (m, aryl H k, j), 4.12-3.97 (m, *i*Pr-N), 1.31-1.22 (m, *i*Pr), 1.03 [d, J(P,H) = 6.6 Hz, iPr, 0.76 [d, J(P,H) = 7.6 Hz, iPr], 0.08 (s, CH₃Si a), - 0.01 [d, ${}^{4}J(P,H) = 3.7 \text{ Hz}$, CH₃Si b]. ${}^{13}C$ NMR (75.5 MHz, C₆D₆): $\delta =$ 144.3, [d, d-like X-part of AMX, ${}^{1}J(P,C) = 91.0$, ${}^{3}J(P,C) = 4.6$ Hz, P = C, g], 139.3 [d, d-like X-part of AMX, ${}^{1}J(P,C) = 18.3$, ${}^{2}J(P,C) =$ 4.6 Hz, aryl-C, h], 132.5 [d, d-like X-part of AMX, ${}^{2}J(P,C) = 21.4$, ${}^{4}J(P,C) = 2.4$ Hz, aryl-C, i], 128.6 (s, aryl p-C, k), 128.6 [d, ${}^{3}J(P,C) =$ 6.1 Hz, aryl-C, **j**], 53.0 [d, ${}^{2}J$ (PC) = 13.6 Hz, N-C, **l**], 24.5 [d, d-like X-part of AMX, ${}^{3}J(P,C) = 8.9$ Hz and 5.2 Hz, CH₃ (*i*Pr-N), m], 17.8 [s, CH₃ (*i*Pr), c], 17.7 [d, ${}^{4}J(P,C) = 2.2$ Hz, CH₃ (*i*Pr), d], 15.2 [d, ${}^{3}J(P,C) = 10.2 \text{ Hz}, CH (iPr), f$], 13.9 [d, d-like X-part of AMX, J =5.7 Hz and 2.1 Hz, CH (*i*Pr), e], -0.4 (s, CH₃Si, a), -0.6 [d, ²J(P,C) = 18.6, CH₃Si, **b**]. ²⁹Si NMR (59.6 MHz, C₆D₆): δ = 3.1 [d, ²J(PSi) = 40.1 Hz], -5.6 [d, ${}^{2}J(PSi) = 10.7$ Hz]. ³¹P NMR (121.5 MHz, C₆D₆): $\delta = 343$ [d, ²*J*(P,P) = 13.8 Hz, P = C], 44 [br., ²*J*(P,P) not resolved, PPh₂] ppm.

P-Triphenylmethyl(diphenylphosphanyl)amino-C-bis(isopropyldimethylsilyl)phosphaalkene (4d): Triphenylmethylaminodiphenylphosphane 1d (0.52 g, 1.17 mmol) in 10 mL THF reacted with LDA (0.6 mL of a 2*M* solution in THF-heptane-ethylbenzene, 1.2 mmol) to give 2d ($\delta = {}^{31}P = 53.5$ ppm), which in turn reacted with (*i*PrMe₂Si)₂C=PCl (0.33 g, 1.17 mmol), yielding a yellowish oil. According to ${}^{31}P$ NMR (two sets of AX patterns) this contains two phosphanylamino phosphaalkene species (about 60% and 35% of the signal intensity), accompanied by small amounts of the aminophosphaalkene (*i*PrMe₂Si)₂C=PN(H)CPh₃ [$\delta = {}^{31}P = 317.6$ ppm (s); pure sample: $\delta = 318$ ppm]^[8] and of the aminophosphane 1d [$\delta = {}^{31}P = 27.5$ ppm (s)]. Purification of 4d was not achieved. ³¹P NMR (C₆D₆, 81 MHz): 4d: $\delta = 366.5$ [d, ${}^{2}J(P,P) = 32.8$ Hz], 361.5 [d, ${}^{2}J(P,P) = 40.0$ Hz], 25.6 ppm [d, ${}^{2}J(P,P) = 32.8$ Hz], 15.4 ppm [d, ${}^{2}J(P,P) = 40.0$ Hz].

