Organic & Biomolecular Chemistry

PAPER

ROYAL SOCIETY OF CHEMISTRY

View Article Online View Journal | View Issue

Cite this: Org. Biomol. Chem., 2014, **12**, 5469

Received 5th May 2014, Accepted 10th June 2014 DOI: 10.1039/c4ob00921e

www.rsc.org/obc

Introduction

Heterocycles are frequently found in bioactive natural products and have been intensively studied as drug candidates. Accordingly, development of efficient and economic ways to construct heterocycles has been a subject of considerable interest in organic synthesis.¹ In particular, the domino C–H activation/ cyclization method has emerged as a powerful tool for the synthesis of heterocycles.^{2–4}

The indazole is an important heterocycle and the key motif of anti-cancer, anti-inflammatory, anti-HIV, and anti-emetic drugs (Scheme 1).⁵ Consequently, the diverse approach to indazoles has attracted much attention over the past few decades.⁶ Besides the traditional methods of condensation and transition metal-catalyzed intramolecular amination of *o*-halo arylhydrazones,⁷ synthesis of indazoles *via* transition metal-catalyzed C–H functionalization has aroused much attention recently. Starting from arylhydrazones, three examples

^aDepartment of Chemistry, ZJU-NHU United R&D Center, Zhejiang University, Hangzhou 310027, China. E-mail: liuzhanx@zju.edu.cn, yhzhang@zju.edu.cn ^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

†Electronic supplementary information (ESI) available: Experimental details. Spectral data and other ESI. See DOI: 10.1039/c4ob00921e

Synthesis of 2,3-dihydro-1*H*-indazoles by Rh(III)-catalyzed C–H cleavage of arylhydrazines†

Jinzhong Yao,^a Ruokun Feng,^a Cong Lin,^a Zhanxiang Liu*^a and Yuhong Zhang*^{a,b}

A rhodium-catalyzed efficient method for the synthesis of 2,3-dihydro-1*H*-indazoles is described. The reaction of arylhydrazines with olefins results in the corresponding 2,3-dihydro 1*H*-indazoles with exclusive regioselectivity *via* C–H bond activation. The utility of the methodology is illustrated by a rapid synthesis of 1*H*-indazoles under mild reaction conditions in half an hour.

of Pd-, Fe-, and Cu-catalytic systems were reported to synthesize 1*H*-indazoles through intramolecular C–H amination by Hiroya, Bao and Jiang, respectively.⁸ Glorius reported a synthesis of 1*H*-indazoles from easily available arylimidates and organo azides *via* the Rh-catalyzed C–H activation/C–N bond formation and Cu-catalyzed N–N bond formation.⁹ Recently, the preparation of *N*-aryl-2*H*-indazoles initiated by Rh(m)catalyzed direct addition of an azobenzene C–H bond to an aldehyde with subsequent cyclization and aromatization is demonstrated by Lavis and Ellman.¹⁰

Arylhydrazine is a widely used chemical reagent and its derivatives can be readily prepared. However, the utilization of arylhydrazines in the direct functionalization of the C–H bond is rarely studied.¹¹ Herein, we wish to report a highly efficient method for the synthesis of 2,3-dihydro-1*H*-indazoles *via* the rhodium-catalyzed C–H activation process. The corresponding 1*H*-indazoles could be readily prepared by the treatment of 2,3-dihydro-1*H*-indazoles with 2 N HCl in ethanol in half an hour.

Results and discussion

In the preliminary investigation, we examined the reaction of N'-methyl-N'-phenyl-acetylhydrazide with ethyl acrylate in the presence of $[Cp*RhCl_2]_2$ (5 mol%), $Cu(OAc)_2$ (2.0 equiv.), and DCE at 110 °C under nitrogen (Table 1, entry 1). To our delight, the desired product **3aa** was obtained in 61% yield. Further studies showed that the addition of 1.0 equiv. AcOH improved the yield to 73% (Table 1, entry 2). Other additives, such as PivOH, CsOAc, and LiOAc, were found less effective (Table 1, entries 3–5). No reaction was observed in the absence of an oxidant or a catalyst (Table 1, entries 6–7). The desired product was not observed when $[Rh(COD)Cl_2]_2$ and $[RuCl_2-(p-cymene)]_2$ were used as catalysts (Table 1, entries 8–9). Among the solvents investigated, dichloroethane was the best. Other solvents, such as *t*-AmOH, toluene, DME, and acetone, were ineffective (Table 1, entries 10–13). In the case of decreasing

Table 1 Optimization of reaction conditions^a

1

2

3

4

5

6

7

8

Entry	Catalyst	Additive	Solvent	$\operatorname{Yield}^{b}(\%)$
1	[Cp*RhCl ₂] ₂	_	DCE	61
2	Cp*RhCl2	AcOH	DCE	73
3	Cp*RhCl22	PivOH	DCE	68
4	Cp*RhCl22	CsOAc	DCE	57
5	Cp*RhCl22	LiOAc	DCE	55
6	Cp*RhCl22	AcOH	DCE	$N.D.^{c}$
7	<u> </u>	AcOH	DCE	N.D.
8	$[Rh(COD)Cl_2]_2$	AcOH	DCE	N.D.
9	$[RuCl_2(p-cymene)]_2$	AcOH	DCE	N.D.
10	Cp*RhCl ₂] ₂	AcOH	t-AmOH	Trace
11	Cp*RhCl22	AcOH	Toluene	36
12	Cp*RhCl22	AcOH	DME	50
13	Cp*RhCl22	AcOH	Acetone	58
14	Cp*RhCl22	AcOH	DCE	41^d
15	Cp*RhCl22	AcOH	DCE	50^e
16	Cp*RhCl22	AcOH	DCE	49^{f}

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), catalyst (5 mol%), Cu(OAc)₂ (2.0 equiv.), additive (1.0 equiv.), solvent (2 mL), 110 °C, 24 h, under N₂. ^{*b*} Isolated yield. ^{*c*} Without Cu(OAc)₂. ^{*d*} 2.5 mol% [RhCp*Cl₂]₂ was used. ^e The reaction time was 12 h. ^fThe reaction was conducted at 90 °C.

the catalyst amount by half, the yield dropped to 41% (Table 1, entry 14). The reaction time and temperature influenced the reaction. The yield dropped to 50% when the reaction time was decreased to 12 h (Table 1, entry 15). Lower temperature was unsuitable for the reaction (Table 1, entry 16). Thus, the optimal reaction conditions were [RhCp*Cl₂]₂ (5.0 mol%), Cu(OAc)₂ (2.0 equiv.), and HOAc (1.0 equiv.) under nitrogen in DCE (2.0 mL) at 110 °C for 24 h.

