

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 18 (2008) 568-570

Synthesis and SAR of novel 1,1-dialkyl-2(1*H*)-naphthalenones as potent HCV polymerase inhibitors

Todd D. Bosse,* Daniel P. Larson, Rolf Wagner, Doug K. Hutchinson, Todd W. Rockway, Warren M. Kati, Yaya Liu, Sherie Masse, Tim Middleton, Hongmei Mo, Debra Montgomery, Wen Jiang, Gennadiy Koev, Dale J. Kempf and Akhter Molla

Infectious Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA

Received 27 August 2007; revised 20 November 2007; accepted 20 November 2007 Available online 28 November 2007

Abstract—A series of *gem*-dialkyl naphthalenone derivatives with varied alkyl substitutions were synthesized and evaluated according to their structure–activity relationship. This investigation led to the discovery of potent inhibitors of the hepatitis C virus at low nanomolar concentrations in both enzymatic and cell-based HCV genotype 1a assays. © 2007 Elsevier Ltd. All rights reserved.

Hepatitis C virus (HCV) is a small RNA virus that belongs to the family flaviviridae and is the sole member of the genus hepacivirus. Six major genotypes and more than 100 subtypes of HCV have been identified, having marked geographic variation in relative frequencies. The most common genotypes in the United States are genotypes 1a and 1b (approximately 75%), 2a and 2b (approximately 15%), and 3 (approximately 7%).¹

An estimated 180 million people are chronically infected with HCV worldwide; with 3–4 million newly infected patients each year. In the United States, an estimated 4.1 million people (1.6%) have been infected with HCV, of whom 3.2 million are chronically infected. Chronic HCV infection is a major cause of liver fibrosis and hepatocellular carcinoma.² Currently, the standard of care for the treatment of HCV is pegylated interferon- α (IFN- α) in combination with ribavirin.³ This combination therapy yields a sustained viral response (SVR) for about 50% of patients with genotype 1, 4, 5, and 6 HCV and a response for about 85% of patients infected with genotype 2 and 3 HCV.² A sustained viral response occurs when there is no trace of HCV RNA present in the patient's blood immediately after treatment and also six months post-treatment. Besides being only somewhat effective, the current therapies are costly and cause a variety of side effects, including depression, irritability, headaches, anemia, and nausea. HCV infection represents a major unmet medical need, therefore, the discovery of novel, small molecules that successfully treat HCV infection remains an area of intense focus for the pharmaceutical industry.

The virus is made up of a core protein, two enveloped proteins E1 and E2, and non-structural proteins NS2–NS5 that are essential for viral replication, translation, and polyprotein processing.³ Efforts to develop anti-HCV agents have focused on the inhibition of key viral enzymes. Most pharmaceutical research can be categorized into the following types: E2 binding inhibitors, NS2 protease inhibitors, NS3 protease inhibitors, NS5A inhibitors, helicase inhibitors, IRES inhibitors, and polymerase inhibitors. Our research has focused on the virally encoded RNA-directed RNA polymerase as the primary initial antiviral target. The NS5B portion of the HCV genome encodes for the polymerase, an enzyme that is pivotal in viral replication and is thus a primary target for drug development.³

Previous work described the discovery of N-1-heteroalkyl-4-hydroxyquinolon-3-yl-benzothiadiazines, analog 1 (Fig. 1), which eventually led to a new series where the B ring was transformed to include a quaternary carbon center, analog 2 (Fig. 1). This new scaffold was the basis

Keywords: Polymerase; Inhibitors; Benzothiadiazines; Hepatitis; HCV; Naphthalenones.

^{*} Corresponding author. Tel.: +1 847 938 4442; fax: +1 847 938 2756; e-mail: todd.bosse@abbott.com

Figure 1. Examples of *N*-1-heteroalkyl-4-hydroxyquinolon-3-yl-benzothiadiazine (1) and symmetrical *gem*-dialkyl naphthalenone (2) HCV polymerase inhibitors.