P-Phenyl(diphenylphosphanyl)amino-C-bis(isopropyldimethylsilyl)phosphaalkene (4e): Phenylaminodiphenylphosphane (1e) (1.87 g, 6.75 mmol) in 10 mL THF reacted with LDA (1.4 mL of a 2 M solution in THF-heptane-ethylbenzene, 2.8 mmol) to give 2e ($\delta =$ ${}^{31}P = 38.2 \text{ ppm}$), which in turn reacted with $(iPrMe_2Si)_2C=PCl (1.9 \text{ g},$ 6.75 mmol) to yield 4e (2.94 g, 84%) as a yellow solid (m.p. 81-82 °C). ¹H NMR (300 MHz, C_6D_6): $\delta = 7.74-6.85$ (m, several multiplets from aryl protons), 1.09-0.94 (m, C-H, *i*Pr, c, d, e, f, d), 0.38 $[d, {}^{4}J(P,H) = 3.6 \text{ Hz}, \text{ CH}_{3}\text{Si} \text{ b}), 0.0 \text{ ppm} (s, \text{ CH}_{3}\text{Si} \text{ a}). {}^{13}\text{C} \text{ NMR}$ (75.5 MHz, C_6D_6): $\delta = 163.8$, (d, d-like X-part of AMX, ${}^1J(P,C) = 93$, ${}^{3}J(P,C) = 7.5 \text{ Hz}, \text{ g}$, 150.5 (d, d-like X-part of AMX, J(P,C) = 10.7and 5.7 Hz, aryl-C, I), 138.4 (d, d-like X-part of AMX, J(P,C) = 19.9 and 5.4 Hz, h), 133.8 (d, d-like X-part of AMX, *J*(P,C) = 21.5 and 2.8, i), 129.6 [d, J(P,C) = 10.5 Hz, aryl-C], 128.9 [d, J(P,C) = 6.5 Hz, aryl-C, j], 127.1 (d, d-like X-part of AMX, N = 7.1 and 1.6 Hz, aryl-C), 124.8 [d, J(P,C) = 1.6 Hz, aryl-C], 18.34 [s, CH₃ (*i*Pr), c], 18.3 [s, CH₃ (iPr), **d**], 15.5 [d, ${}^{3}J(P,C) = 9.4$ Hz, CH (iPr), **f**], 13.2 [s, CH (iPr), **e**), -0.5 [d, ${}^{2}J(P,C) = 20.9$, CH₃Si, b), -1.9 (s, CH₃Si, a). ${}^{29}Si$ NMR $(59.6 \text{ MHz}, \text{ C}_6\text{D}_6)$: $\delta = 2.3 \text{ [d, } {}^2J(\text{PSi}) = 38.2 \text{ Hz}\text{]}, -4.6 \text{ [d, } {}^2J(\text{PSi}) =$ 9.4 Hz]. ²⁹Si NMR (59.6 MHz, C₆D₆): $\delta = [ppm] = 2.3$ [d, ²J(PSi) =

38.2 Hz], -4.6 [d, ${}^{2}J(PSi) = 9.4$ Hz]. ³¹**P** NMR (81 MHz, C₆D₆): $\delta = 351.3$ [d, ${}^{2}J(P,P) = 67.5$ Hz], 60.9 [d, ${}^{2}J(P,P) = 67.5$ Hz]. C₂₉H₄₁NP₂Si₂ (M = 521.76, exact mass = 521.23): calcd. C 66.76, H 7.92, N 2.68%; found C 65.78, H 7.92, N 2.99%. MS (EI, 90 eV) m/z (%): 521 (7) [M⁺], 506 (2, M⁺ - CH₃), 478 (3, M⁺ - *i*Pr), 420 (100, M⁺. *i*PrMe₂Si).

P-2,4,6-Trimethylphenyl(diphenylphosphanyl)amino-C-bis(isopropyldimethylsilyl)phosphaalkene (4f): 2,4,6-Trimethylphenylaminodiphenylphosphane 1f (0.68 g, 2.14 mmol) in 10 mL THF reacted with LDA (1.1 mL of a 2 M solution in THF-heptane-ethylbenzene, 2.2 mmol) to give 2e ($\delta = {}^{31}P = 49.9$ ppm), which in turn reacted with (*i*PrMe₂Si)₂C=PCl (0.6 g, 2.14 mmol), forming, according to ${}^{31}P$ NMR, 4f as the main product and the starting material 1f ($\delta = {}^{31}P =$ 36.5 ppm) as impurity. The attempted purification of 4f failed since increasing amounts of 1f were observed. 4f: ${}^{31}P$ NMR (C₆D₆, 81 MHz) $\delta = 331$ ppm and 64 ppm [broad signals, ${}^{2}J$ (P,P) not resolved].