With the optimized reaction conditions in hand, the scope and limitation of olefins were examined as shown in Table 2. A series of acrylates, ethyl acrylate, methyl acrylate, n-butyl acrylate, *t*-butyl acrylate, phenyl acrylate, and benzyl acrylate (2a-f) participated in the reaction smoothly to give the products in good yields (Table 2, entries 1-6). It is noteworthy that acrylonitrile and 1-arylprop-2-en-1-ones were also effective in this reaction, providing the desired products in moderate yields (Table 2, entries 7-11).

Next, we evaluated the scope of the reaction with regard to a range of the N'-alkyl-N'-arylacetohydrazides as shown in Table 3. In general, the reaction occurred smoothly to give the N^1, N^2 -disubstituted-2,3-dihydro-1*H*-indazoles in moderate to good yields. A variety of functional groups, including methyl, methoxy, fluoro, chloro and bromo on the aryl ring, were compatible under the optimal reaction conditions (Table 3, entries 1-9). Notably, the reaction presented regioselectivity at the ortho-position of the less steric side of the arenes furnishing the corresponding products in good yields (Table 3, entries 2, 9). N'-Methyl-N'-arylacetohydrazide with ortho-substituents

3ah

Table 2 (Contd.)

1

2

3

4

5

6

7

^a Reaction conditions: 1a (0.2 mmol), olefin (0.4 mmol), [Cp*RhCl₂]₂ (5 mol%), Cu(OAc)₂ (2.0 equiv.), AcOH (1.0 equiv.), DCE (2.0 mL), 110 °C, 24 h, under N₂. ^b Isolated yield.

gave a 32% yield, illustrating that the steric hindrance played a role in the reaction (Table 3, entry 3). Various halogen substituents showed good compatibility, which added flexibility to further elaborate the indazole derivatives (Table 3, entries 7-9). The protective group other than methyl in the N-atom was also investigated. Ethyl and n-butyl substituted 2-phenylacetohydrazides were compatible with the reaction conditions and provided the products in moderate yields (Table 3, entries 10-11).

The acid-mediated deprotection protocol can be successfully applied for the synthesis of 1H-indazoles. For example, the above prepared 3aa and 3ah products could be easily transformed to 4a and 4b 1H-indazoles in 2 N HCl in ethanol in half hour in good yields (Scheme 2).

Based on previous studies of rhodium catalysis, a plausible mechanism is proposed as illustrated in Scheme 3. First, the rhodacycle intermediate A was formed through the reaction of N'-methyl-N'-phenyl-acetohydrazide with the acetohydrazideassisted C-H activation process. The subsequent coordination of the intermediate A with the olefin afforded the intermediate B, which was transformed into C by 1,2-migratory insertion. The β -hydride elimination of the intermediate C gives the intermediate D followed by reductive elimination to yield the Rh(I) species. An intramolecular aza-Michael addition of the

Published on 11 June 2014. Downloaded by Nipissing University on 13/10/2014 21:10:22.

Table 3 (Contd.)

^{*a*} Reaction conditions: *N*'-alkyl-*N*'-arylacetohydrazide (0.2 mmol), **2a** (0.4 mmol), $[Cp*RhCl_2]_2$ (5 mol%), $Cu(OAc)_2$ (2.0 equiv.), ACOH (1.0 equiv.), DCE (2.0 mL), 110 °C, 24 h, under N₂. ^{*b*} Isolated yield.

Scheme 2 Transformation of products.

Scheme 3 Proposed reaction mechanism.

intermediate **E** affords the product **3**. The oxidation of Rh(I) by $Cu(OAc)_2$ generates Rh(III) species to fulfill the catalytic cycle.

Conclusions

In summary, we have developed a facile and efficient strategy for the construction of 2,3-dihydro-1*H*-indazoles *via* rhodium(m)catalyzed C-H activation of arylhydrazines.¹² The reaction exhibits a good tolerance for a broad range of functional groups. Starting from simple hydrazine substrates, this method provides an easy alternative to the synthesis of 1*H*-indazoles.

Experimental

General

Unless stated otherwise, all reactions were performed under air atmosphere. All solvents were used without further purification. Spectra were recorded for ¹H NMR at 400 MHz, and ¹³C NMR at 100 MHz using TMS as an internal standard. The following abbreviations were used to describe peak patterns where appropriate: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), multiplet (m), broad resonances (br). Mass spectroscopy data of the products were collected on an HRMS-APCI instrument or a low-resolution MS instrument using EI or ESI ionization.

