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CsFsXeF, A Key Substrate in Xenon- Carbon
Chemistry: Synthesis of Symmetric and
Asymmetric Pentafluorophenylxenon ()
Derivatives**

Hermann-Josef Frohn* and Michael Theif3en

Salt-like compounds with a C—Xe bond in the cationic part
[RXe]™ have been known since 1989, where R represents an
arylLll alkenyl” or alkynyl groupPl. In contrast
C4FsXeO,CCiFs, CFsXeCl and [(C4FsXe),Cl]*P! contain
weaker covalent C—Xe bonds (3c-4e bondsll, asymmetric,
hypervalent bonds with different distinct heteropolar compo-
nents). The existence of the symmetric, hypervalent, molec-
ular compound Xe(CF;), is extremely doubtful, and un-
ambiguous proof of its constitution has not yet been provided.
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On the basis of high values of group electronegativity, for
example, Xe(C4Fs), and Xe(CN), should be favored for a new
class of symmetric C-Xe-C molecules, since their C(1) atom is
part of a polarizable w system and the strongly electron-
withdrawing components make the C-ligand electron-poor.

Herein we present a new concept for the synthesis of
covalent C¢FsXe-C and C¢FsXe-Y compounds, specific exam-
ples being Xe(CgFs), and CsFsXeCNIEl. This concept is based
on the new molecule C,FsXeF (1) which is the decisive key
substrate. The asymmetric hypervalent molecule 1 is formed
in 70 % yield as the soluble product of the heterogeneous low-
temperature reaction of [C,FsXe]* salts with “naked” fluoride
[NMe,]F in CH,CI, [Eq. (1)]. The alternative approach, the
electrophilic substitution of E in CsFs-E with [FXe]* does not
lead to 1, because the oxidation potential of [FXe]" is too high
even for fluoroaromatics.

CH,Cly, —78°C

[CoFsXel[Y]e + [NMe,JF C4FsXeF + [NMe,][Y] |

slow 1 (1)
Y = AsFq, BF,

If the soluble source of fluoride in Equation (1) is used in a
smaller than stoichiometric amount, multinuclear fluoro-
bridged xenonium species result [Eq. (2)]:

CH,Cl, ~78°C
slow (2)
[(CeFsXe),F][AsFg] | + [NMe,][AsF] |

2[CFsXe][AsFy], + [NMe,|F

Ab initio calculations (comparison in the gas phase) show
that the C—Xe distance in 11is longer than in the [C;FsXe]" ion
and the Xe—F distance is greater than in XeF,. The latter
feature makes the F~ ion a good leaving group. The
permanent dipole moment in 1 makes the successful attack
of nucleophiles on the electrophilic Xe center easier. With
Cd(C4Fs), as an aryl transfer reagent it is possible to introduce
a second aryl group into 1 [Eq. (3)]:

CH,Cl,, -78°C

2 CFsXeF 4 Cd(C4Fs), 2Xe(CyFs), + CdF, | (3)
1 2

The direct introduction of the C4Fs group into XeF, within
the thermal-existence range of 2 is not successful with
Cd(C¢Fs),, as the nucleophilicity of the aryl group (no
permanent dipole moment) does not suffice for the substitu-
tion on XeF,. The nucleophilicity of the aryl group in
Me;SiC¢Fs in CH,Cl, is not high enough for the successful
F-C(F; substitution in 1 [Eq. (4)] (see also ref. [10]):

—70——40°C
C.FsXeF +Me;SiCFs —+—— 2+ Me,SiF @)
CH,Cl,, <10h
However, with Me;SiCN the CN group can be introduced
successfully into 1 [Eq. (5)]:

C¢FsXeF + Me,SiCN _ 2% ¢ - ¢ F.XeCN + Me,SiF 5)
1 spontane(\us 3

We attribute the different reactivities of Me;SiC¢Fs and
Me;SiCN more to differences in Lewis acidity than to steric
effects.
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The symmetric C-Xe-C molecule 2 as well as the asym-
metric molecules 1 and 3 are soluble in polar, weak-
coordinating solvents, such as CH,Cl,. When dissolved in
basic, strongly coordinating MeCN compound 1 shows no
heterolysis to the [CsFsXe]+ and F~ ions. Compounds 1-3 are
unstable at room temperature and even at —78°C their
CH,CI, solutions decompose within a few weeks. The
products of decomposition point to homolytic breakage of
bonds followed by radical recombinations and radical attacks
on the solvent.