P-(2,4,6-Tri-tert-butylphenyl)(diphenylphosphanyl)amino-C-bis-(isopropyldimethylsilyl)phosphaalkene (4g): 2,4,6-Tri-tert-butylphenylaminodiphenylphosphane (1g) (1.58 g, 3.54 mmol) in 10 mL THF reacted with an equimolar amount of LDA (1.8 mL of a 2M solution in THF-heptane-ethylbenzene, 3.6 mmol) to give $2g \ (\delta = {}^{31}P$ = 58.3 ppm). This in turn reacted with $(iPrMe_2Si)_2C=PCl$ (1.0 g, 3.54 mmol) to form 4g as a mixture of isomers (conformers) also containing the aminophosphaalkene $(iPrMe_2Si)_2C=PN(Mes^*)PPh_2$ ($\delta =$ ${}^{31}P = 325 \text{ ppm}$).^[8] One of the isomers of 4g was crystallized from a mixture of hexane and acetonitrile at -20 °C, but NMR spectroscopic data could not be determined because of the small amount of crystals. 4g (mixture of rotamers): ³¹P NMR (81 MHz, C₆D₆): δ = 341.2 and 72.6 [d, ${}^{2}J(P,P) = 67.5$ Hz, about 60% signal intensity], 337.8 and 50.2 [d, ${}^{2}J(P,P) = 67.5$ Hz, about 40% signal intensity]. MS (EI, 90 eV) m/z(%) 689 (2.2) $[M^+]$, 674 (6.8, $M^+ - CH_3$), 646 (12, $M^+ - C_3H_7$), 444 $(42, M^+ - Mes^*).$

X-ray Crystallography: Crystal data are summarized in Table 3 and Table 4. Crystals were mounted in inert oil on glass fibres and transferred to the cold gas stream of an Oxford Diffraction Xcalibur A or (for 3h) Nova E diffractometer. Intensity measurements were performed using monochromated Mo- K_{α} radiation or (for **3h**) mirror-focussed Cu- K_{α} radiation, respectively. Absorption corrections were based on multiscans. Structures were refined anisotropically on F^2 using the program SHELXL-97.^[14] All NH hydrogens were refined freely; other hydrogen atoms were included using a riding model or rigid methyl groups. Exceptions and special features: Compound 3g crystallizes in $P2_12_12_1$, but the symmetry is close to *Pnma*. The structure was refined as an enantiomeric twin, with a Flack parameter of 0.22(4). For compound 4g, the SiMe2iPr group Si2, C6-10 was disordered over two positions with relative occupations 0.835, 0.165(2). Appropriate similarity restraints were used to improve refinement stability, but the dimensions of disordered groups should be interpreted with caution.

We reported the structure of compound **3b** in a short communication, CCDC-731434.^[3] Herein it is discussed in detail for the first time.

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of charge on quoting the depository numbers CCDC-1055077 (1b), CCDC-1055311 (1f), CCDC-1055310 [1f(P=O)], CCDC-1054304 (3a), CCDC-1054305 (3g), CCDC-1054302 (3h), CCDC-1055308 (4b), and CCDC-1055309 (4g). (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, http://www. ccdc.cam.ac.uk)

Table 3. X-ray crystallographic details for 1b, 1f, 1f(P=O), and 3a.