General procedure for the starting materials

N'-Alkyl-N'-arylacetohydrazide were prepared according to published procedures.^{11,13} To a solution of arylhydrazine hydrochloride salt (20 mmol) in 1 N NaOH (40 mL) and THF (10 mL) was added acetic anhydride (2.0 g, 20 mmol) dropwise. After stirring for 30 min the mixture was extracted with EtOAc three times. The combined organic layer was dried over Na₂SO₄ and filtered through the pad of silica gel. The filtrate was concentrated to afford a solid residue. Recrystallization from a mixture of petroleum ether–ethyl acetate (5:1) gave 2-acetyl-1-arylhydrazine. **Organic & Biomolecular Chemistry**

Freshly cut Na (0.23 g, 10 mmol) was added to absolute ethanol (6 mL) in a sealed tube to obtain a clear solution. 2-Acetyl-1-arylhydrazine (10 mmol) was added to the resulting solution, and then halogenated alkane (iodomethane for **1a–1j**, bromoethane for **1k** and *n*-butyl chloride for **1l**) was added. The resulting solution was sealed and kept at 100 °C in the dark for 20 h. The solution was concentrated and the residue was dissolved in ethyl acetate (20 mL), and then washed with water, dried over Na₂SO₄ and filtered through the pad of silica gel. The filtrate was concentrated and the resulting residue was purified by flash column chromatography (silica gel, ethyl acetate–petroleum ether = 1 : 2, v/v) to obtain the desired products.

Characterization data of the starting materials

N'-Methyl-N'-phenylacetohydrazide (1*a*).¹³ White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.34–7.24 (m, 2H), 6.89–6.83 (m, 3H), 3.20 and 3.18 (2 × s, 3H), 2.09 and 2.07 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 168.9, 149.3, 149.0, 129.4, 129.1, 120.7, 120.0, 113.2, 113.0, 42.1, 40.9, 21.1, 19.1; HRMS (EI) Calcd for C₉H₁₂N₂O (M)⁺ 164.0950; Found, 164.0948.

N'-Methyl-N'-p-tolylacetohydrazide (1b).¹³ White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.93 (br s, 1H), 7.09 and 7.01 (2 × d, J = 8.4, 8.0, 2H), 6.75–6.70 (m, 2H), 3.08 (s, 3H), 3.28 and 3.22 (2 × s, 3H), 2.04 and 1.98 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 169.0, 147.2, 147.1, 130.0, 129.8, 129.5, 129.1, 113.5, 113.3, 42.3, 40.9, 20.9, 20.2, 19.0; HRMS (EI) Calcd for C₁₀H₁₄N₂O (M)⁺ 178.1106; Found, 178.1106.

N'-Methyl-N'-m-tolylacetohydrazide (1c). White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.20–7.04 (m, 2H), 6.75–6.70 (m, 3H), 3.13 and 3.12 (2 × s, 3H), 2.33 and 2.29 (2 × s, 3H), 2.06 and 2.02 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 169.0, 149.4, 149.2, 139.3, 138.8, 129.2, 128.9, 121.5, 120.7, 114.0, 113.7, 110.4, 110.2, 42.1, 40.8, 21.7, 21.7, 21.0, 19.1; HRMS (EI) Calcd for $C_{10}H_{14}N_2O$ (M)⁺ 178.1106; Found, 178.1107.

N'-Methyl-N'-o-tolylacetohydrazide (1d). White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.26–7.15 (m, 4H), 3.10 and 2.91 (2 × s, 3H), 2.36 and 2.28 (2 × s, 3H), 2.13 and 1.94 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 167.8, 149.8, 148.0, 132.0, 131.3, 131.1, 130.7, 126.8, 126.0, 124.8, 123.8, 118.8, 117.4, 46.4, 41.9, 20.9, 19.7, 18.4, 17.9; HRMS (EI) Calcd for C₁₀H₁₄N₂O (M)⁺ 178.1106; Found, 178.1110.

N'-(4-Methoxyphenyl)-N'-methylacetohydrazide (1*f*).¹³ Colorless oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 6.83–6.75 (m, 4H), 3.74 and 3.70 (2 × s, 3H), 3.04 and 3.03 (2 × s, 3H), 2.05 and 1.94 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 169.1, 154.2, 153.6, 143.5, 115.1, 114.9, 114.5, 114.3, 55.5, 55.4, 42.8, 41.2, 20.9, 19.0; HRMS (EI) Calcd for $C_{10}H_{14}N_2O_2$ (M)⁺ 194.1055; Found, 194.1057.

N'-(3,4-Dimethylphenyl)-N'-methylacetohydrazide (1g). White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.06 and 7.01 (2 × d, J = 8.4, 8.0, 1H), 6.72 (br s, 1H), 6.68–6.60 (m, 2H), 3.16 and 3.12 (2 × s, 3H), 2.25 and 2.22 (2 × s, 3H), 2.20 and 2.17 (2 × s, 3H), 2.09 and 2.06 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 168.9, 147.6, 147.5, 137.5, 137.0, 130.3, 130.0, 128.8, 127.9, 114.9, 114.9, 110.8, 110.8, 42.3, 41.0, 21.0, 20.1, 19.0,

18.6; HRMS (EI) Calcd for $C_{11}H_{16}N_2O$ (M)⁺ 192.1263; Found, 192.1267.

*N'-(4-Fluorophenyl)-N'-methylacetohydrazide (1h).*¹³ White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.36 (br s, 1H), 7.00–6.88 (m, 2H), 6.80–6.68 (m, 2H), 3.09 and 3.05 (2 × s, 3H), 2.04 and 1.96 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 169.3, 158.4 (J_{C-F} = 53.6 Hz), 156.1 (J_{C-F} = 53.1 Hz), 145.8 (J_{C-F} = 1.6 Hz), 145.7 (J_{C-F} = 2.2 Hz), 115.7 (J_{C-F} = 22.4 Hz), 115.4 (J_{C-F} = 22.0 Hz), 114.7 (J_{C-F} = 53.6 Hz), 114.3 (J_{C-F} = 53.6 Hz), 42.6, 41.0, 20.9, 19.0; HRMS (EI) Calcd for C₉H₁₁FN₂O (M)⁺ 182.0855; Found, 182.0857.

