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Intermolecular [3 + 2] annulation of cyclopropylanilines with alkynes is realized using visible light photoredox catalysis, yielding a

variety of cyclic allylic amines in fair to good yields. This method exhibits significant group tolerance particularly with hetero-

cycles. It can also be used to prepare complex heterocycles such as fused indolines.

Introduction

Cyclopropanes have been used as a three-carbon synthon to
prepare a diverse array of organic compounds [1-4]. The
unusual reactivity, exhibited by cyclopropanes, is largely due to
their inherent ring strain that makes cleavage of the C—C bonds
facile [5]. A number of methods have been developed to regio-
selectively cleave cyclopropanes, generating synthetically
useful intermediates that can be further manipulated [1-5]. For
one subclass of cyclopropanes, cyclopropylamines, the requi-
site ring opening is often accomplished by one-electron oxi-
dation of the parent amine. This oxidation step can be realized
enzymatically [6-8], chemically [9-14], electrochemically
[15,16], and photochemically [17-20]. Recently, visible light
photoredox catalysis has emerged as a powerful method to

manipulate the redox chemistry of organic compounds [21-26].
Amines have been used as an electron donor to reduce the
excited state of photocatalysts, while they are oxidized to amine
radical cations. Our group and others have taken advantage of
this facile redox process and developed a number of synthetic
methods that harness the synthetic potential of amine radical
cations [21,27,28]. One of the reported methods from our group
involves [3 + 2] annulation of cyclopropylanilines with alkenes
[29]. We were intrigued by the possibility of extending this
annulation method to include alkynes. The immediate benefits
of using alkynes include eliminating the diastereoselectivity
issue observed in the annulation of monocyclic cyclopropyl-

anilines with alkenes and introducing an alkene functional
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group into the annulation product. Furthermore, the synthesis of
cyclic allylic amines is non-trivial in general [30]. Herein, we
report intermolecular [3 + 2] annulation of monocyclic cyclo-
propylanilines with alkynes under visible light photoredox
conditions.

Results and Discussion

Biphenylcyclopropylamine 1 and phenylacetylene (2) were
chosen as the standard substrates to optimize the catalyst system
for the [3 + 2] annulation with alkynes (Table 1). Similar to the
annulation with alkenes [29], several reactivity patterns were
observed. CH3NO, was far superior to DMF and CH3CN as the
solvent (Table 1; entries 1-3). Ru(bpz)3;(PFg), was a more
effective photocatalyst than Ru(bpy);(PFg), (Table 1, entry 4).
Air was detrimental to the annulation reaction (Table 1, entry
5). However, we noticed the annulation with alkynes was
slower than with alkenes, previously reported by our group
[29]. To compensate for lower reactivity of alkynes, we investi-
gated commercially available light resources that were stronger
than 13 W compact fluorescent lamps (CFLs). 13 W CFLs were
used as the light source to mediate the annulation with alkenes

Table 1: Catalyst screening.

catalyst (2 mol %)
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[29]. White 18 W LEDs were found to be more effective for the
annulation with alkynes, resulting in a higher yield (Table 1,
entry 6). Control studies showed that both the photocatalyst and
light were required, though some background reaction was
observed (Table 1, entries 7 and 8).

To determine the scope of this annulation process, a range of
cyclopropylanilines with various electronic and steric character-
istics were prepared and then subjected to the optimized cata-
lyst system. The results of the scope studies are summarized in
Figure 1. Both electron-donating (OMe, 7, and OTBS, 8) and
electron-withdrawing (CF3, 9, 14, 18, and CN, 10, 13)
substituents were well tolerated, and the annulation products
were generally obtained in modest to good yields. The annula-
tion process also tolerated steric hindrance. Hindered cyclo-
propylanilines, such as those possessing an ortho-isopropyl
group, were satisfactorily converted to the annulation products
(6 and 12). With respect to the other annulation partner,
terminal alkynes substituted with an electron-withdrawing
group were typically required for the annulation process. Alkyl-

substituted terminal alkynes and internal alkynes were not reac-
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Entry? Catalyst Light Solvent GC yield of 3 [%]°
1 4a 18 W LED CH3NO, 82 (80)°
2 4a 18 W LED DMF 20
3 4a 18 W LED CH3CN 36
4 4b 18 W LED CH3NO, 55
5d 4a 18 W LED CH3NO, 41
6 4a 13 W CFL CH3NO, 68
7 none 18 W LED CH3NO, 6
8 4a none CH3NO, 3

aConditions: 1 (0.2 mmol), 2 (1 mmol), solvent (2 mL), degassed, irradiation at rt for 8 h. PDodecane was used as an internal standard. CIsolated yield
by silica gel chromatography. 9The reaction was conducted in the presence of air.
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Figure 1: Substrate scope.

tive under the optimized conditions. This reactivity trend
towards alkynes is consistent with that exhibited in intermolec-
ular addition of nucleophilic carbon-based radicals to alkynes
[31-33]. In addition to phenylacetylene, acetylenic methyl ester
is a viable annulation partner, leading to annulation products
11-14 in good yields. Heterocycles are frequently used in
organic electronic materials [34] and pharmaceuticals [35,36].
Therefore, the ability to incorporate them is usually considered
a benchmark for developing new synthetic methods. This
method has certainly passed this test as two pairs of hetero-

cycle-containing alkynes underwent the [3 + 2] annulation with
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cyclopropylanilines uneventfully (15-18). The alkyne moiety at
the C2 or C3 position of thiophene or pyridine showed similar
reactivity towards the annulation.

