Synthese und Reaktionsverhalten von Stannyloligosilanen, I. Kettenförmige Stannyloligosilane mit SiMe₂-Einheiten

Synthesis and Reactivity of Stannyloligosilanes, I. Stannyloligosilane Chains Containing SiMe₂ Moieties

Frank Uhlig^{a,*}, Christian Kayser^a, Ralph Klassen^a, Uwe Hermann^a, Lothar Brecker^a, Markus Schürmann^a, Karin Ruhland-Senge^{b,*}, Ulrich Englich^b

^a Fachbereich Chemie der Universität Dortmund, Anorganische Chemie II, Otto-Hahn-Straße 6, D-44221 Dortmund, Germany

^b Syracuse University, Department of Chemistry, 1-014 Center of Science and Technology, Syracuse, N.Y., USA

Z. Naturforsch. 54b, 278–287 (1999); eingegangen am 20. Juli 1998

Stannyloligosilanes, Preparation, Crystal Structure

Stannyloligosilanes 1 and 2 with terminal organotin groups are available by reacting alkali metal tri- or diorganostannides with α, ω -dichloro- or difluorosilanes, or by treatment of organochlorostannanes with α, ω -difluorosilanes in the presence of magnesium. Attempts to functionalize the triorganotin derivatives 2 by halogenation reagents did not result in the halogen compounds 5; instead cleavage of silicon-tin bonds is observed. In contrast, reactions of the hydridotin derivatives 1 with CHX₃ (X = Cl, Br) lead to the quantitative formation of the bis(chloro- or bromostannyl)oligosilanes 5. All compounds were characterized by NMR, IR, MS and elemental analysis. In addition, the triorganotin compound 2i and the hydridotin species 1b have been characterized by X-ray crystallography.

Im Hinblick auf eigene Untersuchungen zur Darstellung und zum Reaktionsverhalten von Stannyloligosilanen [1–3] interessierten uns besonders die bisher unbekannten α, ω -distannylsubstituierten Oligosilane des Typs **A**. Diese erscheinen als Synthesebausteine zum Aufbau der ebenfalls nicht beschriebenen cyclischen Verbindungen des Typs **B** als besonders geeignet.

$$X - R_{2}Sn - (SiMe_{2})_{n} - SnR_{2} - X$$

$$\downarrow \qquad X = Cl, Br$$

$$\begin{pmatrix} (SiMe_{2})_{n} \\ \\ \\ R_{2}Sn - SnR_{2} \end{pmatrix} \qquad B$$

Schema 1. α, ω -Distannylsubstituierte Oligosilane **A**, Reaktion zu **B**.

Stannyloligosilane des Typs **B** stellen potentielle Precursoren für ringöffnende Polymerisationen (ROP) dar und sollten sich somit zur Darstellung von Polymeren mit definierten Si-Sn-Sequenzen eignen. Im folgenden wird über die erstmalige Synthese der Verbindungen **A**, ausgehend von α, ω -Bis(organostannyl)oligosilanen (**1**, **2**) des Typs R'R₂Sn-(SiMe₂)_n-SnR₂R' (n = 1-6), berichtet. Aufgrund der deutlich geringeren Bindungsenergie von Si-Sn-Bindungen im Vergleich zu Sn-C-Bindungen galt es einen Reaktionsweg zu finden, bei der sich eine Si-Sn-Bindungsspaltung als Konkurrenzreaktion zur Halogenierung am Zinnatom vermeiden läßt.

1 Ergebnisse und Diskussion

Die Umsetzung von Alkalimetalldi- und -triorganylstanniden mit α, ω -Dichloroligosilanen ergibt die α, ω -Bis(organostannyl)oligosilane **1** und **2** (Gl.(1)).

0932-0776/99/0200-0278 \$06.00 © 1999 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com N

^{*} Sonderdruckanforderungen an Dr. Frank Uhlig oder Prof. Dr. Karin Ruhlandt-Senge.

