Bioorganic & Medicinal Chemistry Letters 22 (2012) 2212-2215

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Novel Hepatitis C virus replicon inhibitors: Synthesis and structure–activity relationships of fused pyrimidine derivatives

A. Chris Krueger^{*}, Darold L. Madigan, David W. Beno, David A. Betebenner, Robert Carrick, Brian E. Green, Wenping He, Dachun Liu, Clarence J. Maring, Keith F. McDaniel, Hongmei Mo, Akhteruzzaman Molla, Christopher E. Motter, Tami J. Pilot-Matias, Michael D. Tufano, Dale J. Kempf

Abbott Labs, Global Pharmaceutical Research and Development, Department R4DH, Building AP52-N, 200 Abbott Park Road, Abbott Park, IL 60064, USA

ARTICLE INFO

Article history: Received 6 December 2011 Revised 24 January 2012 Accepted 25 January 2012 Available online 2 February 2012

Keywords: Hepatitis C Replicon inhibitors Pyrido[2,3-d]pyrimidines Pyrimido[4,5-d]pyrimidines ABSTRACT

The synthesis of several pyrido[2,3-*d*]pyrimidine and pyrimido[4,5-*d*]pyrimidine analogs is described with one such analog possessing subnanomolar potency in both genotype 1a and 1b cell culture HCV replicon assays.

© 2012 Elsevier Ltd. All rights reserved.

Hepatitis C virus (HCV) is a (+)-strand RNA virus of the *Flaviviridae* family that was first identified in 1989.¹ HCV is a common pathogen that can lead to cirrhosis, hepatocellular carcinoma (HCC) and liver failure. It is estimated that 170 million people were infected worldwide in the year 2000, and that the virus is responsible for at least 10,000 deaths annually in the United States alone.² HCV has six major genotype classes, with genotypes 1 and 2 being the most prevalent in the United States, Europe, and Japan.³ Within genotype 1, the majority of patients are infected with subgenotypes 1 a or 1b. Recently two new protease inhibitor drugs, boceprevir and telaprevir, were approved by the FDA. However these drugs still must be used in combination with the standard of care which imparts several drug-related toxicities. Thus there is still an urgent need for new HCV drugs with diverse modes of action.⁴

Our research team has been pursuing inhibition of the Hepatitis C virus by targeting several non-structural viral enzymes.⁵ We have also initiated a broad screening program towards identifying novel leads that have antiviral potency in a HCV subgenomic replicon assay.⁶ One such lead was a substituted naphthyridine derivative (**1**), shown in Table 1. We were pleased with the genotype 1b replicon potency of (EC₅₀ 18 nM) as a starting point and hoped to improve upon the EC₅₀ for genotype 1a, which was 100-fold higher than in 1b. Thus we initially explored the effect of replacing each of the nitrogen atoms independently in the

naphthyridine ring system with carbon atoms to generate quinoline derivatives **2** and **3** (Scheme 1). The data indicate that both nitrogens are required for obtaining sub micromolar potency against the 1b replicon strain in this series. In an effort to obtain sub micromolar potency against both 1a and 1b virus strains and to decrease the cytotoxicity associated with the lead structures (MTT values), we embarked upon an effort to explore further modifications to the fused ring system.

We were able to construct a series of substituted pyrido [2,3-d]pyrimidine analogs by employing a short synthetic sequence (Scheme 2).⁷ A variety of methyl ketones **14** were treated with sodium metal and ethyl formate to generate the sodium salt of alkyl substituted hydroxyl enal compounds 15 which were cyclized with 2-cyanoacetamide to form the corresponding substituted oxopyridines 16. Conversion to the corresponding bromopyridines 17 and subsequent reaction with ammonia under high pressure generated the aminopyridines 18, of which the amino group could be converted to the dimethylamidine functionality. Reaction of these substituted pyrido dimethylamidines 19 with the substituted phenylsulfanyl anilines 5-10 from Scheme 1 in the presence of hot acetic acid generated a wide variety of the desired pyrido[2,3-*d*]pyrimidines **20–47**.⁸ The data from Table 2 show that when the methyl substituted pyrido[2,3-d]pyrimidine 20 was compared to napthyridine analog 1, analog 20 was less potent but displayed somewhat lower toxicity in the assay. Within the pyrido[2,3-d]pyrimidine series we also generated several analogs that had substituents on the para position of the phenyl thio ring (R^2 group in Scheme 2). In several cases, a hydroxyl group

^{*} Corresponding author. Tel.: +1 847 938 2944; fax: +1 847 938 2756. *E-mail address:* a.chris.krueger@abbott.com (A. Chris Krueger).

