Received: 10 November 2010

Revised: 14 February 2011

(wileyonlinelibrary.com) DOI 10.1002/mrc.2754

Published online in Wiley Online Library: 31 March 2011

Magnetic Resonance in Chemistry

Complete NMR data of methoxylated *cis*- and *trans*-stilbenes as well as 1,2-diphenylethanes

Geunhyeong Jo,^a Jiye Hyun,^a Doseok Hwang,^a Young Han Lee,^b Dongsoo Koh^c* and Yoongho Lim^a*

Resveratrol is a polyphenol isolated from many natural sources including grapes, mulberries, eucalyptus, spruce, lilies, and peanuts. The hydroxyl groups in polyphenols can be substituted with various functional groups, allowing production of multiple derivatives. NMR spectroscopy is used to identify new derivatives. Since the complete NMR data of the known derivatives can be useful for identification of the newly isolated derivatives, here, we report the synthesis of 14 methoxylated stilbenes and four 1,2-diphenylethanes and their NMR data. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: ¹H NMR; ¹³C NMR; 2D NMR; flavonoids; stilbenes

Introduction

Polyphenols such as stilbenes (C6–C2–C6) are classified based on their carbon skeleton. Resveratrol (*trans*-3,5,4'-trihydroxystilbene), a stilbene found in many natural sources, including grapes, mulberries, eucalyptus, spruce, lilies, and peanuts,^[1] is produced by plants as a defense mechanism. In humans, it acts as a treatment for cardiovascular diseases and as an anti-oxidative and anticancer agent.^[2] After the discovery of its target proteins, research into resveratrol derivatives gained considerable interest.^[3] However, their application is limited because of poor oral bioavailability, which results in rapid excretion from the body. Methoxylation can overcome low bioavailability and increase metabolic stability.^[4] In addition, because small structural changes can cause a large change in biological activity, various derivatives are being prepared still.^[5]

The complete NMR data of the known derivatives can be useful for identification of the newly isolated derivatives. Therefore, we report the synthesis of 14 methoxylated stilbenes and four 1,2-diphenylethanes and their complete NMR data.

Experimental

Synthesis

All the methoxylated stilbene and 1,2-diphenylethane derivatives (1-18) were synthesized as shown in Scheme 1. 3,5-Dimethoxybenzaldehyde (I) was reduced to 3,5-dimethoxybenzylalcohol (II), which was chlorinated to 3,5-dimethoxybenzylchloride (III) as described in the literature.^[6] 3,5-Dimethoxybenzylchloride (III) was treated with triphenylphosphine to produce phosphonium salt (IV), which was used in the Wittig reaction along with methoxybenzaldehydes under basic conditions to produce a mixture of *cis* and *trans* isomers of stilbene derivatives (V). The *cis* and *trans* isomers were separated by flash column chromatography. The mixture of *cis* and *trans* isomers (V) was

hydrogenated using a palladium catalyst to produce the reduced products (**VI**).

NMR spectra

All synthetic derivatives were dissolved in CDCl₃. Their concentrations were adjusted to approximately 50 mM, and they were transferred to a 5-mm NMR tube. All NMR data were collected on a Bruker Avance 400 spectrometer system (9.4 T; Bruker, Karlsruhe, Germany) at a temperature of 298 K. For the ¹H NMR experiment, the relaxation delay and 90° pulse were 1 s and 10.2 µs, respectively. For the ¹³C NMR experiments, the relaxation delay and 90° pulse were 3 s and 10.3 µs, respectively. Two-dimensional experiments, such as COSY, TOCSY, HMQC, and HMBC, were performed by acquiring 2048 data points for t₂ and 256 data points for t₁. The long-range coupling time for HMBC was 70 ms. Prior to Fourier transformation, zero-filling of 2 K and the sine-squared bell window function were applied using XWin-NMR (Bruker).^[7] Analysis of the NMR data was carried out using SPARKY.^[8]

Correspondence to: Yoongho Lim, Department of Bioscience and Biotechnology, Konkuk University, Hwayang-Dong 1, Kwangjin-Ku, Seoul 143-701, Korea. E-mail: yoongho@konkuk.ac.kr.