*N'-(4-Chlorophenyl)-N'-methylacetohydrazide (1i).*¹³ White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.26–7.18 (m, 2H), 6.90 (br s, 1H), 6.80–6.75 (m, 2H), 3.18 and 3.16 (2 × s, 3H), 2.06 and 2.06 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.9, 169.2, 147.9, 147.8, 129.2, 128.9, 125.7, 124.6, 114.5, 114.1, 42.1, 40.7, 20.9, 19.1; HRMS (EI) Calcd for C₉H₁₁ClN₂O (M)⁺ 198.0560; Found, 198.0564.

N'-(4-Bromophenyl)-N'-methylacetohydrazide (**1***j*).² White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.91 (br s, 1H), 7.38–7.26 (m, 2H), 6.71–6.62 (m, 2H), 3.12 and 3.10 (2 × s, 3H), 2.03 and 2.00 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.8, 169.2, 148.3, 148.2, 132.1, 131.7, 114.8, 114.5, 112.9, 111.7, 42.0, 40.6, 20.9, 19.0; HRMS (EI) Calcd for C₉H₁₁BrN₂O (M)⁺ 242.0055; Found, 242.0057.

N'-(3-Chlorophenyl)-N'-methylacetohydrazide (1k). Colorless oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.94 (br s, 1H), 7.19–7.08 (m, 1H), 6.90–6.61 (m, 3H), 3.13 and 3.11 (2 × s, 3H), 2.03 and 2.00 (2 × s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 169.4, 150.5, 150.3, 135.3, 135.0, 130.5, 130.2, 120.5, 119.4, 113.3, 112.8, 111.3, 110.9, 42.0, 40.6, 21.0, 19.1; HRMS (EI) Calcd for C₉H₁₁ClN₂O (M)⁺ 198.0560; Found, 198.0560.

N'-Ethyl-N'-phenylacetohydrazide (*1k*). White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.31–7.27 (m, 1H), 7.22–7.21 (m, 1H), 6.94–6.82 (m, 3H), 3.54–3.49 (m, 2H), 2.06 and 2.04 (2 × s, 3H), 1.20 (2 × t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 169.4, 148.6, 148.2, 129.4, 129.1, 120.6, 119.7, 113.9, 113.3, 48.6, 46.4, 20.9, 19.2, 11.2, 10.5; HRMS (EI) Calcd for C₁₀H₁₄N₂O (M)⁺ 178.1106; Found, 178.1104.

N'-Butyl-N'-phenylacetohydrazide (1l). White solid; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.31–7.22 (m, 2H), 6.94–6.82 (m, 3H), 3.51–3.42 (m, 2H), 2.08–2.03 (2 × s, 3H), 1.63–1.59 (m, 2H), 1.42–1.36 (m, 2H), 0.97 (t, J = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 169.1, 148.9, 148.3, 129.4, 129.2, 120.5, 119.8, 113.7, 113.1, 54.6, 52.3, 28.5, 27.7, 21.0, 20.9, 20.2, 19.2, 13.9, 13.9; HRMS (EI) Calcd for CH₁₈N₂O (M)⁺ 206.1419; Found, 206.1418.

General procedure for the reaction of *N*'-methyl-*N*'-arylacetohydrazide 1 with olefine. To a 25 mL sealed tube containing a magnetic stir bar, were added 1 (0.2 mmol), olefine 2 (0.4 mmol), $[Cp*RhCl_2]_2$ (6 mg, 5 mol%), $Cu(OAc)_2$ (72 mg, 0.4 mmol), AcOH (12 mg, 0.2 mmol), and DCE (2 mL). The tube was sealed under nitrogen and heated to 110 °C with stirring for 24 h. Then the reaction mixture was cooled to room temperature and diluted with ethyl acetate. The reaction mixture was filtered through a plug of Celite and the residue was washed with ethyl acetate $(2 \times 5 \text{ mL})$. The combined organic layer was concentrated under vacuum and the residue was purified by flash column chromatography (silica gel, ethyl acetate-petroleum ether = 1:2, v/v) to afford the corresponding products.

Characterization data of the products

Ethyl 2-(2-acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3aa**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.30–7.26 (m, 2H), 7.08–7.04 (m, 1H), 6.92 (d, J = 7.6 Hz, 1H), 5.72 (t, J = 6.0 Hz, 1H), 4.21–4.17 (m, 2H), 3.07 (s, 3H), 2.95 (dd, J = 15.2, 5.2 Hz, 1H), 2.68 (dd, J = 15.2, 8.4 Hz, 1H), 2.26 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.0, 150.0, 130.8, 128.6, 123.9, 123.3, 113.7, 60.7, 57.8, 48.7, 43.2, 21.0, 14.1; HRMS (EI) Calcd for C₁₄H₁₈N₂O₃ (M)⁺ 262.1317; Found, 262.1320.

Methyl 2-(2-acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (*3ab*). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.30–7.26 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.70 (s, 1H), 3.72 (s, 3H), 3.07 (s, 3H), 2.95 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.70 (dd, *J* = 15.2, 8.0 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 170.4, 150.0, 130.7, 128.7, 123.9, 123.3, 113.7, 57.9, 51.8, 48.7, 43.1, 21.0; HRMS (EI) Calcd for $C_{13}H_{16}N_2O_3$ (M)⁺ 248.1161; Found, 248.1162.

n-Butyl 2-(2-acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3ac**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.30–7.26 (m, 2H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 5.71 (s, 1H), 4.13–4.10 (m, 2H), 3.06 (s, 3H), 2.96 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.68 (dd, *J* = 15.2, 8.0 Hz, 1H), 2.26 (s, 3H), 1.64–1.57 (m, 2H), 1.39–1.33 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.0, 150.0, 130.9, 128.6, 123.9, 123.3, 113.7, 64.6, 57.9, 48.7, 43.2, 30.45, 21.0, 19.1, 13.6; HRMS (EI) Calcd for $C_{16}H_{22}N_2O_3$ (M)⁺ 290.1630; Found, 290.1627.

tert-Butyl 2-(2-acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3ad**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.33–7.25 (m, 2H), 7.05 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 5.70 (s, 1H), 3.06 (s, 3H), 2.93 (dd, J = 15.2, 4.8 Hz, 1H), 2.56 (dd, J = 15.2, 8.8 Hz, 1H), 2.25 (s, 3H), 1.44 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 179.3, 150.0, 131.2, 128.5, 123.8, 123.6, 113.7, 81.1, 57.9, 48.6, 44.2, 28.1, 21.0; HRMS (EI) Calcd for C₁₆H₂₂N₂O₃ (M)⁺ 290.1630; Found, 290.1629.