Both electronegative aryl groups in 2 show a relatively high
anionic character. In the superacidic solvent aHF (anhydrous
HF) one of the aryl groups can be quantitatively split off
through electrophilic attack forming equimolar amounts of
[CsFsXe]t and C4FsH [Eq. (6)]:

Xe(CFs)y +(n + HF ", [CF:Xe][F(HF),] + C;FH ©)
In the presence of I, compound 2 behaves as an arylating
agent [Eq. (7)]:

—78°C, CH,Cl,
_

Xe(CqFs), + I, 2CFsl + Xe" %)

The reactions of 3 with I, or HF proceed in a more complex
manner because of the inequivalent C—Xe bonds. The
reaction of the C4Fs group in 3 was monitored by ’F NMR
spectroscopy and the products CsFsI, C,FsH, and C4FsCN
(5:3:1) or [C4FsXe]", CFsH, and C4FsCN (4:1:3) were
detected. As a result of its good fluoride donor ability 1
reacts even with weak Lewis acids such as SiF, or C¢FsBF,

[Egs. (8), (9)]:
C.FsXeF + SiF, — [C,FsXe][SiF;] ®)

C,FsXeF + C4F;BF, — [C,FsXe][C,FsBF;] )

Table 1. NMR spectroscopic characterization of compounds 1301,

The constitution of 1-3 was confirmed by heteronuclear
NMR spectroscopy (°F, #Xe, 3C, ®N; Table 1) in CH,Cl,
solutions. The coupling constants were determined in some
cases by YF- or »Xe-decoupling experiments. The Xe
NMR spectrum of 1 shows the large Uy ¢ (doublet, 4014 Hz)
and the smaller *Jx,,r coupling (triplet, 82 Hz) that confirm
unambiguously the constitution of 1. In the '¥Xe NMR
spectrum of 2 the resonance signal at 6 = —4152 (the lowest
frequency of a Xe!! species!) appears as a not fully resolved
multiplet. The accompanying o-F signal at 6 = — 133.05 shows
12X e satellites of appropriate intensity. The 3Jgx. coupling is
determined (by using selective m-F decoupling) to be 43 Hz.
The »Xe NMR spectrum of C¢FsXeCN shows a triplet
(Jx.r=86Hz) at 0=-3883.2. In the labeled compound
C¢FsXe®*CN (Figure 1) an additional doublet (YJx.c=
1060 Hz) is observed. In the labeled compound C¢FsXeCPN
the Xe NMR resonance signal (*°F decoupled) appears as a
doublet (3Jx. =21 Hz).

-3878 -3880 -3882 -3884 -3886 -3888

«— &
Figure 1. '¥Xe NMR spectrum of C;FsXe*CN in CD,Cl, at —78°C.

“F NMR 6(o-F) o(p-F) 6(m-F) 6(Xe-F) 3 rr exe rxer xe
RXeF 1 —129.35 —146.87 —156.49 —3.500! 20 81kl 19l 4010
RXeR 2 —133.05 —154.14 —159.04 21 43l

RXeCN 3 —131.54 —147.50 —156.39 21 87

“C{"F} NMR 6C(1) 6C(2.6) 6C(3.5) oC4) exe Ueyor Jexer Jexer
RXeF 1 86.35 143.90 137.14 143.09 1111 28 11514 ca. 6l
RXeR 2 122.59 143.01 136.31 140.64

RXeCN 3l 103.07 143.11 137.10 142.82 66

129X e Xe xer Yxer

RXeF 1 —3789.2 82 4014

RXeR 2 — 415218

RXeCN 3 —3883.2 86

selected 0 and J-values of the labeled compound 3:

13C OCN Venxe Jexeqy

RXe"*CN 125.68 1060 142

1SN OCN 2, N.Xe

RXeCPN 123.7 22

[a] R = C¢Fs. The NMR measurements proceeded in FEP sample tube liners (FEP = tetrafluoromethylene hexafluoropropylene copolymer) in CD,Cl, at
—78°C with a Bruker AVANCE-DRX-500 spectrometer. The absolute values of the coupling constants J in Hz. The "“F, ¥Xe, 3C, and "N chemical shift
values are relative to the standards CgFy (0(CCLF)=—162.9 ppm), XeOF, (24°C), TMS, and CD;NO, (24°C), respectively, at the corresponding
measurement temperature. [b]s, br, 7,, becomes smaller after addition of F~ ions.''! [c] From F-decoupling experiments. [d] From insensitive nuclei
enhancement by polarization transfer (INEPT) experiments. [e] 6(CN) =125.22. [f] m, 7;, ~ 150 Hz.

4592
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Table 2. Calculated (Gaussian 94, RHF, LANL2DZ) geometric parameters and charges (Mulliken) of C,FsXe-Z molecules!l.