Dongsoo Koh, Department of Applied Chemistry, Dongduk Women's University, Hawolgok-Dong, Seongbuk-Ku, Seoul 136-714, Korea. E-mail: dskoh@dongduk.ac.kr

- a Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Korea
- b Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
- c Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Korea

Table 1. ¹H NMR chemical shifts of the methoxylated stilbene and 1,2-diphenylethane derivatives **1–18** (ppm) in CDCl₃ and values in parentheses are ¹H,¹H coupling constants *J* (in Hz)^a

Position	1	2	3	4	5	6	7	8	9
2	6.47 (d, 2.2)	6.65 (d, 2.2)	6.39 (d, 2.3)	6.66 (d, 2.2)	6.43 (d, 2.3)	6.70 (d, 2.2)	6.48 (d, 2.3)	6.69 (d, 2.3)	6.47 (d, 2.3
4	6.34 (t, 2.2)	6.38 (d, 2.2)	6.27 (t, 2.3)	6.37 (t, 2.2)	6.33 (t, 2.3)	6.40 (t, 2.2)	6.35 (t, 2.3)	6.42 (t, 2.3)	6.36 (t, 2.3
6	6.47 (d, 2.2)	6.65 (d, 2.2)	6.39 (d, 2.3)	6.66 (d, 2.2)	6.43 (d, 2.3)	6.70 (d, 2.2)	6.48 (d, 2.3)	6.69 (d, 2.3)	6.47 (d, 2.
7	6.51 (d, 12.2)	6.88 (d, 16.1)	6.49 (d, 12.2)	6.95 (d, 16.5)	6.61 (d, 12.3)	7.06 (d, 16.3)	6.47 (d, 12.2)	7.07 (d, 16.3)	6.61 (d, 12
8	6.42 (d, 12.2)	7.02 (d, 16.1)	6.61 (d, 12.2)	7.30 (d, 16.5)	6.77 (d, 12.3)	7.43 (d, 16.3)	6.55 (d, 12.2)	6.93 (d, 16.3)	6.56 (d, 12
2′	7.15 (d, 8.5)	7.38 (d, 8.6)	-	-	-	-	7.24 (d, 8.7)	7.46 (d, 8.7)	6.87 (t, 2.5
3′	6.78 (d, 8.5)	6.87 (d, 8.6)	-	-	-	-	6.79 (d, 8.7)	6.91 (d, 8.7)	-
4′	-	-	-	-	6.82	6.84	-	_	6.77
					(dd, 1.8, 11.3)	(dd, 1.3, 8.0)			(dd, 2.5, 7.
5′	6.78 (d, 8.5)	6.87 (d, 8.6)	6.47 (d, 8.7)	6.69 (d, 8.8)	6.90 (t, 7.8)	7.05 (d, 8.0)	6.79 (d, 8.7)	6.91 (d, 8.7)	7.18 (t, 7.9
6′	7.15 (d, 8.5)	7.38 (d, 8.6)	6.89 (d, 8.7)	7.29 (d, 8.8)	6.84 (dd, 1.8, 11.3)	7.23 (dd, 1.3, 8.0)	7.24 (d, 8.7)	7.46 (d, 8.7)	6.90 (d, 7.
3-OMe	3.66 (s)	3.83 (s)	3.62 (s)	3.82 (s)	3.66 (s)	3.84 (s)	3.79 (s)	3.83 (s)	3.66 (s)
5-OMe	3.66 (s)	3.83 (s)	3.62 (s)	3.82 (s)	3.66 (s)	3.84 (s)	3.79 (s)	3.83 (s)	3.66 (s)
2′-OMe	_	_	3.86 (s)	3.89 (s)	3.87 (s)	3.85 (s)	_	_	_
3′-OMe	_	_	3.86 (s)	3.88 (s)	3.89 (s)	3.88 (s)	_	_	3.69 (s)
4′-OH	4.92 (s)	5.02 (s)	_	_	_	_	_	_	
4'-OMe	_	_	3.79 (s)	3.87 (s)	_	_	3.69 (s)	3.81 (s)	_
5'-OMe	-	-	_	_	_	_	-	_	-
Position	10	11	12	13	14	15	16	17	18
			(())	(40(1-2))		(24(122)		6.43 (d, 2.3)	6.35 (d, 2.4
2	6.67 (d, 2.2)	6.43 (d, 2.3)	6.69 (d, 2.3)	6.48 (d, 2.3)	6.68 (d, 2.3)	6.34 (d, 2.2)	6.36 (d, 2.3)	0.45 (u, 2.5)	0.55 (u, z.
	6.67 (d, 2.2) 6.40 (t, 2.2)	6.43 (d, 2.3) 6.31 (t, 2.3)	6.69 (d, 2.3) 6.38 (t, 2.3)	6.48 (d, 2.3) 6.35 (t, 2.3)	6.42 (t, 2.3)	6.34 (d, 2.2) 6.31 (t, 2.2)	6.36 (d, 2.3) 6.33 (t, 2.3)	6.37 (t, 2.3)	
4									6.31 (t, 2.4
4 6	6.40 (t, 2.2)	6.31 (t, 2.3)	6.38 (t, 2.3) 6.69 (d, 2.3)	6.35 (t, 2.3)	6.42 (t, 2.3)	6.31 (t, 2.2)	6.33 (t, 2.3)	6.37 (t, 2.3)	6.31 (t, 2.4
4 6 7	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4)	6.31 (t, 2.3) 6.43 (d, 2.3)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4)	6.35 (t, 2.3) 6.48 (d, 2.3)	6.42 (t, 2.3) 6.68 (d, 2.3)	6.31 (t, 2.2) 6.34 (d, 2.2)	6.33 (t, 2.3) 6.36 (d, 2.3)	6.37 (t, 2.3) 6.43 (d, 2.3)	6.31 (t, 2.4 6.35 (d, 2.4
4 6 7 8	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4)	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m)	6.31 (t, 2.4 6.35 (d, 2.4 2.84 (s)