Phenyl 2-(2-acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3ae**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.40–7.36 (m, 3H), 7.31 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.11–7.07 (m, 3H), 6.95 (d, J = 8.0 Hz, 1H), 5.84 (s, 1H), 3.14 (dd, J = 15.2, 6.0 Hz, 1H), 3.11 (s, 3H), 2.98 (dd, J = 15.2, 7.2 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 168.5, 150.5, 150.1, 130.4, 129.4, 128.8, 125.9, 124.0, 123.4, 121.6, 113.8, 58.0, 48.7, 43.4, 21.1; HRMS (EI) Calcd for C₁₈H₁₈N₂O₃ (M)⁺ 310.1317; Found, 310.1316.

Benzyl 2-(2-acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3af**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35–7.32 (m, 5H), 7.28–7.24 (m, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.01 (t, J = 7.6 Hz, 1H), 6.90 (d, J = 7.6 Hz, 1H), 5.73 (s, 1H), 5.15 (dd, J = 17.2, 12 Hz, 2H), 3.03 (s, 3H), 2.98 (dd, J = 15.2, 5.6 Hz, 1H), 2.74 (dd, J = 14.8, 8.0 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 173.1, 169.8, 150.0, 135.6, 130.6, 128.7, 128.5, 128.5, 128.3, 123.9, 123.3, 113.7, 66.7, 57.9, 48.7, 43.2, 21.0; HRMS (EI) Calcd for C₁₉H₂₀N₂O₃ (M)⁺ 324.1474; Found, 324.1472.

2-(2-Acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetonitrile (3ag). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.35–7.30 (m, 2H), 7.15–7.11 (m, 1H), 6.95 (d, J = 8.0 Hz, 1H), 5.56 (t, J = 4.8 Hz, 1H), 3.16 (s, 3H), 2.98–2.95 (m, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 150.0, 129.6, 127.1, 124.1, 122.7, 117.2, 113.7, 58.0, 48.7, 26.0, 21.1; HRMS (EI) Calcd for C₁₂H₁₃N₃O (M)⁺ 215.1059; Found, 215.1055.

2-(2-Acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)-1-phenylethanone (**3ah**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.01 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2 Hz, 1H), 7.49–7.45 (m, 2H), 7.32 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.02 (t, J =7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 5.93–5.90 (m, 1H), 3.77–3.73 (m, 1H), 3.30 (dd, J = 15.6, 9.6 Hz, 1H), 3.08 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 172.6, 149.9, 136.5, 133.3, 131.3, 128.6, 128.5, 128.2, 124.1, 124.0, 113.6, 57.8, 48.9, 47.3, 21.0; HRMS (EI) Calcd for C₁₈H₁₈N₂O₂ (M)⁺ 294.1368; Found, 294.1373.

2-(2-Acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)-1-p-tolylethanone (3ai). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.91 (d, J = 7.6 Hz, 2H), 7.32–7.23 (m, 4H), 7.02 (t, J = 7.6 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 5.91–5.89 (m, 1H), 3.74–3.70 (m, 1H), 3.27 (dd, J = 15.2, 10.0 Hz, 1H), 3.07 (s, 3H), 2.40 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 172.7, 149.9, 144.2, 134.1, 131.4, 129.3, 128.5, 128.3, 124.2, 124.0, 113.6, 58.0, 48.9, 47.3, 21.6, 21.0; HRMS (EI) Calcd for C₁₉H₂₀N₂O₂ (M)⁺ 308.1525; Found, 308.1523.

2-(2-Acetyl-1-methyl-2,3-dihydro-1H-indazol-3-yl)-1-(4-chlorophenyl)ethanone (**3aj**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.96 (d, *J* = 8.4 Hz, 2H), 7.46–7.43 (m, 2H), 7.31–7.25 (m, 2H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 5.87 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.70 (dd, *J* = 16.0, 2.8 Hz, 1H), 3.28 (dd, *J* = 15.6, 9.6 Hz, 1H), 3.07 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 172.8, 149.9, 139.8, 134.9, 131.0, 129.7, 129.0, 128.6, 124.0, 113.7, 57.9, 48.9, 47.3, 21.0; HRMS (EI) Calcd for C₁₈H₁₇ClN₂O₂ (M)⁺ 328.0979; Found, 328.0970.

Ethyl 2-(2-acetyl-1,5-dimethyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3ba**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.09–7.07 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 5.67 (s, 1H), 4.21–4.16 (m, 2H), 3.02 (s, 3H), 2.94 (dd, J = 15.2, 5.6 Hz, 1H), 2.67 (dd, J = 15.2, 8.4 Hz, 1H), 2.32 (s, 3H), 2.25 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 170.1, 147.7, 133.6, 131.0, 129.3, 123.8, 113.5, 60.7, 57.8, 48.9, 43.2, 21.0 (2 C), 14.1; HRMS (EI) Calcd for C₁₅H₂₀N₂O₃ (M)⁺ 276.1474; Found, 276.1475.