	1b	1f	1f(P=O)	3 a
Chemical formula	C ₂₂ H ₂₆ NP	C ₂₁ H ₂₂ NP	C ₂₁ H ₂₂ NOP	C ₂₃ H ₃₇ NP ₂ Si ₂
M _r	335.41	319.37	335.37	445.66
Crystal system	triclinic	monoclinic	triclinic	triclinic
Space group	PĪ	$P2_1/n$	$P\bar{1}$	$P\bar{1}$
Temperature /K	100	100	100	100
a /Å	7.5097(3)	15.3841(3)	9.5330(6)	9.9254(2)
b /Å	11.1582(5)	4.61047(8)	10.1794(8)	10.0539(3)
c /Å	12.2429(5)	25.9647(4)	20.0680(10)	14.7695(2)
a /°	101.028(3)	90	76.972(4)	72.141(2)
β /°	105.671(3)	107.566(2)	77.500(4)	80.766(2)
γ /°	107.589(5)	90	70.086(6)	67.700(3)
$V/Å^3$	898.99	1755.75	1763.0	1296.27
$d_{\rm calc}$ /g·cm ⁻³	1.239	1.208	1.264	1.142
Z	2	4	4	2
F(000)	360	680	712	480
μ /mm ⁻¹	0.16	0.16	0.16	0.27
Crystal size /mm	$0.10 \times 0.09 \times 0.07$	$0.26 \times 0.23 \times 0.19$	$0.14 \times 0.13 \times 0.06$	$0.16 \times 0.14 \times 0.11$
Transmissions	No abs. corr.	0.96-1.00	0.99-1.00	0.97-1.00
$2\theta_{\rm max}$ /°	52.7 (Mo- K_a)	56.6 (Mo- K_{a})	52.7 (Mo- K_a)	56.6 (Mo- K_a)
No. of measured and independent reflections	21740, 3675	54206, 4342	46268, 7201	25526, 5977
R _{int}	0.040	0.025	0.062	0.032
$wR(F^2)$ all refl., $R_1 [F > 4\sigma(F)]$	0.062, 0.033	0.097, 0.034	0.085, 0.040	0.077, 0.031
$S(F^2)$	0.88	1.07	0.82	0.95
No. of parameters / restraints	221 / 0	215 / 0	447 / 0	262 / 0
$\Delta \rho_{\rm max, min}$ /e·Å ⁻³	0.29, -0.31	0.45, -0.21	0.33, -0.36	0.48, -0.20

Table 4. X-ray crystallographic details for 3g, 3h, 4b and 4g.

	3g	3h	4b	4g
Chemical formula	C37H57NP2Si2	C31H45NP2Si2	C ₃₃ H ₅₁ NP ₂ Si ₂	C41H65NP2Si2
M _r	633.96	549.80	579.87	690.06
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}2_{1}2_{1}$	$P2_1/n$	$P2_1/n$	$P2_1/c$
Temperature /K	100	100	100	100
a /Å	11.2381(2)	8.6563(2)	10.3169(4)	21.9125(4)
b /Å	15.7876(2)	18.6668(2)	33.8246(6)	15.8146(2)
c /Å	21.0360(2)	20.1109(4)	10.6425(4)	11.9245(2)
a /°	90	90	90	90
βI°	90	98.159(2)	118.456(4)	95.475(2)
γ /°	90	90	90	90
$V/Å^3$	3732.26	3216.74	3262.38	4115.12
d _{calc} /g·cm ⁻³	1.128	1.135	1.181	1.114
Z	4	4	4	4
F(000)	1376	1184	1256	1504
μ /mm ⁻¹	0.21	2.1	0.23	0.19
Crystal size /mm	$0.27 \times 0.23 \times 0.22$	$0.18 \times 0.15 \times 0.15$	$0.25 \times 0.13 \times 0.12$	$0.35 \times 0.30 \times 0.15$
Transmissions	0.98-1.00	0.66-1.00	0.99-1.00	0.96-1.00
$2\theta_{\rm max}$ /°	58.4 (Mo- K_a)	152 (Cu- K_{α})	56.6 (Mo- K_{α})	56.6 (Mo- K_{α})
No. of measured and independent reflections	76591, 9265	36226, 6595	84436, 8086	135264, 10180
R _{int}	0.024	0.032	0.036	0.037
$wR(F^2)$ all refl., $R_1 [F > 4\sigma(F)]$	0.071, 0.026	0.094, 0.034	0.079, 0.030	0.081, 0.030
$S(F^2)$	1.00	1.04	0.99	1.02
No. of parameters / restraints	395 / 0	335 / 0	351 / 0	457 / 102
$\Delta \rho_{\rm max, min}$ /e·Å ⁻³	0.28, -0.19	0.34, -0.30	0.41, -0.18	0.35, -0.26

Supporting Information (see footnote on the first page of this article): contains the structures of **1b**, **1f**, and of **1f**(**P=O**) (Figs. S1 – S3) as well as a consideration of conformational influences on 2 *J*(PP) (Scheme S1).