4 6 7 8 2'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4)	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 7.03 (s)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m)	6.31 (t, 2.4 6.35 (d, 2.4 2.84 (s) 2.84 (s)
4 6 7 8 2'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6)	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) – 6.89	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) – 6.89	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 7.03 (s) 6.68 (d, 2.3)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90	6.31 (t, 2.4 6.35 (d, 2.4 2.84 (s) 2.84 (s) 6.35 (d, 2.4
4 6 7 8 2' 3'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) –	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) – 6.89 (dd, 0.8, 7.8)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) –	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 7.03 (s) 6.68 (d, 2.3) –	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) -	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5)	6.31 (t, 2.4 6.35 (d, 2.4 2.84 (s) 2.84 (s) 6.35 (d, 2.4 –
4 6 7 8 2' 3'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) – 6.82	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) - 6.89 (dd, 0.8, 7.8) 7.21	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 7.03 (s) 6.68 (d, 2.3) – 6.42	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23	6.31 (t, 2.4 6.35 (d, 2.4 2.84 (s) 2.84 (s) 6.35 (d, 2.4 – 6.31
4 6 7 8 2' 3' 4'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1)	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) - 6.89 (dd, 0.8, 7.8) 7.21 (dt, 1.7, 7.8)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) –	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 7.03 (s) 6.68 (d, 2.3) –	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) -	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5)	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4)
4 6 7 8 2' 3' 4'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) – 6.89 (dd, 0.8, 7.8) 7.21 (dt, 1.7, 7.8) 6.80	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92	6.31 (t, 2.4 6.35 (d, 2.4 2.84 (s) 2.84 (s) 6.35 (d, 2.4 - 6.31
4 7 8 2' 3' 4' 5'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1)	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) – 6.89 (dd, 0.8, 7.8) 7.21 (dt, 1.7, 7.8) 6.80 (dt, 0.8, 7.8)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96 (dt, 0.7, 7.8)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) -	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) -	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84 (d, 8.5)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92 (dt, 1.0, 7.5)	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) -
4 7 8 2' 3' 4' 5'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) - 6.89 (dd, 0.8, 7.8) 7.21 (dt, 1.7, 7.8) 6.80 (dt, 0.8, 7.8) 7.25	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96 (dt, 0.7, 7.8) 7.58	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84 (d, 8.5) 7.10	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92 (dt, 1.0, 7.5) 7.15	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35