(1)

$$2R'R_2SnM + Cl - (SiMe_2)_n - Cl \xrightarrow{-2 MCl} R'R_2Sn - (SiMe_2)_n - SnR_2R'$$

R′	R	п		1, 2 R' = R	n	
Н	<i>t</i> Bu	1	1a	Me	1	2a
Н	tBu	2	1b	Me	2	2 b
H	tBu	3	1c	Me	3	2c
Н	tBu	4	1d	Me	4	2d
Н	tBu	6	1e	Me	6	2e
Η	Ph	2	1f	Ph	1	2f
Η	Ph	3	1g	Ph	2	2g
Η	Ph	4	1h	Ph	3	2h
Н	Ph	6	1i	Ph	4	2i
				Ph	6	2k

Auf diesem Syntheseweg sind die Diorganozinnhydride 1 (R'=H) in guten Ausbeuten zugänglich. Die Darstellung der Triorganozinn-substituierten Verbindungen 2 ist nur für Mono- (n=1) und Disilane (n=2) problemlos möglich. Für alle Verbindungen mit Kettenlängen von n=3 bis 6 erhält man neben 2 zusätzlich 20 bis 80% der durch Ummetallierungsreaktionen entstehenden Hexamethyl-(für 2c-e) bzw. Hexaphenyldistannane (für 2i-k). Letztere lassen sich in vielen Fällen nur schwierig aus den Produktgemischen entfernen [4]. Durch die Verwendung von Fluorsilanen anstelle der gemäß Gl.(1) eingesetzten Chlorverbindungen werden diese Ummetallierungen vermieden (Gl.(2)).

$$2 R_{3} SnNa + F - (SiMe_{2})_{n} - F \xrightarrow{-2 NaF} R_{3} Sn - (SiMe_{2})_{n} - SnR_{3}$$

$$2c - e, 2h - k$$

$$R = Me, Ph; n = 1 - 6$$
(2)

Während sich Fluorsilane zur Herstellung der Verbindungen **2** als besonders geeignet erwiesen, ist zur Synthese von **1** die Verwendung von Chlorsilanen erforderlich, da beim Einsatz von fluorierten Silanen als Reaktionspartner für die Lithiumhydridostannide (LiSn(H)R₂) eine Si-Sn-Bindungsknüpfung nur zu maximal 20% beobachtet wird. Man erhält statt dessen α, ω -dihydrierte Silane als Hauptprodukte (>80%), und statt einer Si-Sn-Bindungsknüpfung wird eine Hydrierung als Konkurrenzreaktion beobachtet.

$$2 \operatorname{LiSn}(H)R_{2} \xrightarrow{+ \operatorname{F-}(\operatorname{SiMe}_{2})_{n} - \operatorname{F}} H^{-}(\operatorname{SiMe}_{2})_{n} - H^{+} \operatorname{polymere}$$

$$2 \operatorname{LiSn}(H)R_{2} \xrightarrow{+ \operatorname{Cl-}(\operatorname{SiMe}_{2})_{n} - \operatorname{Cl}} R_{2}\operatorname{Sn-}(\operatorname{SiMe}_{2})_{n} - \operatorname{SnR}_{2} \xrightarrow{+ \operatorname{Cl-}(\operatorname{SiMe}_{2})_{n} - \operatorname{Cl}} H_{1\mathbf{a}-\mathbf{i}} \xrightarrow{+ \operatorname{H}} H_{1\mathbf{a}-\mathbf{i}} H$$

 $R = {}^{t}Bu, Ph; n = 2, 3, 4, 6$

Schema 2. Reaktion von Lithiumdiorganostanniden mit Halogenoligosilanen.

Die Ursachen für diese Reaktion sind weitgehend ungeklärt. So bleibt auch die Frage offen, ob das Lithiumstannid ($LiSn(H)R_2$) oder das damit im Gleichgewicht stehende Diorganozinndihydrid (R_2SnH_2) für die Hydrierung verantwortlich ist.

Setzt man in einem Kontrollexperiment Phenyldimethylfluorsilan mit Diphenylzinndihydrid in Gegenwart von Diisopropylamin um, so wird auch hier die Bildung eines Hydridosilans beobachtet. Bei Abwesenheit des Amins unterbleibt eine Reaktion gemäß Gl.(3). Basenkatalysierte Hydrierungen dieses Typs waren bislang nur für Bromund Chlorsilane bekannt [5–7].

$$Ph_{2}SnH_{2} + 2F - SiMe_{2}Ph \xrightarrow{(Pr_{2}NH)} 2HSiMe_{2}Ph + Ph_{2}SnF_{2}$$
(3)

Einfacher als gemäß Gl.(2) lassen sich die Triphenylzinnderivate **2f-k** durch Umsetzung von Triphenylzinnchlorid mit Fluorsilanen und Magnesium [4] darstellen (Gl.(4)). Neben den α, ω -Distannyloligosilanen **2f-k** sind auf diesem Wege, ausgehend von Monofluorsilanen, auch die nur ein Zinnatom enthaltenen Derivate **3** und **4** darstellbar (Gl.(5-6)).

