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An efficient synthesis of 2,5-disubstituted-3-cyanoindoles is described. This approach utilizes a highly
selective iodination together with the modified Madelung reaction to generate an intermediate which
can be readily transformed to more fully elaborated 2,5-disubstituted-3-cyanoindole templates that were
previously difficult to access. Detailed examples and utility of this approach are presented herein.

� 2011 Elsevier Ltd. All rights reserved.
Indoles are of great interest among the medicinal chemistry
community for their biological relevance.1 One only has to do a
search on the general indole substructure to find thousands of re-
ports on their synthesis2 and applications. More specifically, 3-
cyanoindoles are known to be of biological significance for their
use as aldosterone synthase modulators for cardiovascular dis-
ease,3 factor Xa inhibitors for antithrombotics,4 hepatitis C antivi-
rals,5 acetyl-CoA carboxylase inhibitors for type 2 diabetes,6 and
anticancer agents.7 Thus an additional method by which 3-cyano-
indoles and their derivatives could be prepared would be of great
value and utility (vide infra).8

During the course of a medicinal chemistry effort, we required
an efficient synthesis of 2-pyridyl-5-substituted-3-cyanoindoles 1
which would allow for the rapid preparation of analogs at the 5-
position.
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We initially planned to cyanate the 3-position of the corre-
sponding 5-bromo-2-(4-pyridyl) intermediate 6, and then couple
the bromide with a variety of aryl boronic acids as the final step
(Scheme 1). This approach would facilitate efficient analog prepara-
tion by introducing diversity as the final step in the synthesis. To
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s).
achieve this, we investigated a variety of methods to prepare the
required indole core. Preparation of the 5-bromoindole scaffold 6
was first attempted using the Fischer indole synthesis.9 While treat-
ment of hydrazone 2 on five gram scale with polyphosphoric acid
(PPA) at high temperature afforded the indole 6 with good conver-
sion, clean separation of the product from des-bromo and di-bromo
side products on scale was difficult. An alternative approach using
Sonagashira cross-coupling conditions to form 4-bromo-2-(pyri-
din-4-ylethynyl)aniline 5, followed by ring closure with potassium
tert-butoxide proceeded in good yield.10 However, the cyanation
reaction with chlorosulfonylisocyanate to form 5-bromo-2-(pyri-
din-4-yl)-1H-indole-3-carbonitrile 7a was low yielding and poorly
reproducible.3 Protection of the indole N-1 nitrogen with a trimeth-
ylsilylethoxymethyl (SEM) group (7b) did not improve the outcome
of this cyanation. Other cyanating reagents such as potassium ferro-
cyanide required protection of the N-1 nitrogen, and were found to
be only slightly more effective.11 Disappointingly, conversion of the
bromide 7 to the coupled product was also poor. For example, com-
pound 7a was converted to 5-(isoxazol-4-yl)-2-(pyridin-4-yl)-1H-
indole-3-carbonitrile 8a in only 10% yield under standard Suzuki
cross-coupling conditions. A similar result was observed when N-
1 was SEM protected (8b). The low synthetic efficiency over multi-
ple steps in this sequence, as well as the costly 4-ethynylpyridine
starting material presented significant challenges to the synthesis
of 2,5-disubstituted-3-cyanoindoles on larger scale. In addition,
this route limited our ability to prepare diverse analogs due to
the incorporation of the 2-position substituent at the beginning of
the synthesis in the form of custom ethynyl starting materials.

The key requirements for an improved second generation syn-
thesis were to avoid a separate cyanation step and to allow for ease
of varying substituents at both the 2- and 5-positions. To address
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Scheme 1. Reagents and conditions: (a) EtOH, reflux, 2 h, 85% (b) PPA, 130 �C, 73% (c) PdCl2(PPh3)2, Et3N, reflux, 43%; (d) KOt-Bu, NMP, 53%; (e) ClSO2NCO, CH3CN, 0 �C; DMF;
17–28% 7a; 0% 7b; (f) NaH, SEMCl, DMF, 90%; (g) PdCl2(dppf), K2CO3, 1,4-dioxane/water (4:1), 100 �C, 5 h, 10% 8a; <10% conversion after 16 h, 8b.
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the first of these goals, the synthesis of 3-cyanoindoles can be
accomplished via application of the modified Madelung reaction12

which incorporates the 3-cyano group at the beginning of the syn-
thesis. This approach would also allow for the preparation of com-
pounds with variation at the 2-position more easily from readily
available acid chloride starting materials.