4 6 7 8 2' 3' 4' 5' 6'	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10 (m)	6.31 (t, 2.3) 6.43 (d, 2.3) 6.58 (d, 12.2) 6.73 (d, 12.2) - 6.89 (dd, 0.8, 7.8) 7.21 (dt, 1.7, 7.8) 6.80 (dt, 0.8, 7.8) 7.25 (dd, 1.7, 7.8)	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96 (dt, 0.7, 7.8) 7.58 (dd, 1.7, 7.8)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48 (d, 2.3)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68 (d, 2.3)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84 (d, 8.5) 7.10 (d, 8.5)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74 (m)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92 (dt, 1.0, 7.5) 7.15 (dd, 1.7, 7.5)	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35 (d, 2.4)
4 6 7 8 2' 3' 4' 5' 6' 3-OMe	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10 (m) 3.82 (s)	$\begin{array}{c} 6.31 (t, 2.3) \\ 6.43 (d, 2.3) \\ 6.58 (d, 12.2) \\ 6.73 (d, 12.2) \\ - \\ 6.89 \\ (dd, 0.8, 7.8) \\ 7.21 \\ (dt, 1.7, 7.8) \\ 6.80 \\ (dt, 0.8, 7.8) \\ 7.25 \\ (dd, 1.7, 7.8) \\ 3.62 (s) \end{array}$	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96 (dt, 0.7, 7.8) 7.58 (dd, 1.7, 7.8) 3.82 (s)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48 (d, 2.3) 3.69 (s)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68 (d, 2.3) 3.85 (s)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84 (d, 8.5) 7.10 (d, 8.5) 7.10 (d, 8.5) 3.76 (s)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74 (m) 3.76 (s)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92 (dt, 1.0, 7.5) 7.15 (dd, 1.7, 7.5) 3.80 (s)	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35 (d, 2.4) 3.76 (s)
4 6 7 8 2' 3' 4' 5' 6' 3-OMe 5-OMe	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10 (m) 3.82 (s) 3.82 (s)	$\begin{array}{c} 6.31 \ (t, 2.3) \\ 6.43 \ (d, 2.3) \\ 6.58 \ (d, 12.2) \\ 6.73 \ (d, 12.2) \\ - \\ 6.89 \\ (dd, 0.8, 7.8) \\ 7.21 \\ (dt, 1.7, 7.8) \\ 6.80 \\ (dt, 0.8, 7.8) \\ 7.25 \\ (dd, 1.7, 7.8) \\ 3.62 \ (s) \\ 3.62 \ (s) \end{array}$	$\begin{array}{c} 6.38 \ (t, 2.3) \\ 6.69 \ (d, 2.3) \\ 7.04 \ (d, 16.4) \\ - \\ 6.89 \\ (dd, 0.7, 7.8) \\ 7.24 \\ (dt, 1.7, 7.8) \\ 6.96 \\ (dt, 0.7, 7.8) \\ 7.58 \\ (dd, 1.7, 7.8) \\ 3.82 \ (s) \\ 3.82 \ (s) \end{array}$	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48 (d, 2.3) 3.69 (s) 3.69 (s)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68 (d, 2.3) 3.85 (s) 3.85 (s)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84 (d, 8.5) 7.10 (d, 8.5) 3.76 (s) 3.76 (s)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74 (m) 3.76 (s) 3.76 (s)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92 (dt, 1.0, 7.5) 7.15 (dd, 1.7, 7.5) 3.80 (s) 3.80 (s)	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35 (d, 2.4) 3.76 (s) 3.76 (s)
4 6 7 8 2' 3' 4' 5' 6' 3-OMe 5-OMe 2'-OMe	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10 (m) 3.82 (s) 3.82 (s) -	$\begin{array}{c} 6.31 \ (t, 2.3) \\ 6.43 \ (d, 2.3) \\ 6.58 \ (d, 12.2) \\ 6.73 \ (d, 12.2) \\ - \\ 6.89 \\ (dd, 0.8, 7.8) \\ 7.21 \\ (dt, 1.7, 7.8) \\ 6.80 \\ (dt, 0.8, 7.8) \\ 7.25 \\ (dd, 1.7, 7.8) \\ 3.62 \ (s) \\ 3.62 \ (s) \\ 3.83 \ (s) \end{array}$	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96 (dt, 0.7, 7.8) 7.58 (dd, 1.7, 7.8) 3.82 (s) 3.88 (s)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48 (d, 2.3) 