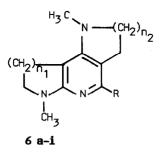

A NOVEL SYNTHESIS OF DI(1-METHYLAZACYCLOALKENO)(2,3-b2',3'-d)PYRIDINES THROUGH ANNULATION ON LACTAM ACETALS^{1,2}

Sanjay Jain, Rahul Jain, Jujhar Singh and Nitya Anand* Central Drug Research Institute Lucknow 226 001, India

Summary: Annulation reaction of lactam acetals 1a and b with primary amides provided a facile synthesis of di(1-methylazacycloalkeno)[2,3-b:2',3'-d]pyridines 6(a-i). Dehydrogenation of 6a,b,d formed dipyrrolo[2,3-b:2',3'-d]pyridines 7a,b,d.

Lactam acetals belong to a unique class of reactive intermediates which exist in equilibrium with highly reactive immonium species 2, a counterpart methoxide ion, and enamine 3 (Scheme 1)³. This property confers on them the ability to react with nucleophiles, electrophiles



and bifunctional species to yield 2- and 3-substituted and 2,3-annulated products⁴ and thus provides a useful platform for the construction of a variety of heterocycles. In our continuing study of the synthetic utility^{5,6} of lactam acetals, it has been observed that their reaction with primary amides provides a facile synthesis of di(1-methylazacycloalkeno)[2,3-b:2',3'-d]pyridines 6a-i; the ring systems dipy⁵rolo[2,3-b:2',3'-d]pyridine[5,6,5] and pyrrolo[3,2-c]-1,8-naphthyridine[5,6,6] are hitherto not known in literature while the formation of the parent pyrido[2,3-h]-1,6-naphthyridine[6,6,6] is reported⁷ only as a bye product in the Hofmann reaction of 2,3'-bipyridine-2',3dicarboxamide.

4 a-d

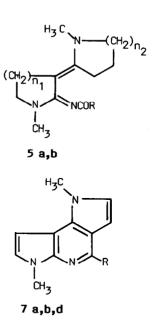


Chart 1

Reaction of 1a & b with equimolar amounts of benzamide and p-substituted benzamides at room temperature in THF yielded N-acylcyclicamidines 4a-d in 74-84% yield. Keeping in view, the low nucleophilicity of amides, it appears that the methoxide ion available in the equilibrium mixture of lactam acetals, abstracts a proton from the amide nitrogen and thus generates corresponding anion which readily condenses with the immonium species 2 leading to the formation of 4. Amidines 4a,b (1 g) possessing an activated 3-CH₂ group, reacted with N-methyl-2-pyrrolidone acetal 1a (5 ml) at 150° for 3 h to furnish 2-acylimino-3-(1-methyl-2-pyrrolidinylidene)-1methylpyrrolidines 5a and b which were cyclized in refluxing POCl₂ (3 h) to give di(1-methyl-3,4dihydropyrrolo)[2,3-b:2',3'-d]pyridines 6a, b in fair yield (43-55%)⁸. In an one-pot synthesis, a mixture of arylamide (1 g) and 1a (5 ml) was heated at 150° for 3 h and the resulting mixture was refluxed in POCl₃ (10 ml) for 3 h to yield the cyclized products 6a-d in 35-61% yield which were crystallized from acetone. Structure 6 for the compounds was further supported by dehydrogenation of 6a,b,d with Pd-C in refluxing diphenyl ether (6 h) to give aromatized dipyrrolo[2,3-b: 2',3'-d]pyridines⁹ 7a,b,d (76-81%) (Table 1).

Condensation of six membered acetal 1b with arylamides was found to be more facile. Thus heating a mixture of arylamides (1 g) and 1b (5 ml) at 150° for 3 h yielded directly the cyclized products 6e-g (53-59%), while reaction of 2-benzoylimino-1-methylpiperidine 4d with <u>N</u>-methyl-2-pyrrolidone acetal 1a furnished the cyclized product 6h demonstrating a greater

synthetic flexibility of <u>N</u>-acylamidines 4 in the development of various di(1-methylazacycloaikeno)-[2,3-b:2',3'-d]pyridines, depending upon their reaction with lactam acetals of various ring sizes. These observations indicate an ease of formation of [6,6,6] and [6,6,5] ring systems compared to [5,6,5].

Compound No.	n ₁	n ₂	R	m.p.°C	% Yield
4a	1	-	С6Н5	Oil	80
4 b	1	-	₽-CIC ₆ H ₄	124-25	83
4c	1	-	₽-NO2C6H4	153-54	76
4d	2	-	C ₆ H ₅	139-40	84
5a	l	1	с ₆ н5	124-25	50
5b	1	1	₽-CIC ₆ H ₄	1 02 - 03	56
6a	1	1	C ₆ H ₅	141-42	46
6b	1	1	p-CIC6H4	132-33	56
6C	1	1	P-NO2C6H4	151-52	35
6d	1	l	3-C5H4N	155-56	61
6e	2	2	C ₆ H ₅	Oil	53
6f	2	2	p-CIC6H4	147-48	59
6g	2	2	3-C ₅ H ₄ N	Oil	54
6h	2	1	C6H5	1 04-05	38
6i	1	1	н	Oil	32
7a -	1	1	C ₆ H ₅	144-46	81
7Ь	l	1	p-CIC ₆ H ₄	117-18	78
7d	i	1	3-C ₅ H ₄ N	156-57	76

Table 1: Physical constants of compounds 4-7*

*Compounds were characterized by their IR, $^1{\rm H}$ NMR and MS data and satisfactory elemental analysis

This reaction was also studied with aliphatic amides. Reactions with formamide, yielded the expected cyclized product 6i in 32% while reaction with acetamide and propionamide resulted in the formation of intractable mixture.

REFERENCES AND NOTES

- 1. C.D.R.I. Communication No.4573.
- 2. This is part XX of the 'Studies on Lactam Acetals'.
- 3. J. Singh, V. Sardana and N. Anand, Indian J. Chem., 22B, 1141 (1983).
- 4. N. Anand and J. Singh, Tetrahedron, 44(19), 5975 (1988).
- 5. P. Ahuja, J. Singh and N. Anand, Indian J. Chem., 22B, 723 (1983).
- 6. P. Ahuja, J. Singh and N. Anand, Indian J. Chem., 27B, 166 (1988).
- 7. W. Brydowna, <u>Roczniki Chem.</u>, 14, 304 (1934); <u>Chem. Abstr.</u>, 29, 2535⁷ (1935).
- 8. Spectral data of 6a: ¹H NMR (CDCl₃, δ ppm): 2.85 (s, 6H, 2xN-C<u>H₃</u>), 2.80-3.45 (m, 8H, 4xC<u>H₂</u>), 7.00-7.40 (m, 3H, 3'-, 4'- and 5'-Ar<u>H</u>) and 7.50-7.80 (m, 2H, 2'- and 6'-Ar<u>H</u>). MS: <u>m/z</u> 265 (M⁺).
- 9. Spectral data of 7a: ¹H NMR (CDCl₃, δ ppm): 3.94 and 3.99 (2s, 6H, 2xN-C<u>H₃</u>), 6.62 and 6.72 (2d, 3- and 8-Ar<u>H</u>, J = 4.0Hz), 6.88 and 7.02 (2d, 2- and 7-Ar<u>H</u>, J = 4.0Hz), 7.25-7.60 (m, 3H, 3'-, 4'- and 5'-Ar<u>H</u>) and 7.80-8.10 (m, 2H, 2'- and 6'-Ar-<u>H</u>). MS: <u>m/z</u> 261 (M⁺).

(Received in UK 14 November 1989)