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A significant effort toward the model study of jatrophane skeleton has been made. To synthesize an
important synthon, Horner–Emmons–Wadsworth olefination was attempted.
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Introduction

It has been found that certain cancer cells naturally become
resistant to chemotherapeutic drugs when exposed to drug over
a period of time. Scientists have identified small pumps on the sur-
face of cancer cells that actively extrude the chemotherapeutic
drug from inside the cancer cell ultimately leading to the failure
of chemotherapy. The developed resistance of disease-causing mi-
crobes or cells against varying drugs is commonly known as mul-
tidrug resistance (MDR).1 Jatrophane diterpenes were isolated in
1970 by Kupchan et al. from Euphorbia gossypiifolia2 which have
shown potential as Pgp inhibitor. Since then a large number of
jatrophane diterpenes have been isolated. Most of the jatrophane
diterpenes feature a characteristic bicyclic[10.3.0]pentadecane
framework.

The structural complexity of this molecule can be estimated by
the numbers of stereocenters. They possess as many as 9 stereo-
genic centers along with C11–C12 double bond, and C6–C17 exo-
double bond. The first total synthesis of a jatrophane diterpene
was accomplished by Smith and co-workers in 1981.3 The key step
in this synthesis of normethyljatrophone was a TiCl4-mediated
intramolecular Mukaiyama cyclization. Stille and co-workers re-
ported another synthetic route for the total synthesis of jatrophone
in 1990.4 The key step in their total synthesis was the intramolec-
ular palladium-catalyzed carbonylative coupling between vinyl
stannane and vinyl triflate. However, the first asymmetric total
synthesis of 15-acetyl-3-propionyl-characiol was achieved by
Hiersemann et al., demonstrating a reliable synthetic strategy
toward the jatrophane framework.5 A thermal intramolecular
d. All rights reserved.

m (P. Mohan).
carbonyl-ene reaction was utilized to synthesize the highly substi-
tuted cyclopentane fragment.

Results and discussion

We assume that a bulky base-promoted hydrogen-abstraction
can lead to a regioselective opening of an epoxide to furnish an
exo-double bond. Hence the synthesis of jatrophane analogue 1
was targeted. In pursuit of a reliable synthetic pathway to access
a jatrophane skeleton such as 4, one of our main goals was to
establish a reliable methodology to construct the C11–C12 trisub-
stituted double bond. The structural architecture of this molecule
consists of a 5-membered ring trans-fused to a 12-membered ring.
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Scheme 1. Retrosynthetic analysis of model substrate 4.
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Scheme 2. Synthesis of aldehyde 6.
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Table 1
Reactions conditions applied for HEW reaction

Base Temperature Solvent Result

n-BuLi �78 �C THF Elimination
Ba(OH)2 rt to reflux THF No reaction
K2CO3 rt THF No reaction
NaH 25–35 �C DME Elimination
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Scheme 5. Rationale for the failure of the key HEW reaction.
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Our retrosynthesis involves forming the C11–C12 olefinic double
bond by employing the ring-closing metathesis (RCM)6 from
bis-MOM-triene 5, which might be synthesized from Horner–Em-
mons–Wadsworth olefination (HEW)7 using aldehyde 6 and
phosphonate 7 (Scheme 1).8

Synthesis of racemic aldehyde 6 commenced with cyclopenta-
none methylcarboxylate 8 (Scheme 2). First, we protected the ke-
tone as the ketal with ethylene glycol and trimethyl
orthoformate.9 The primary alcohol was obtained by the reduction
of ester 9 with LiAlH4 and was protected as the TBDPS ether.10 We
chose TBDPS as the protecting group because we wanted it to serve
two purposes: (1) the bulky nature of this group should assist in a
stereoselective vinyl addition on an adjacent ketone, which is rel-
evant to the synthesis of our target; and (2) the Si-protecting group
would give us the flexibility of late stage deprotection and would
avoid undesirable deprotection of other protected alcohols. In the
initial phase of our research, we used a p-methoxyphenyl group
(PMP) for protecting this hydroxyl group. While stereoselective vi-
nyl addition worked well, the ceric ammonium nitrate-mediated
deprotection of the PMP group in a later stage was low yielding
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Scheme 3. Synthesis o
and inconsistent. Deketalization11 of compound 11 under acidic
condition afforded us cyclopentanone 12 in 87% yield, which upon
treatment with vinylmagnesium bromide gave the tertiary alcohol
as a single isomer and the relative stereochemistry was confirmed
by NOE as 13. The tertiary alcohol subsequently was protected as
the MOM ether to obtain 14 in 87% yield.12 The one-pot oxidative
cleavage of olefin resulted in aldehyde 15.13 Allylation of com-
pound 15 using allylmagnesium bromide produced homoallylic
alcohol 16 as a mixture of diastereomers in the ratio of 1:1. The
resultant secondary alcohol was protected as a MOM ether to yield
bis-MOM ether 17. TBAF-mediated desilylation was achieved at
room temperature to yield primary alcohol 18.14

We employed three different oxidation methods for the synthe-
sis of aldehyde 6. Pyridinium dichromate (PDC)15 resulted in
modest yield of aldehyde and required long reaction time and
the workups were often very capricious given the amount of
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reagent used. Swern conditions proved to be harsh on our sub-
strate as we encountered an elimination of one of the MOM group
in low yield.16 Given the sensitive nature of substrate, we opted for
a milder oxidation. TPAP/NMO condition was found to be ideal for
this transformation and gave the requisite aldehyde 6 in 78%
yield.17

The synthesis of phosphonate 7 began with mono-TBS protec-
tion of neo-pentyl glycol. Subsequent Swern oxidation gave alde-
hyde 21. Ester 22 was generated in a good yield upon subjection
of aldehyde to Horner–Emmons–Wadsworth olefination.18 Alcohol
23 was obtained after TBS-deprotection under acidic conditions;
after which Swern oxidation afforded aldehyde 24 in 92% yield. A
Wittig olefination was employed to convert aldehyde into diene
25 (Scheme 3).19 After repeated failures in performing the desired
regioselective reduction of a double bond utilizing Wilkinson’s cat-
alyst along with triethylsilane, we modified our synthetic scheme.

a,b-Unsaturated ester 24 was hydrogenated under 60 psi
hydrogen atmosphere using Pd/C (Scheme 4). Saturated ester 26
was obtained and subjected to Wittig olefination to yield ester
27, which upon treatment with lithiated ethylphosphonate fur-
nished the target phosphonate 7.

We were now set for the key HEW olefination between bis-
MOM aldehyde 6 and phosphonate 7 to provide triene 5. Unfortu-
nately, the two fragments did not couple under various conditions.
Frequently, we observed that one of the MOMO� groups of alde-
hyde 6 was being eliminated (Scheme 5). We rationalized the elim-
ination of MOMO� group was made possible through the
deprotonation of a-carbon hydrogen, followed by an E1cb
mechanism.

Apparently, aldehyde 6 is sensitive and prone to b-elimination
even under the mildest basic conditions. Nevertheless we at-
tempted to couple the two fragments under various conditions
employing different bases but to our disappointment none of these
methods afforded the desired product 5 (Table 1).

Generally, we observed the b-eliminated product 27 when we
employed strong bases such as n-BuLi and NaH, and the use of
milder bases resulted in no reaction. Another reason which might
be hindering the formation of the desired enone 5 is the fact that
aldehyde 6 is sterically congested, thereby slowing down the
nucleophilic addition step. An alternative pathway to furnish en-
one with inducing minimal structural changes in the existing syn-
thetic scheme is under investigation and is subjected for future
communication.
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