3.69 (s) 3.69 (s) -	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68 (d, 2.3) 3.85 (s) 3.85 (s) -	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) 7.10 (d, 8.5) 7.10 (d, 8.5) 3.76 (s) 3.76 (s) -	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74 (m) 3.76 (s) 3.76 (s) 3.76 (s) -	$\begin{array}{c} 6.37 \ (t, 2.3) \\ 6.43 \ (d, 2.3) \\ 2.89 \ (m) \\ 2.94 \ (m) \\ - \\ 6.90 \\ (dd, 1.0, 7.5) \\ 7.23 \\ (dt, 1.7, 7.5) \\ 6.92 \\ (dt, 1.0, 7.5) \\ 7.15 \\ (dd, 1.7, 7.5) \\ 3.80 \ (s) \\ 3.80 \ (s) \\ 3.86 \ (s) \end{array}$	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35 (d, 2.4) 3.76 (s) 3.76 (s) -
4 6 7 8 2' 3' 4' 5' 6' 3-OMe 5-OMe 2'-OMe 3'-OMe	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10 (m) 3.82 (s) 3.82 (s) - 3.84 (s)	$\begin{array}{c} 6.31 \ (t, 2.3) \\ 6.43 \ (d, 2.3) \\ 6.58 \ (d, 12.2) \\ 6.73 \ (d, 12.2) \\ - \\ 6.89 \\ (dd, 0.8, 7.8) \\ 7.21 \\ (dt, 1.7, 7.8) \\ 6.80 \\ (dt, 0.8, 7.8) \\ 7.25 \\ (dd, 1.7, 7.8) \\ 3.62 \ (s) \\ 3.62 \ (s) \end{array}$	$\begin{array}{c} 6.38 \ (t, 2.3) \\ 6.69 \ (d, 2.3) \\ 7.04 \ (d, 16.4) \\ - \\ 6.89 \\ (dd, 0.7, 7.8) \\ 7.24 \\ (dt, 1.7, 7.8) \\ 6.96 \\ (dt, 0.7, 7.8) \\ 7.58 \\ (dd, 1.7, 7.8) \\ 3.82 \ (s) \\ 3.82 \ (s) \end{array}$	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48 (d, 2.3) 3.69 (s) 3.69 (s) - 3.69 (s)	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68 (d, 2.3) 3.85 (s) 3.85 (s)	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) - 6.84 (d, 8.5) 7.10 (d, 8.5) 3.76 (s) 3.76 (s)	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74 (m) 3.76 (s) 3.76 (s)	6.37 (t, 2.3) 6.43 (d, 2.3) 2.89 (m) 2.94 (m) - 6.90 (dd, 1.0, 7.5) 7.23 (dt, 1.7, 7.5) 6.92 (dt, 1.0, 7.5) 7.15 (dd, 1.7, 7.5) 3.80 (s) 3.80 (s) 3.86 (s) -	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35 (d, 2.4) 3.76 (s) 3.76 (s)
	6.40 (t, 2.2) 6.67 (d, 2.2) 7.06 (d, 16.4) 7.01 (d, 16.4) 7.04 (d, 2.6) - 6.82 (dd, 2.6, 8.1) 7.27 (t, 8.1) 7.10 (m) 3.82 (s) 3.82 (s) -	$\begin{array}{c} 6.31 \ (t, 2.3) \\ 6.43 \ (d, 2.3) \\ 6.58 \ (d, 12.2) \\ 6.73 \ (d, 12.2) \\ - \\ 6.89 \\ (dd, 0.8, 7.8) \\ 7.21 \\ (dt, 1.7, 7.8) \\ 6.80 \\ (dt, 0.8, 7.8) \\ 7.25 \\ (dd, 1.7, 7.8) \\ 3.62 \ (s) \\ 3.62 \ (s) \\ 3.83 \ (s) \end{array}$	6.38 (t, 2.3) 6.69 (d, 2.3) 7.04 (d, 16.4) 7.45 (d, 16.4) - 6.89 (dd, 0.7, 7.8) 7.24 (dt, 1.7, 7.8) 6.96 (dt, 0.7, 7.8) 7.58 (dd, 1.7, 7.8) 3.82 (s) 3.88 (s)	6.35 (t, 2.3) 6.48 (d, 2.3) 6.56 (s) 6.56 (s) 6.48 (d, 2.3) - 6.35 (t, 2.3) - 6.48 (d, 2.3) 3.69 (s) 3.69 (s) -	6.42 (t, 2.3) 6.68 (d, 2.3) 7.03 (s) 6.68 (d, 2.3) - 6.42 (t, 2.3) - 6.68 (d, 2.3) 3.85 (s) 3.85 (s) -	6.31 (t, 2.2) 6.34 (d, 2.2) 2.84 (m) 2.84 (m) 7.10 (d, 8.5) 6.84 (d, 8.5) 7.10 (d, 8.5) 7.10 (d, 8.5) 3.76 (s) 3.76 (s) -	6.33 (t, 2.3) 6.36 (d, 2.3) 2.88 (m) 2.89 (m) 6.76 (m) - 6.80 (d, 7.5) 7.21 (d, 7.5) 6.74 (m) 3.76 (s) 3.76 (s) 3.76 (s) -	$\begin{array}{c} 6.37 \ (t, 2.3) \\ 6.43 \ (d, 2.3) \\ 2.89 \ (m) \\ 2.94 \ (m) \\ - \\ 6.90 \\ (dd, 1.0, 7.5) \\ 7.23 \\ (dt, 1.7, 7.5) \\ 6.92 \\ (dt, 1.0, 7.5) \\ 7.15 \\ (dd, 1.7, 7.5) \\ 3.80 \ (s) \\ 3.80 \ (s) \\ 3.86 \ (s) \end{array}$	6.31 (t, 2.4 6.35 (d, 2. 2.84 (s) 6.35 (d, 2. - 6.31 (t, 2.4) - 6.35 (d, 2.4) 3.76 (s) 3.76 (s) -