CcFsXe-Z Molecule ~ Sym. Selected geometric parameters!’! Selected Mulliken charges
C(1)-Xe Xe-Z C(2)-C(1)-C(6) Xe C¢Fs c(1) V4

CsFsXe-F 1 C, 2.20 2.13 117.7 1.148  —0.415 —1.001 —0.733

CFsXe-CFs 2 C, 234 2.34 117.4 0.980  —0.490 —0.687 —0.490

C4FsXe-CN 3 C, 224 2.38 118.1 0.967  —0.403 —0.853 —0.564[!

for comparison see ref [12]

C4FsXe -+ F-AsF; ~C, 212 2.56 1213 1.083  —0.134 —1.032 —0.948

[CeFsXe]* C, 2.16 - 122.7 0.886 0.114 —0.870 -

FXeF D, - 2.03 - 1.306 - - —0.653

[a] Z =second ligand bound to Xe!; [b] in [A] or [], repectively; [c] Mulliken charges of C in the CN ligand: — 0.466.

The results of ab initio calculations for 1-3 show the
following sequence of C-Xe distances: 2 >3 > 1, thus opposite
to the sequence of Mulliken charges of the ligand Z in
C¢F;XeZ (Table2). The comparison of data for 1 and
CsFsXe --- FAsF; [l elucidates clearly the change when going
from the asymmetric hypervalent C-Xe-F bond to a signifi-
cant C-Xe --- F contact: the negative charge on Z gets closer to
—1 whereas the negative charge of the C;F5 group decreases
significantly. The high anionic character of the C¢Fs group in
1-3 agrees with the observed reactivities towards electro-
philes and explains the lower-frequency chemical shifts of the
p-F atom compared to [C¢FsXe]*.

Experimental Section

1: A cold solution of [NMe,JF (25 mg, 0.27 mmol) in CH,Cl, (1 mL) was
added to a suspension of [C¢FsXe][AsF4] (131 mg, 0.27 mmol) in CH,Cl,
(1.5 mL) at —78°C in an 8 mm FEP trap. The suspension was stirred over
2 days at — 78 °C until all the fluoride was consumed. The mother liquor was
separated from solid [NMe,][AsF,] and the quantity of 1 was determined
(F NMR): 0.19 mmol, 70 %. The other reactions were usually performed
directly with the cold solutions of 1. By evaporating CH,Cl, at 1072 hPa/ <
—55°C and later drying at < —40°C 1 was obtained as a colorless solid,
which after warming to 20°C decomposed totally within 4 h. In CH,Cl,
solution noticeable decomposition proceeded above —30°C with the
formation of C¢FsH and traces of C,FsCl.

2: A cold solution of Cd(C¢Fs), (17 mg, 0.04 mmol) in CH,Cl, (0.5 mL) was
added to a solution of 1 (0.08 mmol) in CH,Cl, (1.5 mL) at —78°C. After
5 min of stirring CdF, precipitated. The reaction was complete (’F NMR)
after further 10 min. The mother liquor was collected. In addition to 2
(0.06 mmol, 75%) the solution contained C(FsH (4 umol) and (C¢Fs),
(2 pmol). The isolation of solid 2 was achieved as described for 1. Solid 2
decomposes completely at room temperature within 1h and in CH,Cl,
solution at —40°C within 9 h [C¢FsH:(C4Fs), =1:0.1].

3: A cold solution of Me;SiCN (14 uL, 0.10 mmol; or the labeled *CN and
CBN derivatives) in CH,Cl, (0.5 mL) was added to a solution of 1
(0.10 mmol) and CH,Cl, (1.5 mL) at —78°C and stirred. After 5 min the
reaction was complete (’F NMR: quantitative reaction) giving a 1:1
mixture of 3 and Me;SiF. CH,Cl, and Me;SiF were distilled at < —55°C/
1072 hPa and the white solid product was dried at < —40°C/10~? hPa. The
solid spontaneously decomposed during the rapid warming to room
temperature. CH,Cl, solutions of 3 decomposed completely at —40°C
within 2 h with the formation of C;FsCN and C¢FsH (4:1).

Checking the purity of the cold solid products after dissolution in CH,Cl, at
—78°C showed in the case of 1 and 2 degrees of decomposition of up to
10% and for the thermally more sensitive product 3 up to 30 %.
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An Enantiospecific Synthesis of the Potent
Immunosuppressant FR901483**

Goetz Scheffler, Hirofumi Seike, and Erik J. Sorensen*

Bond formations induced by phenol oxidations have a rich
history in organic chemistry. The influential two-step synthesis
of usnic acid by Sir Derek Barton and co-workers!! followed a
set of simple rules that provided guidelines for rationalizing
the course of oxidative phenolic radical couplings occurring in
the biogeneses of a number of natural products.’ We were
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