Fused indolines are common structural motifs that appear in a
number of biologically active alkaloids and pharmaceuticals
[37,38]. The [3 + 2] annulation of monocyclic cyclopropyl-
anilines with alkynes provides a fast entry to this motif
(Scheme 1). Starting from commercially available 1-bromo-2-
iodobenzene (19) and cycloproylamine, 2-bromo-N-cyclo-

propylaniline (20) was prepared in 75% yield via the Buch-
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B cyclopropylamine, B phenylacetylene (2), Ph
@[ " Pdy(dba)s, (R)-Tol-BINAP, @[ r [Ru(bpz)3](PFe)y, | N Bf/b
| NaOt-Pent, toluene, N~ 18 W LED, degassed, Z >N

80 °C, 24 h, 75% H CH3NO, rt, 16 h, 52% H
19 20 21
Ph Ph
Pdz(dba)s, P(t-Bu)s, (] Hapar,
Cy,NEt, dioxane, O N H MeOH, 56% N H
110 °C, 71% H H
22 23

Scheme 1: Synthesis of a fused indoline.

wald—Hartwig amination [39,40]. The [3 + 2] annulation of
2-bromo-N-cyclopropylaniline (20) and phenylacetylene (2)
was performed using the optimized catalyst system to provide
cyclic allylic amine 21 in 52% yield. The fused indoline motif
was formed via an intramolecular Heck reaction under Fu’s
conditions [41] to provide a mixture of two olefinic regioiso-
mers 22, which were converted to saturated fused indoline 23
under standard catalytic hydrogenation conditions in a
combined yield of 40% from 21.

Mechanistically, the annulation with alkynes probably proceeds
through a pathway similar to the one we proposed for the annu-
lation with alkenes (Scheme 2) [29]. The photoexcited
Ru(bpz);2* oxidizes cyclopropylaniline 24 to the corres-
ponding amine radical cation 25, which triggers the cyclo-
propyl ring opening to generate distonic radical cation 26. The
primary carbon radical of 26 adds to the terminal carbon of
alkyne 27 to afford vinyl radical 28. Intramolecular addition of

[>—NH
Ar

24

the vinyl radical to the iminium ion of distonic radical cation 28
closes the five membered ring and furnishes amine radical
cation 29. Finally, Ru(bpz);'" reduces amine radical cation 29
to the annulation product 30 while regenerating Ru(bpz);2".
The proposed mechanism accounts for lower reactivity of
alkynes towards intermolecular addition of nucleophilic carbon-
centered radicals as well as their regiochemistry in the annula-
tion [31-33]. Addition of radicals to alkynes generally occurs at
the less hindered carbon, i.e., the terminal carbon.

Conclusion

In summary, we have successfully expanded the [3 + 2] annula-
tion of cyclopropylanilines to include alkynes. This annulation
process with alkynes has addressed some limitations existing in
the annulation with alkenes. Moreover, the annulation products
from alkynes are highly useful synthetic intermediates. Their
utility is demonstrated by a four-step synthesis of fused indo-

lines in which the [3 + 2] annulation with alkynes is used to set

Ru(lly* t : H
D—N\)I: ring opening ’/\7T_\Ar
r
25 26
Rull) Ru(l) intermolecular | —
SET radical addition
NHAr +- Ar
R NHAr N-H
R intramolecular R I
b radical addition |'
30
29 28

Scheme 2: Proposed catalytic cycle.
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up the backbone of indolines. Continued studies in our group
will focus on further expanding the scope of the [3 + 2] annula-

tion to include substituted anilines and other types of m-bonds.

Experimental

General procedure for the [3 + 2] annulation of cyclopropyl-
anilines with alkynes: an oven-dried test tube (16 X 125 mm)
equipped with a stir bar charged with
[Ru(bpz)3](PFg)2:2H,0 (2 mol %), cyclopropylaniline
(0.2 mmol), alkyne (1.0 mmol), and dry CH3NO; (2 mL). The
test tube was sealed with a Teflon screw cap. The reaction mix-

was

ture was degassed by Freeze-Pump—Thaw cycles and then irra-
diated at room temperature with one white LED (18 watts) posi-
tioned 8 cm from the test tube. After the reaction was complete
as monitored by TLC, the mixture was diluted with diethyl
ether and filtered through a short pad of silica gel. The filtrate
was concentrated in vacuum and purified by silica gel flash
chromatography to afford the desired allylic amine.

Supporting Information

Supporting Information File 1

Experimental procedures, compound characterization, and
NMR spectra.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-96-S1.pdf]
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