Results and Discussion

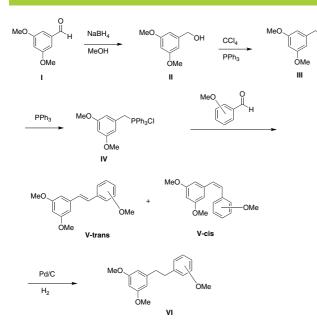
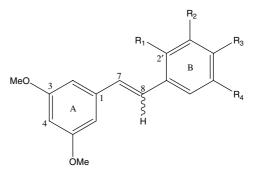

The structures and nomenclature of the methoxylated stilbene and 1,2-diphenylethane derivatives (**1–18**) are shown in Fig. 1. Among the 18 compounds, **3**, **4**, and **5** are novel. The ¹³C NMR spectrum for **3** had 16 peaks because of its symmetrical A ring. The carbon atoms were identified using DEPT experiments. Among the four quaternary carbons between $\delta = 55$ and 65 ppm, the ¹³C peak at $\delta = 55.4$ ppm was assigned to 3-OMe/5-OMe of A-ring because of its double intensity. C-3/C-5 and C-2/C6 were assigned in the same manner. H-2/H-6 were identified using HMQC data ($\delta = 6.39$ ppm). The long-range coupling between the ¹H peak at $\delta = 6.39$ ppm and the ¹³C peak at $\delta = 99.8$ ppm observed in the HMBC spectrum indicated that the ¹³C peak was C-4. Two ¹³C peaks at $\delta = 126.0$ and 130.0 ppm were attached to two ¹H peaks at $\delta = 6.61$ and 6.49 ppm, respectively, and they were assigned to the carbons of the double bond, C-7 or C-8. HMBC data showed that the ¹³C peak at $\delta = 130.0$ ppm was long-range coupled to H-2/H-6; thus, it was identified as C-7. The ¹³C peak at $\delta = 139.5$ ppm showed long-range coupling with H-8 at $\delta = 6.61$ ppm; thus, it was identified as C-1. In the same manner, the ¹H peak at $\delta = 6.89$ ppm was identified as H-6' of the B-ring because it was long-range coupled to C-8. Based on the interpretation of the COSY data, the ¹H peak at