Table 1

Cell culture replicon potency of analogs 1-3

Compd	А	В	Replicon 1a $EC_{50}^{a,b}$ (µM)	Replicon 1b $EC_{50}^{a,b}$ (µM)	$\text{MTT}^{c} \left(\mu M \right) \text{TD}_{50}$
1	Ν	Ν	1.8	0.018	8.6
2	Ν	С	15.7	9.9	15.9
3	С	Ν	_	1.8	2.6

^a EC₅₀ values in all tables are means of at least two independent determinations, with a maximum of threefold value variations.

^b Assay run with 5% fetal calf serum.

^c Cytotoxicity measured in Huh-7 cells.

Scheme 1. Reagents and conditions: (a) trifluoroacetic anhydride, Et₃N, CH₂Cl₂, 24 h, 90–100%; (b) Na₂CO₃, DMF, 80 °C, 18 h, 90–98%; (c) 10 equiv Fe, 10 equiv NH₄Cl, MeOH, water, reflux, 2 h, 79–100%; (d) compound **5**, NaOtBu, Pd₂(dba)₃, 2,8,9-tri-iso-butyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3] undecane, toluene, 100 °C, 18 h, 25%; (e) NaOH, water, 150 psi, 180 °C, 16 h, 86%; (f) excess POCl₃, 60 °C, 2.5 hrs, 88%; (g) compound **5**, EtOH, 80 °C, 24 h, 11%.

Scheme 2. Reagents and conditions: (a) ethyl formate, Na°, Et₂O, 0 °C to 25 °C, 18 h, 45–63%; (b) 2-cyanoacetamide, water, piperidine acetate, reflux, 2 h, 55–78%; (c) tetrabutylammonium bromide, P₂O₅, toluene, reflux, 5 h, 90–98%; (d) ammonia, EtOH, sealed tube, 130 °C, 20 h, 82–93%; (e) *N*,*N*-dimethylforamide dimethyl acetal, toluene, reflux, 3 h, 98–100%; (f) compound **5–10**, acetic acid solvent, reflux, 1.5 h, 10–54%.

at this position provided the greatest potency boost when all other parts of the analogs were the same.

This was especially true in the cases of analogs **22** and **33**. Analog **33** was the most potent of the pyrido[2,3-*d*]pyrimidines prepared, having submicromolar potency against both subtype 1a and 1b replicons. Seemingly small modifications were made to this isopropyl analog **33**, such as changing the isopropyl group to a cyclopropyl (compound **39**) or isobutyl (compound **45**), which produced a potency loss of at least a 100-fold in the 1b replicon and roughly 50-fold in the 1a replicon. In the absence of knowledge

Table 2

Compd	\mathbb{R}^1	R ²	Replicon 1a EC ₅₀ (µM)	Replicon 1b EC_{50} (μM)	MTT (µM)
20	Methyl	Н	13.3	3.84	22.2
21	Methyl	NHAc	>50	>50	>50
22	Methyl	ОН	23.4	0.05	>100
23	Methyl	OMe	44.5	13.3	28.6
24	Methyl	F	10.5	3.0	6.1
25	Ethyl	Н	18.9	3.4	22.7
26	Ethyl	NHAc	>12.5	6.9	>12.5
27	Ethyl	OH	62.2	10.0	78.0
28	n-Propyl	Н	9.5	0.32	11.8
29	n-Propyl	NHAc	13.8	0.63	>25
30	n-Propyl	OH	7.1	0.25	31.1
31	<i>i</i> -Propyl	Н	10.3	3.4	8.0
32	<i>i</i> -Propyl	NHAc	2.6	13.8	28.8
33	<i>i</i> -Propyl	OH	0.17	0.016	22.9
34	<i>i</i> -Propyl	OMe	11.4	1.7	8.8
35	<i>i</i> -Propyl	F	3.2	1.8	4.8
36	<i>i</i> -Propyl	NHSO ₂ Me	18.9	11.2	>50
37	Cyclopropyl	Н	10.4	3.7	9.9
38	Cyclopropyl	NHAc	15.2	1.7	29.8
39	Cyclopropyl	OH	10.5	1.6	17.4
40	Cyclobutyl	Н	6.1	1.6	3.6
41	Cyclobutyl	NHAc	15.8	3.7	49.2
42	Cyclobutyl	OH	11.3	3.1	31.8
43	<i>i</i> -Butyl	Н	13.3	1.0	7.5
44	<i>i</i> -Butyl	NHAc	27.4	3.3	38.5
45	<i>i</i> -Butyl	OH	14.3	2.4	11.2
46	<i>tert</i> -Butyl	OH	4.6	0.47	7.1
47	Cyclohexyl	OH	2.7	0.88	>3.12

