

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 1177-1180

Three-component, one-pot synthesis of novel 2,4-substituted 5-azolylthiopyrimidine library for screening against anti-influenza virus A

Gang Cheng, Shukun Li, Jingya Li and Youhong Hu*

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China

Received 31 July 2007; revised 26 October 2007; accepted 30 November 2007 Available online 4 December 2007

Abstract—A novel one-pot synthesis of 2,4-substituted 5-azolylthiopyrimidines is achieved by sequential Michael-addition of 3-iodochromones with mercaptoazole (or mercaptotriazoles) and then condensation with a variety of amidines. Compound $A_1B_6C_1$ exhibits a potent anti-influenza virus A activity with an IC₅₀ value of 21.56 mg/mL and SI value of 9. © 2007 Elsevier Ltd. All rights reserved.

Pyrimidine is widely found as a core structure in a large variety of compounds that exhibit important biological activity.¹ The use of combinatorial approaches to the high-throughput synthesis of this drug-like scaffold would be a powerful advance in helping to speed up drug discovery. Recently we have developed efficient methods to generate heterocycle library by three-component one-pot reaction.² Since antiviral activity can be associated with the presence of nitrogen heterocycle (pyrimidine derivatives)³ or bis-heterocycle compounds,⁴ this strategy leads us to explore the convenient methodology to construct novel bis-heterocycle library containing pyrimidine scaffold for antiviral screening. Here, we report a combinatorial synthesis of 2,4-substituted-5-azolylthiopyrimidine library using a sequential three-component, one-pot reaction and its anti-influenza virus activity.

According to Yokoe's method,⁵ 3-azolylthiochromone **E** could be readily prepared by treatment of 3-iodochromone with mercaptoazole under the basic conditions (K_2CO_3). We envision the resulting 3-azolylthiochromone **E** as 1,3-diketone equivalent⁶ could be further condensed with amidines in situ to form 2,4-substituted-5-azolylthiopyrimidines. This protocol avoids the

nucleophilic substitution of 5-iodopyrimidine with thiols using copper, palladium chemistry or harsh condition.⁷

Initially, a consecutive one-pot process of iodochromones (A-1), mercaptoazole (C-1), and acetamidine (B-2) in the presence of K_2CO_3 as base in DMF only gave the product **D** which is the directly condensed product of iodochromone with acetamidine (Scheme 1, Eq. 1). Refluxing of the mixture could not generate the desired product (A₁B₁C₁). This indicates acetamidine is a stronger nucleophile than mercaptoazole. Then a sequential process was applied. Iodochromone was first reacted with mercaptoazole, followed by addition of acetamidine to give the desired product (A₁B₁C₁) in 68% yield (Scheme 1, Eq. 2).⁸ Solvent systems were investigated, THF and CH₃CN as solvent led to low yields.

Through this powerful procedure, the bis-heterocycles library containing pyrimidine scaffold can be generated by parallel split-pool protocol. First a 18-compound library was synthesized by 2 different iodochromones, 9 amidines, and mercaptoazole in moderate to excellent yield (Fig. 1).

Among them, we selected the universal compounds to evaluate for inhibition of influenza virus H3N2 (A3 China/15/90) replication in Madin-Darby canine Kidney (MDCK) cells.⁹ The result is given in Table 1. Aryl substitutions of pyrimidine at 2-position did not show the activity. Compounds $A_1B_2C_1$ and $A_1B_6C_1$ exhibit the activity against influenza A virus, with IC₅₀ values of

Keywords: One-pot synthesis; Michael-addition; Condensation; 5-Azolylthiopyridines; Heterocycle libraries; Anti-influenza.

^{*} Corresponding author. E-mail: yhhu@mail.shcnc.ac.cn

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.11.117

Scheme 1. Sequential one-pot synthesis of 5-azolylthiopyrimidine.