Table 2. ¹³ C NMR chemical shifts of methoxylated stilbene and 1,2-diphenylethane derivatives 1 – 18 (ppm) in							m) in CDCl ₃	n CDCl₃		
Position	1	2	3	4	5	6	7	8	9	
1	139.8	140.0	139.5	140.2	139.0	139.9	139.7	139.8	139.3	
2	106.9	104.6	107.0	104.7	107.1	105.0	106.9	104.4	107.0	
3	160.9	161.2	160.7	161.1	160.6	161.2	160.8	161.1	160.8	
4	99.9	99.9	99.8	99.8	99.9	100.1	99.9	99.7	100.2	
5	160.9	161.2	160.7	161.1	160.6	161.2	160.8	161.1	160.8	
6	106.9	104.6	107.0	104.7	107.1	105.0	106.9	104.4	107.0	
7	128.5	126.6	130.0	128.1	130.9	130.1	128.9	128.8	130.8	
8	130.6	129.1	126.0	124.5	126.3	123.8	130.4	126.6	130.7	
1′	129.1	130.0	124.3	123.7	131.9	131.6	129.8	130.0	138.8	
2′	130.5	128.2	152.2	152.0	153.0	147.3	130.5	127.9	114.2	
3′	115.4	116.0	142.4	142.6	147.4	153.3	113.8	114.2	159.7	
4′	156.0	156.0	153.3	153.6	111.6	111.7	159.0	159.5	113.5	
5′	115.4	116.0	107.3	108.0	123.7	124.3	113.8	114.2	129.4	
6′	130.5	128.2	124.9	121.0	122.4	118.2	130.5	127.9	121.8	
3-OMe	55.4	55.6	55.4	55.5	55.3	55.6	55.4	55.4	55.4	
5-OMe	55.4	55.6	55.4	55.5	55.3	55.6	55.4	55.4	55.4	
2'-OMe	_	_	61.3	61.5	60.9	61.3	_	_	_	
3'-OMe	_	_	61.2	61.1	55.9	56.1	_	_	55.3	
4'-OMe	_	_	56.2	56.2	_	_	55.4	55.3	_	
5'-OMe	_	_	_	_	_	_	_	_	_	
				δ of ¹	³ C					
Position	10	11	12	13	14	15	16	17	18	
1	139.5	139.2	140.2	139.1	139.3	144.5	144.3	145.0	144.3	
2	104.8	106.8	104.8	106.9	104.8	106.7	106.6	106.7	106.7	
3	161.2	160.2	161.1	160.6	161.2	160.9	160.9	160.8	161.0	
4	100.3	99.9	100.0	100.0	100.3	98.1	98.1	98.0	98.2	
5	161.2	160.2	161.1	160.6	161.2	160.9	160.9	160.8	161.0	
6	104.8	106.8	101.1	106.9	101.2	106.7		106.7	101.0	
7	129.9	130.3	129.3	130.7	129.4	37.0	106.6 37.9	36.6	38.2	
8	129.3			130.7	129.4	37.0		32.4	38.2	
o 1′	129.5	126.5 126.2	124.2 126.4	130.7	139.4	134.0	38.2 143.5	130.3	56.2 144.3	
2′ 3′	113.7	157.6	157.21	106.9	104.8	129.5	114.5	157.6	106.7	
	160.1	110.7	111.1	160.6	161.2	113.9	159.8	110.4	161.0	
4′ ⊑′	112.0	128.8	129.0	100.0	100.3	158.1	121.0	127.3	98.2	
5'	129.2	120.3	120.9	160.6	161.2	113.9	129.4	120.5	161.0	
6′	119.5	130.4	126.7	106.9	104.8	129.5	111.4	130.0	106.7	
3-OMe	55.6	55.2	55.6	55.3	55.6	55.4	55.3	55.3	55.5	
5-OMe	55.6	55.2	55.6	55.3	55.6	55.4	55.3	55.3	55.5	
2'-OMe	-	55.6	55.7	-	-	-	-	55.4	-	
3'-OMe	55.5	-	-	55.3	55.6	-	55.2	-	55.5	
4'-OMe	-	-	-	-	-	55.4	-	-	-	
5′-OMe	-	-	-	55.3	55.6	-	-	-	55.5	

 $\delta = 6.47$ ppm was H-5'. The long-range coupling between the ¹³C peak at $\delta = 124.3$ ppm and H-7 observed in HMBC identified the C-1' carbon. Because the ¹³C peak at $\delta = 152.2$ ppm was long-range coupled to H-8 and H-6', it was assigned to C-2'. Likewise, two ¹³C peaks at $\delta = 142.4$ and 153.3 ppm showed two long-range couplings with H-5' and H-6', respectively, and they were identified as C-3' and C-4', respectively. Based on three long-range couplings observed in the HMBC spectrum, 2'-OMe, 3'-OMe, and H-8 was 12.2 Hz; thus, this derivative had a *cis* configuration. The ¹H and ¹³C chemical shifts for all 18 compounds were assigned

completely, and their ¹H and ¹³C NMR data are listed in Tables 1 and 2, respectively.