for a series of symmetrically substituted gem-dialkyl naphthalenones.^{4,5} The scaffold consisted of four sixmembered rings; the A-ring consisted of a phenyl ring that lacks any substitution, the B-ring containing the gem-dialkyl substitution site, the C-ring containing the thiadiazine ring, and the D-ring consisting of a phenyl ring with a methane sulfonamide substitution (Fig. 2). In the N-1-heteroalkyl-4-hydroxyquinolon-3-yl-benzothiadiazine series, the most potent inhibitors contained small alkyl or carbocyclic substituents and exhibited IC₅₀'s between 50-100 and 200-400 nM against genotype 1b and 1a HCV polymerase, respectively.⁴ Our lead compound became the dipropyl substituted compound 2 (Fig. 1), which is a selective inhibitor of HCV genotype 1a replication, with an IC_{50} of 99 nM in the HCV polymerase enzyme assay and an EC₅₀ of 603 nM in a cell-based assay.⁵ In a logical extension of the investigation of dialkyl analogs, our attention turned toward unsymmetrical dialkyl compounds. Specifically, we investigated the SAR of methyl/alkyl substitution at the 1-position of the tetracyclic core.⁶ Most of our SAR investigations were limited to analogs with substitutions on the 1-position of the B-ring and 7-position of the D-ring. Since earlier investigations of the SAR at the 7-position of the tetracyclic thiadiazines revealed the optimal substitution to be the methyl sulfonamide, analogs with this substituent were chosen as the basis for our unsymmetrical dialkyl series.⁷

The synthesis of the *gem*-dialkyl naphthalenones is outlined in Scheme 1. The synthesis was initiated by the deprotonation of commercially available benzyl 2-phenylpropanoate **3** (or benzyl 2-butanoate in the synthesis of ethyl/isoamyl derivative **4h**) with lithium hexamethyldisilazane in THF. This step was followed by alkylation using the appropriate vinyl or alkyl halide⁸ to yield the racemic benzyl ester.

Hydrogenation of the double bond and hydrogenolysis of the benzyl ester occurred in a one-pot reaction to give the corresponding carboxylic acids (4a-g). The diethyl esters (5a-g) were synthesized by first converting the carboxylic acids (4a-g) to the corresponding acid chlorides, followed by addition of the acid chlorides to the magnesium enolate of diethyl malonate. The esters (5a-g) were treated with neat methanesulfonic acid to afford the dihydronaphthalene esters, which were then decarboxylated to afford the hydroxynaphthalenone analogs **6a**–g. The next step of the synthesis involved treatment of analogs 6a-g with tris-methylsulfanyl-methane sulfuric acid monomethyl ester salt⁹ to give the dithioketene acetal compounds (7a-g). Treatment with (4-amino-3-sulfamoyl-phenyl)-carbamic acid *tert*-butyl ester¹⁰ followed by deprotection with HCl yielded the hydrochloride

R² = Methyl or Ethyl

Scheme 1. Reagents and conditions: (a) LiHMDS, THF, -78 °C, 30 min, then DMI, RCH₂Br, LiI, 72–99%; (b) Pd/C, H₂, EtOAc, 93–98%; (c) oxalyl chloride, DMF, hexane, 2 h, then MgCl₂, diethyl malonate, Et₃N, acetonitrile, 50 °C, 18 h, crude; (d) methanesulfonic acid, 18 h, 51–89%; (e) 1 N aqueous HCl, dioxane, 100 °C, 2 h, 57–75%; (f) (MeS)₃C⁺MeSO₄⁻⁻, pyridine, dioxane, 100 °C, 1 h, 30–99%; (g) (4-amino-3-sulfamoyl-phenyl)-carbamic acid *tert*-butyl ester, toluene, reflux, 6 h, 77–98%; (h) 4 M HCl/dioxane, CH₂Cl₂, 1 h, 84–90%; (i) methane sulfonyl chloride, pyridine, acetone, 18 h, 75–96%; (j) aqueous NaOH, 2 h, 95–99%.

salts of the aniline tetracycles (8a-g). The methane sulfonamides were prepared from 8a-g and then converted to their corresponding sodium salts to afford the target compounds (9a-g).

The in vitro biological activity of this series of gem-dialkyl naphthalenones is shown in Table 1. Our SAR plan involved systematically increasing the steric bulk of substituent R to find the optimal size and shape. The initial set of compounds in our SAR library demonstrated an improvement in potency compared to the lead compound 2. Even the weakest analog of the initial set, compound **9a**, showed a 5-fold increase in IC_{50} and a 3-fold increase in EC₅₀. Compound **9h**, where R^2 is ethyl, was synthesized to establish if methyl substitution was best for the series. This compound showed the methyl substitution to be 2-fold more potent in IC_{50} and equipotent in EC_{50} when compared to the corresponding ethyl analog. As the synthesis of our library expanded, we continued to see improvements in activity that corresponded to the increased size of the substituent in the 1-position. Analogs with substitutions of iso-amyl (compound 9c) and neohexyl (compound 9d) emerged as the most potent inhibitors. Although the enzymatic assay showed compounds 9c and 9d to have nearly equal potency, the cell-based assay showed analog 9d to have nearly a 5-fold improvement in replicon potency. Compound 9d showed a 10fold improvement in IC₅₀ and a 75-fold improvement in EC_{50} compared to the lead compound 2. Substituents slightly larger in size than that in compound 9d, as shown by the methylcyclohexyl analog 9f, resulted in roughly equal potency in the enzyme assay but showed a 15-fold decrease in the cell-based assay as compared to compound 9d.