0	$A_1B_1C_1 R^1 = H, R^2 = H,$	85%	$\mathbf{A_2B_1C_1} \ \mathbf{R}^1 = \mathbf{CH_3O}, \ \mathbf{R}^2 = \mathbf{H},$	94%
R ²	$A_1B_2C_1$ R ¹ = H, R ² = CH ₃ ,	68%	$A_2B_2C_1$ R ¹ = CH ₃ O, R ² = CH ₃ ,	85%
OH N ^K N	${\bm A_1}{\bm B_3}{\bm C_1} \ \ {\bm R^1}={\bm H}, \ {\bm R^2}={\bm C_6}{\bm H_5},$	54%	$A_2B_3C_1$ R ¹ = CH ₃ O, R ² = C ₆ H ₅ ,	89%
	$\mathbf{A_1B_4C_1}$ R ¹ = H, R ² = 4-pyridinyl,	95%	$\textbf{A_2B_4C_1} \ \ R^1 = CH_3O, \ R^2 = 4\text{-pyridinyl},$	90%
	$A_1B_5C_1$ R ¹ = H, R ² = 4-CIC ₆ H ₄ ,	19%	$A_2B_5C_1$ R ¹ = CH ₃ O, R ² = 4-CIC ₆ H ₄ ,	85%
S_N_	$\mathbf{A_1B_6C_1}$ R ¹ = H, R ² = <i>tert</i> -butyl,	70%	$\mathbf{A_2B_6C_1}$ R ¹ = CH ₃ O, R ² = <i>tert</i> -butyl,	91%
\mathbf{B}^{1} \mathbf{N}	$A_1B_7C_1$ R ¹ = H, R ² = 4-NH ₂ C ₆ H ₄	, 60%	$A_2B_7C_1$ R ¹ = CH ₃ O, R ² = 4-NH ₂ C ₆ H ₄	, 89%
	$A_1B_8C_1$ R ¹ = H, R ² = methylthio,	48%	$\textbf{A_2B_8C_1} \ \ R^1 = CH_3O, \ R^2 = methylthio,$	40%
	$A_1B_9C_1$ R ¹ = H, R ² = NH ₂ ,	92%	$A_2B_9C_1$ R ¹ = CH ₃ O, R ² = NH ₂ ,	70%

Figure 1. First 18-compound library.

Table 1. Anti-influenza virus A, B activity and cytotoxicity of substituted pyrimidines in MDCK cells^a

R'							
Compound	Substituent		CC ₅₀ ^b (mg/mL)	Virus A	Virus B		
	\mathbb{R}^1	\mathbb{R}^2	R ³		IC ₅₀ ^c (mg/mL)	IC ₅₀ ^c (mg/mL)	
$A_1B_2C_1$	Н	CH ₃	N N N	577.35	258.69	_	
			$C CH_3$ (C ₁)				
$A_1B_3C_1$	Н	C ₆ H ₅	C ₁	120.19			
$A_1B_4C_1$	Н	4-Pyridinyl	C ₁	64.67	_	_	
$A_1B_5C_1$	Н	$4-ClC_6H_4$	C ₁	80.12	_		
$A_1B_6C_1$	Н	tert-Butyl	C ₁	194.01	21.56		
$A_1B_7C_1$	Н	$4-NH_2C_6H_4$	C ₁	80.12	_		
$A_1B_9C_1$	Н	NH ₂	C ₁	388.03	_		
$A_2B_1C_1$	CH ₃ O	Н	C ₁	618.39	_		
$A_2B_6C_1$	CH ₃ O	tert-Butyl	C ₁	115.56			
$A_2B_8C_1$	CH ₃ O	Methylthio	C ₁	7.19	_		
$A_3B_6C_1$	Cl	tert-Butyl	C ₁	111.11	48.74	86.23	

Table 1 (continued)

Compound	Substituent			CC ₅₀ ^b (mg/mL)	Virus A	Virus B
	\mathbb{R}^1	\mathbb{R}^2	R ³		IC ₅₀ ^c (mg/mL)	IC ₅₀ ^c (mg/mL)
$A_4B_6C_1$	CH ₃	tert-Butyl	C ₁	115.56		—
A ₁ B ₆ C ₂	Н	<i>tert</i> -Butyl	N^{-NH} S C_2	160.25	_	_
A ₁ B ₆ C ₃	Н	<i>tert</i> -Butyl	S N N C_3 C_3 C_3	160.25	_	_
A ₁ B ₆ C ₄ A ₃ B ₆ C ₂ Ribavirin	H Cl	<i>tert</i> -Butyl <i>tert</i> -Butyl	H C ₂	16.25 9.58 >500	 	 4.27

^a Abbeviations and strains used: MDCK, Madin-Darby canine kidney cells, influenza A H3N2 viruses (A3 China/15/90).

^b Concentrations that cause microscopically detectable toxicity in virus-infected cultures.

^c Concentrations required to reduce virus-induced CPE in MDCK cells by 50%.

258.69 and 21.56 mg/mL, respectively. These results indicated that the steric hindrance and electron-donating group in 2-position is favorable for activity. Based on $A_1B_6C_1$, compounds with thiotriazoles ($A_1B_6C_2$ and $A_1B_6C_3$) or hydrogen ($A_1B_6C_4$) substituted at 5-position were synthesized and exhibited no inhibition for influenza A virus.

We investigated the electron effect on substitution of aromatic ring at 5'-position. Only compound $A_3B_6C_1$ showed the weaker activity (IC₅₀ = 48.74 mg/mL) than $A_1B_6C_1$. Oxidation of $A_1B_6C_1$ gave compound F which showed no activity against influenza A. In addition, this series of compounds did not exhibit the potent activity against influenza B virus (see Scheme 2).