of the mechanism of inhibition and structural information on inhibitor binding, it is difficult to rationalize these results. Other difficult to interpret SAR data include the good potency of analogs **22** and **30** against replicon 1b, verses the lack of potency for analog **27**. Another large 1b potency difference is seen between analogs **21** and **29**. Some calculated properties of the analogs from Table 2 were obtained in order to help find some correlation between the observed SAR. The *c*Log*P* of these analogs varied between 5 and 8, and the PSA was in the 50–80 range. Unfortunately these values did not help us to find any reasonable correlations within the SAR. We also generated other analogs that contained a pyrimido[4,5-*d*]pyrimidine bicyclic ring system (Scheme 3).⁷ The reaction of 2-alkyl-2-thiopseudourea hydrobromide **48** or **49** with (ethoxymethylene)malononitrile (**50**) generated an amino-(alkyl-sulfanyl)pyrimidine **51** or **52**. The amine in **51** was converted to an amidine functionality and cyclized with aniline **6** in hot acetic

Scheme 3. Reagents and conditions: (a) Hunig's base, ethanol, 4 h, 39–45%; (b) *N*,*N*-dimethylforamide dimethyl acetal, toluene, reflux, 3 h, 100%; (c) **6**, acetic acid solvent, reflux, 1.5 h, 15–45%; (d) excess sodium alkoxide, EtOH, heating, 32%; (e) excess morpholine or piperidine, microwave irradiation, 180 °C, 2 h, 38–65%; (f) mCPBA, CH₂Cl₂, 95%; (g) excess ethyl amine or methyl amine, EtOH, heating, 37–44%.

Table 3Cell culture replicon potency of analogs 54–61

Compd	R	R ¹	R ²	Replicon 1a EC ₅₀ (µM)	Replicon 1b EC_{50} (μM)	MTT (µM)
54	see Scheme 3			4.8	0.01	46.9
55	Methyl	_	_	>8	>8	>8
56	Ethyl	_	_	7.3	12.0	29.7
57	Phenyl	-	_	5.3	3.5	17.1
58	-	Morpholine		14.1	7.3	>50
59	_	Piperidine		22.0	2.8	>50
60	_	Ethyl	Н	47.6	30.0	>50
61	-	Methyl	Methyl	>50	>50	>50

acid to provide the ethylsulfanyl analog **54**. The ethylsulfanyl functionality could be displaced with other nucleophiles to provide the corresponding ether **55–57** and amine **58**, **59** analogs directly. Alternately, the acyclic amine analogs **60** and **61** were generated by first oxidizing the benzyl mercapto group in **52** to the corresponding benzyl sulfone followed by displacement of this group with the corresponding amines. Amidine formation and cyclization provided the desired amine analogs **60** and **61**. The ethylsulfanyl-pyrimidopyrimidine analog **54** displayed excellent 1b replicon potency (EC₅₀ 10 nM), however it was much weaker against the 1a replicon (EC₅₀ **4.8** μ M, Table 3). Unfortunately the EC₅₀s of all of the ether **55–57** and amine **58–61** analogs were greater than 2 micromolar in both assays.