Ethyl 2-(2-acetyl-1,6-dimethyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3ca**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.15 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 6.74 (s, 1H), 5.67 (s, 1H), 4.20–4.14 (m, 2H), 3.00 (s, 3H), 2.94 (dd, J = 15.2, 5.2 Hz, 1H), 2.64 (dd, J = 15.2, 8.4 Hz, 1H), 2.35 (s, 3H), 2.24 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 170.0, 150.2, 138.8, 128.0, 124.8, 123.0, 114.3, 60.7, 57.8, 48.7, 43.3, 21.5, 21.0, 14.1; HRMS (EI) Calcd for C₁₅H₂₀N₂O₃ (M)⁺ 276.1474; Found, 276.1473. *Ethyl* 2-(2-acetyl-1,7-dimethyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3da**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.16 (d, J = 7.6 Hz, 1H), 7.09–7.07 (m, 1H), 7.04–7.00 (m, 1H), 5.70–5.67 (m, 1H), 4.23–4.17 (m, 2H), 3.00 (s, 3H), 2.97 (dd, J = 15.2, 5.6 Hz, 1H), 2.70 (dd, J = 15.2, 8.4 Hz, 1H), 2.32 (s, 3H), 2.27 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 170.0, 148.6, 130.4, 127.8, 124.7, 124.1, 120.9, 60.8, 57.4, 46.9, 43.3, 20.9, 17.4, 14.1; HRMS (EI) Calcd for C₁₅H₂₀N₂O₃ (M)⁺ 276.1474; Found, 276.1471.

Ethyl 2-(2-acetyl-5-methoxy-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (3ea). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 6.79–6.76 (m, 3H), 5.61 (s, 1H), 4.13–4.10 (m, 2H), 3.70 (s, 3H), 2.93 (s, 3H), 2.90 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.60 (dd, *J* = 15.2, 8.4 Hz, 1H), 2.17 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 170.1, 156.8, 143.5, 132.3, 114.8, 114.6, 108.6, 60.8, 58.0, 55.7, 49.3, 43.2, 21.0, 14.2; HRMS (EI) Calcd for C₁₅H₂₀N₂O₄ (M)⁺ 292.1423; Found, 292.1421.

Ethyl 2-(2-acetyl-1,5,6-trimethyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3fa**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.04 (s, 1H), 6.72 (s, 1H), 5.64 (s, 1H), 4.21–4.16 (m, 2H), 3.02 (s, 3H), 2.93 (dd, J = 15.2, 5.6 Hz, 1H), 2.64 (dd, J = 15.2, 8.4 Hz, 1H), 2.25 (s, 3H), 2.24 (s, 3H), 2.22 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 170.1, 148.1, 137.2, 132.3, 128.4, 124.1, 114.8, 60.7, 57.8, 48.9, 43.4, 21.0, 20.1, 19.5, 14.1; HRMS (EI) Calcd for C₁₆H₂₂N₂O₃ (M)⁺ 290.1630; Found, 290.1626.

Ethyl 2-(2-acetyl-5-fluoro-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (3ga). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.04–6.96 (m, 2H), 6.87–6.84 (m, 1H), 5.69 (s, 1H), 4.22–4.16 (m, 2H), 3.03 (s, 3H), 2.98 (dd, *J* = 15.6, 4.8 Hz, 1H), 2.67 (dd, *J* = 15.6, 8.4 Hz, 1H), 2.25 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 169.8, 159.6 (d, *J*_{C-F} = 239.8 Hz), 146.1, 132.7 (d, *J*_{C-F} = 7.4 Hz), 115.6 (d, *J*_{C-F} = 22.9 Hz), 114.7 (d, *J*_{C-F} = 8.1 Hz), 110.8 (d, *J*_{C-F} = 24.1 Hz), 60.9, 57.7, 49.1, 42.9, 21.0, 14.1; HRMS (EI) Calcd for C₁₄H₁₇FN₂O₃ (M)⁺ 280.1223; Found, 280.1222.

Ethyl 2-(2-acetyl-5-chloro-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (**3ha**). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.21–7.15 (m, 2H), 6.76 (d, J = 8.4 Hz, 1H), 5.61 (s, 1H), 4.11 (q, J = 7.2 Hz, 2H), 2.97 (s, 3H), 2.88 (dd, J = 15.6, 5.2 Hz, 1H), 2.60 (dd, J = 15.6, 8.4 Hz, 1H), 2.17 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 169.8, 148.7, 132.7, 129.1, 128.8, 123.7, 114.7, 60.8, 57.7, 48.6, 42.8, 21.0, 14.1; HRMS (EI) Calcd for C₁₄H₁₇ClN₂O₃ (M)⁺ 296.0928; Found, 296.0931.

Ethyl 2-(2-acetyl-5-bromo-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (3ia). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.43 (s, 1H), 7.40–7.37 (m, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.69 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.07 (s, 3H), 2.95 (dd, J = 15.6, 5.2 Hz, 1H), 2.67 (dd, J = 15.6, 8.4 Hz, 1H), 2.24 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 169.7, 149.2, 133.0, 131.6, 126.6, 116.4, 115.1, 60.8, 57.6, 48.5, 42.9, 21.0, 14.1; HRMS (EI) Calcd for C₁₄H₁₇BrN₂O₃ (M)⁺ 296.0928; Found, 340.0419.

Ethyl 2-(2-acetyl-6-chloro-1-methyl-2,3-dihydro-1H-indazol-3-yl)acetate (3ja). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.21 (d, J = 8.0 Hz, 1H), 7.02 (d, J = 8.0 Hz, 1H), 6.91 (s, 1H), 5.67 (s, 1H), 4.19–4.14 (m, 2H), 3.07 (s, 3H), 2.94 (dd, J = 15.2, 4.8 Hz, 1H), 2.66 (dd, J = 15.2, 8.4 Hz, 1H), 2.24 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 169.8, 151.2, 134.3, 129.3, 124.3, 124.0, 114.0, 60.8, 57.6, 48.4, 42.9, 21.0, 14.1; HRMS (EI) Calcd for C₁₄H₁₇ClN₂O₃ (M)⁺ 296.0928; Found, 296.0932.