In summary, we have developed a mild and convenient method for the synthesis of 5-azolylthiopyridines based upon a consecutive Michael-addition, condensation sequence. This method provides facile construction of these bis-heterocycle libraries that are applicable for biological screening. Biological responses of these 5-azolylagainst influenza thiopyridines virus А were preliminarily evaluated, and the results showed that compound $A_1B_6C_1$ has inhibitory potency as lead for the development of de novo antiviral agents. Further studies on their structure-activity relationship and optimization of these compounds are underway in our group.

Scheme 2. Oxidation of compound $A_1B_6C_1$.

Acknowledgment

The Shanghai Commission of Science and Technology (06PJ14112) supported this work.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2007.11.117.

References and notes

- (a) Traxler, P.; Bold, G.; Buchdunger, E.; Caravatti, G.; Furet, P.; Manley, P.; O'Reilly, T.; Wood, J.; Zimmermann, J. Med. Res. Rev. 2001, 21, 499; (b) Zimmermann, J.; Buchdunger, E.; Mett, H.; Meyer, T.; Lydon, N. B. Bioorg. Med. Chem. Lett. 1997, 7, 187; (c) Ghosh, U.; Ganessunker, D.; Sattigeri, V. J.; Carlson, K. E.; Mortensen, D. J.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Bioorg. Med. Chem. 2003, 11, 629; (d) Bennett, G. B.; Mason, R. B.; Alden, L. J.; Roach, J. B. J. Med. Chem. 1978, 21, 623.
- (a) Xie, F.; Cheng, G.; Hu, Y. J. Comb. Chem. 2006, 8, 286;
 (b) Xie, F.; Li, S.; Bai, D.; Lou, L.; Hu, Y. J. Comb. Chem. 2007, 9, 12.
- (a) Hisaki, M.; Imabori, H.; Azuma, M.; Suzutani, T.; Iwakura, F.; Ohta, Y.; Kawanishi, K.; Ichigobara, Y.; Node, M.; Nishide, K.; Yoshida, I.; Ogasawara, M. Antiviral Res. 1999, 42, 121; (b) Papakonstantinou-Garoufalias, S.; Filippatos, E.; Todoulou, Q.; Tsantili-Kakoulidou, A.; Papadaki-Valiraki, A. Il Farmaco 1997, 52, 707; (c) De Clercq, E. J. Clin. Virol. 2004, 30, 115; (d) Selvam, P.; Murugesh, N.; Chandramohan, M.; Sidwell, R. W.; Wandersee, M. K.; Smee, D. F. Antiviral Chem. Chemother. 2006, 17, 269.
- Wang, W.-L.; Yao, D.-Y.; Gu, M.; Fan, M.-Z.; Li, J.-Y.; Xing, Y.-C.; Nan, F.-J. *Bioorg. Med. Chem. Lett.* 2005, 15, 5284.
- 5. Sugita, Y.; Yin, S.; Yokoe, I. Heterocycles 2000, 53, 2191.
- (a) Frasinyuk, M. S.; Khilya, V. P. Chem. Heterocycl. Compd. 1999, 35, 3; (b) Khilya, V. P.; Turov, A. V.; Tkschuk, T. M.; Shevchuk, L. I. Chem. Nat. Compd. 2001,

37, 307; (c) Sosnovskikh, V. Y.; Usachev, B. I.; Sizov, A. Y.; Barabanov, M. A. Synthesis **2004**, *6*, 942.

- (a) Caldwell, W. T.; Sayin, A. N. J. Am. Chem. Soc. 1952, 74, 4314; (b) Nandi, B.; Das, K.; Kundu, N. G. Tetrahedron Lett. 2000, 41, 7259.
- 8. Typical procedure for the synthesis of 2,4-substituted 5azolylthiopyrimidines: a mixture of substrate A-1 (0.2 mmol), C-1 (0.22 mmol), and K₂CO₃ (0.8 mmol) in DMF (3 mL) was stirred at room temperature for 8 h, then acetamidine (0.3 mmol) was added to the reaction mixture and stirred at room temperature for 8 h. The reaction mixture was concentrated. The residue was purified by flash chromatography (silica gel, 30:1 CHCl₃/CH₃OH) to afford 40 mg (68%) of compound $A_1B_2C_1$.
- 9. MDCK cells were grown as specified in Eagle's minimum essential medium with 10% heat-inactivated fetal bovine serum (FBS) plus antibiotics (penicillin, 100 U/mL; streptomycin, 100 U/mL). Influenza A H3N2 viruses (A3 China/15/90) were propagated in the allantoic cavities of 10-day-old embryonated eggs. Virus titers were determined by hemagglutinin titration, according to standard procedures. Confluent MDCK monolayers were infected with Influenza A viruses for 2 h at 37, after which the viral inoculum was removed and cells were treated with different concentrations of compound. When CPE result of the viral control group reached 4+, the result of compound treated group was observed. The dilution that gives 50% cytopathic effect was determined by the interpolating procedure of Reed and Muench.