Since it was our hypothesis, based on modeling data, that larger substituents than the *neo*-hexyl group would

Table 1. In vitro enzymatic and cell-based inhibitory activities

Compounds	R1	R2	Genotype 1a IC ₅₀ (nM)	Replicon 1a EC ₅₀ (nM)
9a	and the second	Me	20	184
9b	$\sim\sim$	Me	15	52
9c	\swarrow	Me	7	38
9d	\swarrow	Me	10	8
9e		Me	138	NT
9f	\sim	Me	13	121
9g		Me	791	NT
9h	\swarrow	Et	17	49

result in an overall decrease in potency, our next step in the SAR investigation was to identify an alkyl chain size that was large enough to result in diminished activity. Our theory was confirmed with large alkyl substituted compounds **9e** and **9g**, a 14- and 79-fold decrease, respectively, in IC₅₀'s relative to compound **9d**.

In summary, the structure–activity relationships of novel gem-dialkyl naphthalenones as HCV polymerase inhibitors were explored. Attempts to increase potency by modifications on the 1-position carbon of the B-ring have been successful. This series of inhibitors proved to have nanomolar inhibition of both genotype 1a HCV polymerase and the genotype 1a HCV replicon, with the optimized methyl-*neo*-hexyl compound showing a 10- and 75-fold increase in potency, respectively, over the initial lead compound.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2007.11.088.

References and notes

- 1. Hoofnagle, J. H. Hepatology 2002, 36, S21.
- Ikeda, M.; Abe, K.; Yamada, M.; Dansako, H.; Naka, K.; Kato, N. *Hepatology* 2006, 44, 117.
- 3. Gordon, C. P.; Keller, P. A. J. Med. Chem. 2005, 48, 1.
- Pratt, J. K.; Donner, P.; McDaniel, K. F.; Maring, C. J.; Kati, W. M.; Mo, H.; Middleton, T.; Lui, Y.; Ng, T.; Xie, Q.; Zhang, R.; Montgomery, D.; Molla, A.; Kempf, D. J.; Kohlbrenner, W. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 1577.
- Hutchinson, D.K., et al. Patent Application WO 2005/ 019191, 2005.
- 6. All compounds discussed in this publication were prepared as the racemic mixture. Enantiomerically pure compounds were prepared at a later date and will be discussed in future publications.
- Rockway, T. W.; Zhang, R.; Liu, D.; Betebenner, D. A.; McDaniel, K. F.; Pratt, J. K.; Maring, C. J.; Kati, W. M.; Middleton, T.; Montgomery, D.; Molla, A.; Kempf, D. J.; Beno, D.; Jiang, W.; Masse, S. *Bioorg. Med. Chem. Lett.* 2006, 16, 3833.
- 8. All vinyl halides were commercially available except 1-iodo-3,3-dimethyl-butane, 1-bromo-5,5-dimethyl-hex-2-ene, and (3-bromo-propenyl)-cyclohexane. 1-Iodo-3,3-dimethylbutane was made by conversion of the hydroxyl group of 3,3-dimethyl-butan-1-ol with iodine, triphenylphosphine, and imidazole in dichloroethane. 1-Bromo-5,5-dimethylhex-2-ene was made by reacting 3,3-dimethyl-butyraldehyde with vinylmagnesium bromide to give 5,5-dimethylhex-1-en-3-ol, which was then reacted with 1,5-hexadiene and thionyl bromide to yield the desired vinyl bromide. (3bromo-propenyl)-cyclohexane was synthesized using the same procedure described for 1-bromo-5,5-dimethyl-hex-2ene.
- 9. The tris-methylsulfanyl-methane sulfuric acid monomethyl ester salt was synthesized by reacting dimethylsulfate with dimethyl trithiocarbonate at 90 °C for 1 h and washing with diethyl ether.
- 10. Goldfarb, A. R.; Berk, B. J. Am. Chem. Soc. 1943, 65, 738.