Among the 18 compounds, the ¹H NMR data of **1**, **2**, and **13–15** and the ¹H and ¹³C NMR data of **7–12** and **16–18** had been previously reported, and their literature spectra agreed well with the NMR data in this study.^[9–13] Here, we report the ¹H and ¹³C NMR data of **3–6**, including the three novel compounds, and the ¹³C NMR data of **1**, **2**, and **13–15**. In conclusion, the results in this study provide a useful tool for structural analysis of various methoxylated stilbene and 1,2-diphenylethane derivatives.


Scheme 1. Synthesis of methoxylated stilbene and 1,2-diphenylethane derivatives **1–18**.

Acknowledgements

This work was supported by the Priority Research Centers Program through NRF and by MEST (2009-0093824), Agenda Program (RDA, 8-20-52), and a Disease Network Research Program Grant (NRF, 20090084183).

References

- N. P. Gullett, A. R. Ruhul Amin, S. Bayraktar, J. M. Pezzuto, D. M. Shin, F. R. Khuri, B. B. Aggarwal, Y. J. Surh, O. Kucuk, *Semin. Oncol.* 2010, 37, 258.
- [2] H. Kalantari, D. K. Das, *Biofactors* **2010**, *36*, 401.
- [3] F. J. Alcaín, J. M. Villalba, Expert Opin. Ther. Pat. 2009, 19, 403.
- [4] M. A. Wilson, A. M. Rimando, C. A. Wolkow, BMC Pharmacol. 2008, 13, 15.
- [5] S. Fulda, Drug Discov. Today 2010, 15, 757.
- [6] M. L. Cardona, M. I. Fernandez, M. B. Garcia, J. R. Pedro, *Tetrahedron* 1986, 42, 2725.
- [7] Y. Park, B. H. Moon, E. Lee, Y. Lee, Y. Yoon, J. H. Ahn, Y. Lim, Magn. Reson. Chem. 2007, 45, 674.
- [8] T. D. Goddard, D. G. Kneller, SPARKY 3, University of California: San Francisco, CA, 2007.

derivatives	C7- C8	configuration	R ₁	R ₂	R_4	R ₄
1	Double	cis	н	н	OH	н
2	Double	trans	н	н	OH	н
3	Double	cis	OMe	OMe	OMe	Н
4	Double	trans	OMe	OMe	OMe	Н
5	Double	cis	OMe	OMe	н	Н
6	Double	trans	OMe	OMe	н	Н
7	Double	cis	н	н	OMe	Н
8	Double	trans	н	н	OMe	Н
9	Double	cis	н	OMe	н	Н
10	Double	trans	н	OMe	н	Н
11	Double	cis	OMe	н	н	Н
12	Double	trans	OMe	н	н	Н
13	Double	cis	н	OMe	н	OMe
14	Double	trans	н	OMe	н	OMe
15	Single	-	н	н	OMe	Н
16	Single	-	н	OMe	н	Н
17	Single	-	OMe	н	н	Н
18	Single	-	н	OMe	Н	OMe

Figure 1. Structures and nomenclature of methoxylated stilbene and 1,2diphenylethane derivatives 1–18.

- [9] G. R. Pettit, M. P. Grealish, M. K. Jung, E. Hamel, R. K. Pettit, J. C. Chapuis, J. M. Schmidt, J. Med. Chem. 2002, 45, 2534.
- [10] D. S. Koh, K. H. Park, J. H. Jung, H. J. Yang, K. H. Mok, Y. Lim, Magn. Reson. Chem. 2001, 39, 768.
- [11] M. Shi, B. Xu, J. Org. Chem. 2002, 67, 294.
- [12] Y. Q. Li, Z. L. Li, W. J. Zhao, R. X. Wen, Q. W. Meng, Y. Zeng, Eur. J. Med. Chem. 2006, 41, 1084.
- [13] U. Azzena, G. Dettori, M. V. Idini, L. Pisano, G. Sechi, *Tetrahedron* 2003, *59*, 7961.