$$2 \operatorname{Ph_3SnCl} + 2 \operatorname{Mg} + F - (\operatorname{SiMe_2})_n - F \xrightarrow{-2 \operatorname{Mg}(F)\operatorname{Cl}}$$

$$\operatorname{Ph_3Sn} - (\operatorname{SiMe_2})_n - \operatorname{SnPh_3}$$

$$2f - k$$

$$(4)$$

$$Ph_{3}SnCl + Mg + F - (SiMe_{2})_{n} - Ph \xrightarrow{-Mg(F)Cl} (5)$$

$$Ph_{3}Sn - (SiMe_{2})_{n} - Ph \qquad (5)$$

$$3a, n = 1;$$

$$3b, n = 4$$

$$R_{2}SnCl_{2} + 2 Mg + 2 F - (SiMe_{2})_{n} - Ph \xrightarrow{-2 Mg(F)Cl} R_{2}Sn[(SiMe_{2})_{n} - R']_{2} \qquad (6)$$

4a R = Me; R' = Vinyl; n = 1; **4b** R = Ph; R' = Ph; n = 4

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 7/19/15 3:17 AM

1.2 Reaktivität der α,ω-Bis(organostannyl)oligosilane

Die triorganozinnsubstituierten Verbindungen des Typs 2 und 3 sowie 4 sind farblose Flüssigkeiten oder Feststoffe, die über mehrere Stunden unzersetzt an der Luft handhabbar sind. Die erhaltenen Zinnhydride 1 zerfallen dagegen sofort bei Kontakt mit Sauerstoff, sind aber wie die Triorganoderivate hydrolysestabil. Die oxidative Zersetzung folgt dabei immer einem identischen Schema und man erhält Distannane (im Falle der R₃Sn-Verbindungen (Gl.(7))) bzw. Polystannane (im Falle der Zinnhydride (Gl.(8))) und Siloxane als Produkte. Die nachfolgenden Gleichungen zeigen die Bildung der Hauptprodukte der Oxidationsreaktion, der eigentliche Mechanismus ist wesentlich komplizierter und soll deshalb in einer gesonderten Arbeit diskutiert werden [8].

Als schwierig erwies sich der Versuch, die Stannyloligosilane 2 in endständig halogensubstituierte Verbindungen des Typs A zu überführen (Schema 1). Die aus der Zinnchemie bekannten Halogenierungsmittel Quecksilber(II)chlorid und Iod führen erwartungsgemäß nur zu einer Si-Sn-Bindungsspaltung. Setzt man 2 mit einem Gemisch aus Trifluormethansulfonsäure und Lithiumchlorid oder Zinntetrachlorid um, lassen sich die gewünschten Reaktionsprodukte A in geringen Ausbeuten erhalten, jedoch werden wiederum Si-Sn-Bindungsspaltungen beobachtet. Die Auftrennung der entstehenden Produktgemische erweist sich als unmöglich.

Die halogensubstituierten Verbindungen des Typs A sind dagegen ausgehend von den Hydridostannyloligosilanen 1 problemlos erhältlich, wenn Verbindungen mit sterisch anspruchsvollen Gruppen an den Sn-Atomen eingesetzt werden. So kommt es mit den phenylsubstituierten Vertretern 1f-i ebenfalls zu Si-Sn-Bindungsspaltungen, die tert.butylsubstituierten Verbindungen 1b-e reagieren dagegen mit Chloroform oder Bromoform quantitativ zu den Bis(halogenstannyl)oligosilanen 5a-h.

$${}^{'}Bu_{2}Sn - (SiMe_{2})_{n} - Sn'Bu_{2} \xrightarrow{+ CHX_{3}}{- CH_{2}X_{2}}$$

$$H \qquad 1b - e \qquad H \qquad 1b - e \qquad (Bu_{2}Sn - (SiMe_{2})_{n} - Sn'Bu_{2} \qquad (9)$$

$$X \qquad 5 \qquad X \qquad 1 \qquad X \qquad 5$$

$$X \qquad n \qquad 5a \qquad Cl \qquad 2 \qquad 5b \qquad Cl \qquad 3 \qquad 5c \qquad Cl \qquad 4 \qquad 5d \qquad Cl \qquad 6 \qquad 5e \qquad Br \qquad 2 \qquad 5f \qquad Br \qquad 3 \qquad 5g \qquad Br \qquad 4 \qquad 5h \qquad Br \qquad 6$$

$$R_{3}Sn - (SiMe_{2})_{n} - SnR_{3} \xrightarrow{2\times} Partial Par$$

Schema 3. Si-Sn-Bindungsspaltung bei Umsetzungen mit Trifluormethansulfonsäure und Zinntetrachlorid.