Ethyl 2-(2-acetyl-1-ethyl-2,3-dihydro-1H-indazol-3-yl)acetate (3ka). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.29–7.24 (m, 2H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 5.74 (s, 1H), 4.25–4.18 (m, 2H), 3.34 (d, *J* = 6.8 Hz, 2H), 2.91 (dd, *J* = 15.2, 5.2 Hz, 1H), 2.66 (dd, *J* = 15.2, 8.8 Hz, 1H), 2.25 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 170.1, 148.2, 131.6, 128.5, 123.7, 123.2, 113.8, 60.8, 58.1, 54.3, 42.4, 21.3, 14.1, 11.7; HRMS (EI) Calcd for $C_{15}H_{20}N_2O_3$ (M)⁺ 276.1474; Found, 276.1472.

Ethyl 2-(2-acetyl-1-ethyl-2,3-dihydro-1H-indazol-3-yl)acetate (3la). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.29–7.24 (m, 2H), 7.04 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 5.73 (s, 1H), 4.24–4.19 (m, 2H), 3.23 (d, J = 8.8 Hz, 2H), 2.91 (dd, J = 15.2, 6.0 Hz, 1H), 2.66 (dd, J = 15.2, 8.8 Hz, 1H), 2.25 (s, 3H), 1.69–1.48 (m, 2H), 1.36 (t, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.2, 170.1, 148.7, 129.5, 128.4, 123.7, 123.3, 113.9, 60.8, 60.5, 58.0, 42.5, 28.8, 21.3, 20.1, 14.1, 13.8; HRMS (EI) Calcd for C₁₇H₂₄N₂O₃ (M)⁺ 304.1787; Found, 304.1791.

Transformation of products. To a solution of compound **3** (0.2 mmol) in ethanol (1.0 mL) was added 2 N HCl (0.3 mL). The mixture was refluxed for 0.5 h. Then the reaction mixture was allowed to cool to room temperature. Water (10 mL) was added, and the resulting mixture was extracted with ethyl acetate (3×10 mL). The combined organic layer was dried over Na₂SO₄ and filtered through the pad of silica gel. The filtrate was concentrated and the resulting residue was purified by flash column chromatography (silica gel, ethyl acetate–petroleum ether = 1:3, v/v) to obtain the desired product.

Ethyl 2-(1-methyl-1H-indazol-3-yl)acetate (4a). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 7.71 (d, J = 8.4 Hz, 1H), 7.38–7.34 (m, 2H), 7.16–7.12 (m, 1H), 4.18 (q, J = 7.2 Hz, 2H), 4.03 (s, 3H), 4.00 (s, 2H), 1.25 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 140.9, 137.7, 126.3, 122.8, 120.4, 120.2, 109.0, 61.1, 35.3, 33.5, 14.1; HRMS (EI) Calcd for C₁₂H₁₄N₂O₂ (M)⁺ 218.1055; Found, 218.1052.

2-(1-Methyl-1H-indazol-3-yl)-1-phenylethanone (4b). Yellow oil; ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.13–8.11 (m, 2H), 7.69–7.67 (m, 1H), 7.54–7.52 (m, 1H), 7.46–7.43 (m, 2H), 7.36–7.33 (m, 2H), 7.13–7.09 (m, 1H), 4.64 (s, 2H), 4.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.0, 140.9, 138.2, 136.3, 133.2, 128.8, 128.5, 126.3, 123.1, 120.7, 120.3, 108.9, 38.2, 35.3; HRMS (EI) Calcd for $C_{16}H_{14}N_2O$ (M)⁺ 250.1106; Found, 250.1102.

Acknowledgements

We gratefully acknowledge the National Basic Research Program of China (no. 2011CB936003), NSFC (no. 21272205) and the National Key Technology Research and Development Program (no. 2012BAK25B03).

Notes and references

- 1 For selected reviews on synthesis of heterocycles, see: (a) A. Deiters and S. F. Martin, Chem. Rev., 2004, 104, 2199; (b) S. Bräse, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem., Int. Ed., 2005, 44, 5188; (c) G. Zeni and R. C. Larock, Chem. Rev., 2006, 106, 4644; (d) D. P. Curran, Solovyev, M. Makhlouf Brahmi, L. Fensterbank, A. M. Malacria and E. Lacôte, Angew. Chem., Int. Ed., 2011, 50, 10294; (e) X.-F. Wu, H. Neumann and M. Beller, Chem. Rev., 2012, 113, 1; (f) J. Yamaguchi, A. D. Yamaguchi and Κ. Itami, Angew. Chem., Int. Ed., 2012, 51, 8960; (g) Y. Yamamoto, Chem. Soc. Rev., 2014, 43, 1575; (h) A. V. Dubrovskiy, N. A. Markina and R. C. Larock, Org. Biomol. Chem., 2013, 11, 191; (i) J. Keilitz, H. A. Malik and M. Lautens, Top. Heterocycl. Chem., 2013, 32, 187.
- 2 For selected examples, see: (a) T. Yamakawa and N. Yoshikai, Org. Lett., 2012, 15, 196; (b) Y. Park, J. Seo, S. Park, E. J. Yoo and P. H. Lee, Chem. Eur. J., 2013, 19, 16461; (c) N. Senthilkumar, K. Parthasarathy, P. Gandeepan and C.-H. Cheng, Chem. Asian J., 2013, 8, 2175; (d) Z. Shi, D. C. Koester, M. Boultadakis-Arapinis and F. Glorius, J. Am. Chem. Soc., 2013, 135, 12204; (e) C. Wang, H. Sun, Y. Fang and Y. Huang, Angew. Chem., Int. Ed., 2013, 52, 5795; (f) Q. Yu, N. Zhang, J. Huang, S. Lu, Y. Zhu, X. Yu and K. Zhao, Chem. Eur. J., 2013, 19, 11184; (g) D.-G. Yu, F. de Azambuja and F. Glorius, Angew. Chem., Int. Ed., 2014, 53, 2754.
- 3 For selected reviews on Rh-catalyzed reactions, see:
 (a) J. C. Lewis, R. G. Bergman and J. A. Ellman, Acc. Chem. Res., 2008, 41, 1013; (b) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2009, 110, 624; (c) T. Satoh and M. Miura, Chem. – Eur. J., 2010, 16, 11212–11222; (d) D. A. Colby, A. S. Tsai, R. G. Bergman and J. A. Ellman, Acc. Chem. Res., 2011, 45, 814; (e) G. Song, F. Wang and X. Li, Chem. Soc. Rev., 2012, 41, 3651.
- 4 For selected examples on Rh-catalyzed C-H olefination/ cyclization, see: (a) K. Ueura, T. Satoh and M. Miura, Org. Lett., 2007, 9, 1407; (b) S. Mochida, K. Hirano, T. Satoh and M. Miura, J. Org. Chem., 2009, 74, 6295; (c) F. Wang, G. Song and X. Li, Org. Lett., 2010, 12, 5430; (d) C. Zhu and J. R. Falck, Tetrahedron, 2012, 68, 9192; (e) N. K. Mishra, J. Park, S. Sharma, S. Han, M. Kim, Y. Shin, J. Jang, J. H. Kwak, Y. H. Jung and I. S. Kim, Chem. Commun., 2014, 50, 2350.
- 5 (*a*) L. A. Clutterbuck, C. G. Posada, C. Visintin, D. R. Riddall, B. Lancaster, P. J. Gane, J. Garthwaite and