Acknowledgments

We thank the COST programme CM0802 "PhosSciNet" and the Deutsche Forschungsgemeinschaft (MO290/28–1) for financial support. **Keywords:** Phosphaalkenes; Phosphane ligands; Iminophosphanes; π -interaction; Conformational analysis

References

 M. S. Balakrishna, V. Sreenivasa Reddy, S. S. Krishnamurty, J. F. Nixon, J. C. T. R. Burckett St. Laurent, *Coord. Chem. Rev.* 1994, 129, 1–90.

- [2] a) R. M. Bîrzoi, D. Bugnariu, R. Guerrero Gimeno, D. Lungu, V. Zota, C. Daniliuc, P. G. Jones, Z. Benkõ, L. Könczöl, L. Nyulászi, R. Bartsch, W.-W. du Mont, E. Niecke, *Chem. Eur. J.* 2010, 16, 4843–4851; b) R. M. Bîrzoi, D. Bugnariu, R. Guerrero Gimeno, A. Riecke, C. Daniliuc, P. G. Jones, L. Könczöl, Z. Benkõ, L. Nyulászi, R. Bartsch, W.-W. du Mont, *Eur. J. Inorg. Chem.* 2010, 29–33; c) W.-W. du Mont, R. Guerrero Gimeno, D. Lungu, R. M. Bîrzoi, C. G. Daniliuc, C. Goers, A. Riecke, R. Bartsch, *Pure Appl. Chem.* 2013, 85, 633–647.
- [3] D. Lungu, C. Daniliuc, P. G. Jones, L. Nyulászi, Z. Benkõ, R. Bartsch, W.-W. du Mont, *Eur. J. Inorg. Chem.* 2009, 2901–2905.
- [4] D. Lungu, R. M. Bîrzoi, C. Goers, R. Bartsch, W.-W. du Mont, C. Daniliuc, P. G. Jones, *Eur. J. Inorg. Chem.* **2016**, 700–708.
- [5] D. Gudat, E. Niecke, W. Sachs, P. Rademacher, Z. Anorg. Allg. Chem. 1987, 545, 7–23.
- [6] a) V. Thelen, M. Nieger, E. Niecke, 14th Intern. Conference on Phosphorus Chemistry, Cincinnati (USA), 1998, Abstract P270;
 V. Thelen, M. Nieger, Phosphorus Sulfur Silicon Relat. Elem.
 1999, 147, 407; b) V. Zota, Dissertation, Univ. Bonn, Germany 1999.
- [7] R. Guerrero Gimeno, Dissertation, Techn. Univ. Braunschweig, Germany 2008.

- [8] a) R. M. Bîrzoi, Dissertation, Techn. Univ. Braunschweig 2010;
 b) R. M. Bîrzoi, P. G. Jones, R. Bartsch, W.-W. du Mont, to be published.
- [9] A. N. Chernega, E. B. Rusanov, A. V. Ruban, V. D. Romanenko, *Zh. Strukt. Khim.* **1991**, *32*, 117–128.
- [10] a) R. J. Cross, T. H. Green, R. Keat, J. Chem. Soc., Dalton Trans.
 1976, 1424–1428; b) A. H. Cowley, M. J. S. Dewar, W. R. Jackson, W. B. Jennings, J. Am. Chem. Soc. 1970, 92, 5206–5213; c) M. T. Ashby, Z. Li, Inorg. Chem. 1992, 31, 1321–1322; d) N. Poetschke, M. Nieger, M. A. Khan, E. Niecke, M. T. Ashby, Inorg. Chem. 1997, 36, 4087–4093.
- [11] A. N. Chernega, A. V. Ruban, V. D. Romanenko, L. N. Markovskii, A. A. Korkin, M. Y. Antipin, Y. T. Struchkov, *Heteroat. Chem.* **1991**, 2, 229–241.
- [12] C. Goers, Dissertation, Techn. Univ. Braunschweig, Germany 2012.
- [13] J. Mahnke, A. Zanin, W.-W. du Mont, F. Ruthe, P. G. Jones, Z. Anorg. Allg. Chem. 1998, 624, 1447–1454.
- [14] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.

Received: December 14, 2017 Published online: April 10, 2018