The most potent analog, iso-propyl pyrido[2,3-*d*]pyrimidine **33**, was retested in the replicon assay in the presence of 40% human serum to access how much potency loss would occur due to unproductive protein binding. The potency loss was 10-fold in the 1b replicon assay (16 to 170 nm). We also evaluated the pharmacokinetic properties of analog **33** after i.v. and oral administration in rats (2.5 mg/kg as a solution). Compound **33** displayed high clearance (1.58 L/h/kg) and a relatively short half-life (3.1 h). *C*_{max} (0.07 μ M), plasma AUC (1.58 μ g h/mL) and bioavailability (10%) after oral administration were low. In a future publication we will disclose our efforts related to improving upon this pharmacokinetic profile. Finally, based on resistance studies which will be published in the future,⁹ we believe that the target of these HCV replicon inhibitors is the HCV NS5A protein which has been shown to be critical for viral replication.¹⁰

In summary, a series of substituted pyrido[2,3-*d*]pyrimidine and pyrimido[4,5-*d*]pyrimidine analogs were synthesized and

assessed for inhibitory potency in genotypes 1a and 1b HCV replicon assays. Overall we observed that the SAR was very sensitive to seemingly small structural modifications and that the most potent analog displayed submicromolar potency in one cell culture assay containing 40% human serum.

References and notes

- Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Science 1989, 244, 359.
- (a) Alter, M. J.; Kruszon-Moran, D.; Nainan, O. V.; McQuillan, G. M.; Gao, F.; Moyer, L. A.; Kaslow, R. A.; Margolis, H. S. N. *Engl. J. Med.* **1999**, 341, 556; (b) Hepatology, 1997, 26, pp. 2S–10S.
- 3. Simmonds, P. J. Hepatol. 1999, 31, 54.
- 4. Rice, C. Nature 2011, 474, S8.
- (a) Randolph, J. T.; Zhang, X.; Huang, P. P.; Klein, L. L.; Kurtz, K. A.; Konstantinidis, A. K.; He, W.; Kati, W. M.; Kempf, D. J. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 2745; (b) Krueger, A. C.; Madigan, D. L.; Green, B. E.; Hutchinson, D. K.; Jiang, W. W.; Kati, W. M.; Liu, Y.; Maring, C. J.; Masse, S. V.; McDaniel, K. F.; Middleton, T. R.; Mo, H.; Molla, A.; Montgomery, D. A.; Ng, T. I.; Kempf, D. J. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 2289.
- Ikeda, M.; Yi, M.; Li, K.; Lemon, S. M. J. Virol. 2002, 76, 2997; (b) Blight, K. J.; Kolykhalov, A.; Rice, C. M. Science 2000, 290, 1972.
- Betebenner, D. A.; DeGoey, D. A.; Maring, C. L.; Krueger, A. C.; Iwasaki, N.; Rockway, T. W.; Cooper, C. S.; Anderson, D. D.; Donner, P. L.; Green, B. E.; Kempf, D. J.; Liu, D.; McDaniel, K. F.; Madigan, D. L.; Motter, C. E.; Pratt, J. K.; Shanley, J. P.; Tufano, M. D.; Wagner, R.; Zhang, R.; Molla, A.; Mo, H.; Pilot-Matias, T. J.; Masse, S. VL.; Carrick, R. J.; He, W.; Lu, L.; Grampovnik, D. J. Patent Application WO 2007/081517, 19 July 2007.
- Tsou, H-R.; Mamuya, N.; Johnson, B. D.; Reich, M. F.; Gruber, B. C.; Ye, F.; Nilakantan, R.; Shen, R.; Discafani, C.; DeBlanc, R.; Davis, R.; Koehn, F. E.; Greenberger, L. M.; Wang, Y-F.; Wissner, A. J. Med. Chem 2001, 44, 2719.
- 9. Krishnan, P.; Pilot-Matias, T. J. unpublished results.
- Nettles, R. E.; Gao, M.; Bifano, M.; Chung, E.; Persson, A.; Marbury, T. C.; Goldwater, R.; DeMicco, M. P.; Rodriquez-Torres, M.; Vutikullird, A.; Fuentes, E.; Lawitz, E.; Lopez-Talavera, J. C.; Grasela, D. M. *Hepatology* **2011**, *54*, 1956.