D. L. Selwood, J. Med. Chem., 2009, 52, 2694; (b) W. Han, J. C. Pelletier and C. N. Hodge, Bioorg. Med. Chem. Lett., 1998, 8, 3615; (c) L.-J. Huang, M.-L. Shih, H.-S. Chen, S.-L. Pan, C.-M. Teng, F.-Y. Lee and S.-C. Kuo, Bioorg. Med. Chem., 2006, 14, 528; (d) X. Li, S. Chu, V. A. Feher, M. Khalili, Z. Nie, S. Margosiak, V. Nikulin, J. Levin, K. G. Sprankle, M. E. Tedder, R. Almassy, K. Appelt and K. M. Yager, J. Med. Chem., 2003, 46, 5663; (e) S. Robert Fletcher, E. McIver, S. Lewis, F. Burkamp, C. Leech, G. Mason, S. Boyce, D. Morrison, G. Richards, K. Sutton and A. Brian Jones, Bioorg. Med. Chem. Lett., 2006, 16, 2872; (f) D. L. Selwood, D. G. Brummell, J. Budworth, G. E. Burtin, R. O. Campbell, S. S. Chana, I. G. Charles, P. A. Fernandez, R. C. Glen, M. C. Goggin, A. J. Hobbs, M. R. Kling, Q. Liu, D. J. Madge, S. Meillerais, K. L. Powell, K. Reynolds, G. D. Spacey, J. N. Stables, M. A. Tatlock, K. A. Wheeler, G. Wishart and C.-K. Woo, J. Med. Chem., 2000, 44, 78; (g) S. K. V. Vernekar, H. Y. Hallaq, G. Clarkson, A. J. Thompson, L. Silvestri, S. C. R. Lummis and M. Lochner, J. Med. Chem., 2010, 53, 2324.

- 6 (a) H. Cerecetto, A. Gerpe, M. González, V. J. Arán and C. Ochoa de Ocáriz, *Mini-Rev. Med. Chem.*, 2005, 5, 869;
 (b) W. Stadlbauer, *Sci. Synth.*, 2002, 12, 227; (c) A. Schmidt, A. Beutler and B. Snovydovych, *Eur. J. Org. Chem.*, 2008, 4073.
- 7 (a) C. S. Cho, D. K. Lim, N. H. Heo, T.-J. Kim and S. C. Shim, *Chem. Commun.*, 2004, 104; (b) C. Pabba, H.-J. Wang, S. R. Mulligan, Z.-J. Chen, T. M. Stark and B. T. Gregg, *Tetrahedron Lett.*, 2005, 46, 7553; (c) K. Lukin, M. C. Hsu, D. Fernando and M. R. Leanna, *J. Org. Chem.*, 2006, 71, 8166; (d) K. Inamoto, M. Katsuno, T. Yoshino, Y. Arai, K. Hiroya and T. Sakamoto, *Tetrahedron*, 2007, 63, 2695; (e) R. C. Wheeler, E. Baxter, I. B. Campbell and S. J. F. Macdonald, *Org. Process Res. Dev.*, 2011, 15, 565.
- 8 (a) K. Inamoto, T. Saito, M. Katsuno, T. Sakamoto and K. Hiroya, Org. Lett., 2007, 9, 2931; (b) X. Li, L. He, H. Chen, W. Wu and H. Jiang, J. Org. Chem., 2013, 78, 3636; (c) T. Zhang and W. Bao, J. Org. Chem., 2013, 78, 1317.
- 9 D.-G. Yu, M. Suri and F. Glorius, J. Am. Chem. Soc., 2013, 135, 8802.
- 10 Y. Lian, R. G. Bergman, L. D. Lavis and J. A. Ellman, *J. Am. Chem. Soc.*, 2013, **135**, 7122.
- 11 D. Zhao, Z. Shi and F. Glorius, Angew. Chem., Int. Ed., 2013, 52, 12426.
- 12 During the preparation of our manuscript, a similar work was published by the Kim group. For more details, see: S. Han, Y. Shin, S. Sharma, N. K. Mishra, J. Park, M. Kim, M. Kim, J. Jang and I. S. Kim, *Org. Lett.*, 2014, **16**, 2494.
- 13 F. Zhan and G. Liang, Angew. Chem., Int. Ed., 2013, 52, 1266.