Additionally, a synthetic sequence which utilized a more reac-
tive 5-iodoindole rather than the 5-bromoindole could be of
significant benefit in subsequent aryl cross-coupling reactions.
Gratifyingly, iodination of readily accessible (2-aminophenyl)ace-
tonitrile 9 under the mild conditions of potassium iodide and 30%
hydrogen peroxide in acetic acid13 cleanly and exclusively affor-
ded the desired para iodo intermediate 10 in 82% yield (Scheme
2). This material was then acylated with isonicotinoyl chloride
to provide 11a in 72% yield. Protection of 11a with the SEM
group, followed by ring closure with potassium tert-butoxide
via the modified Madelung reaction delivered the desired iodide
12a from 11a in 52% yield in a one-pot sequence. To our knowl-
edge, this is the first reported example of the preparation of a
highly versatile 2-substituted-3-cyano-5-iodoindole.14 Impor-
tantly, this sequence can be applied to the preparation of both
aryl and alkyl motifs at the 2-position (12a–g) as shown in Table
1. Reactions with sterically hindered alkyl R groups (12e–g) were
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Scheme 2. Reagents and conditions: (a) KI, 30% H2O2, HOAc, 1 h, 82% (15 g scale);
(b) isonicotinoyl chloride, DIEA, DCM, 72%; (c) NaH, SEMCl, THF, 30 min, then KOt-
Bu, 30 min, 52%.
observed to be lower yielding than those with the methyl (12d)
and aryl substituents (12a–c). We also investigated the applica-
tion of this chemistry to the synthesis of 5-iodo-2-amino-3-cyan-
oindoles (Scheme 3). The desired product 12h was not found,
with the major product 14 resulting from oxidative hydrolysis
of the nitrile.15

To demonstrate the utility of this route in preparing the desired
2,5-disubstituted-3-cyanoindoles, the iodo intermediate 12a was
coupled with a series of arylboronic acids to afford 2-pyridyl-5-
aryl-3-cyanoindoles 15a–c in 51–72% yield. The SEM group was
subsequently removed using cesium fluoride in DMF to afford
the final products 16a–c in 37–58% yield (Scheme 4).16,17

In conclusion, we have devised an efficient synthesis of 2,5-
disubstituted-3-cyanoindoles. This approach utilizes a highly
selective and high yielding iodination followed by a one-pot
modified Madelung reaction and protection sequence to generate
the 2-substituted-3-cyano-5-iodoindole core. This protected
intermediate can then be readily transformed to generate novel
5-substituted analogs which were previously difficult to access.
Reaction yield for the conversion of compounds 11a–h to 12a–h
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Compounds R Yield (%)

12a 4-Pyridyl 52
12b 3-Pyridyl 33
12c 4-CO2Me-phenyl 43
12d Methyl 47
12e iso-Propyl 26
12f tert-Butyl 24
12g Cyclohexyl 4
12h Morpholino 0
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Scheme 4. Reagents and conditions: (a) ArB(OH)2, PdCl2(dppf), K2CO3, dioxane/H2O, 100 �C lw, 1 h, 51–72%; (b) CsF, DMF, 125–130 �C, 2.5 h, 37–58%.
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Scheme 3. Reagents and conditions: (a) NaHCO3, DCM/water (1:1), phosgene (20% solution in toluene), 1 h, 92%; (b) morpholine, DCM, rt, 3 h, 79%; (c) NaH, TMSCl, THF,
30 min, rt, then KOt-Bu, 20 h, rt.

202 M. A. Bobko et al. / Tetrahedron Letters 53 (2012) 200–202
The useful synthetic approach reported herein can be applied to
the synthesis of a variety of 2,5-disubstituted-3-cyanoindoles.
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