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 7/19/15 3:17 AM

Tab. I. ¹¹⁹Sn und ²⁹Si-NMR-Daten der Stannyloligosilane 1, 2, 3, 4 und 5.

Verbindung	δ [ppm]	²⁹ Si-NMR-Verschiebungen ^x J _{Si-Sn} 119/117 [Hz]	^x J _{Si-Si} [Hz]	¹¹⁹ Sn-NMR-Verschiebung δ [ppm]; ^{<i>x</i>} J _{Sn¹¹⁹-H} [Hz]	LM
	24.0	11.217/221		111 2 14 1200	CD
$tBu_2Sn(H) - SiMe_2 - Sn(H)tBu_2$	-34,9	J = 34 / / 331	-	-111,3 $J=1280$	C_6D_6
$IBu_2Sn(H) - SiMe_2 - SiMe_2 - Sn(H)IBu_2$	- 30,8	J = 343/328; -J = 43	- 50.5	-123,0 $J=1282$	C_6D_6
$IBu_2Sn(H) - Sl_aMe_2 - Sl_bMe_2 - SIMe_2 - Sn(H)IBu_2$	$SI_a: -31,1$	J = 340/331; J = 25	$J_{SiA-SiB}=59,5$	-120,4 $J=1295$	C_6D_6
Du Sp(H) Si Ma Si Ma SiMa SiMa	$Sl_b: -30,9$	J = 40	$1I = -50 \cdot 2I = -5.0$	122.2 11-1289	CD
$s_n(H)tB_H$	Si_a . $-31,3$ $Si \cdot 37.2$	J = 5447552, J = 24	$J_{SiA-SiB} - J_{SiA-SiB} - J_{SiA-SiB}$	=122,2 $J=1200$	C_6D_6
$[tBu_2Sn(H) - Si Me_2 - Si Me_2 - Si Me_2 -]_2$	$Si_{b} = -31.2$	$^{1}I = 344/332$	$^{1}I_{\text{C}}$, $\alpha = 59^{-1}I_{\text{C}}$, $\alpha = 60^{-1}$	-121.7 ¹ $I=1290$	C ₂ D ₂
	$Si_{a} = 37.2$	² <i>I</i> =43	${}^{2}I_{\text{CIA}} = 58 \cdot {}^{2}I_{\text{CID}} = 53 \cdot {}^{2}I_{\text{CID}}$	121,7 9-1270	0,000
	$Si_{a}: -37.4$	${}^{3}I$ =n gef	SIA-SIC-5,0, SIB-SIC-0,5		
$Ph_2Sn(H) - SiMe_2 - SiMe_2 - Sn(H)Ph_2$	-31.8	$^{1}J = 486/461$	-	-220.3 ¹ J=1565	C ₆ D ₆
$Ph_2Sn(H) - Si_2Me_2 - Si_2Me_2 - SiMe_2 - Sn(H)Ph_2$	Si.: -30.8	$^{1}J = 482/459; ^{3}J = 30$	n.b.	$-220.1^{-1}J=1560$	C ₆ D ₆
2 - (-) - a - 2 - 0 - 2 - (-) - 2	Si_{b} : -37,8	$^{2}J=61/59$			0 0
$Ph_2Sn(H) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - SiMe_2 -$	Si _a : -31,4	$^{1}J = 478/456$	n.b.	-219,8 ¹ J=1570	C_6D_6
Sn(H)Ph ₂	Si _b : -36,7	$^{2}J=64/63; ^{3}J=30$			
$[Ph_2Sn(H)-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2$	Si _a : -30,6	$^{1}J = 475/454$	${}^{1}J_{\text{SiA}-\text{SiB}}=61; {}^{1}J_{\text{SiB}-\text{SiC}}=57;$	$-218,5^{1}J=1578$	C_6D_6
	Si _b : -37,1	$^{2}J=59/57$	${}^{2}J_{\text{SiA}-\text{SiC}}=5,8; {}^{2}J_{\text{SiB}-\text{SiC}'}=6,3$		
	Si _c : -38,3	$^{3}J=33/31$			
Me.Sn_SiMeSnMe.	-38.4	$^{1}I - 501/480$		$-97.6^{2}I_{-110} = 117 - 720$	CDCL
$Me_3Sn - (SiMe_3)_2 - SnMe_2$	-35.8	$^{1}I = 507/486$; $^{2}I = 66$	_	-1064	CDCh
$Me_3Sn - Si_1Me_2 - Si_2Me_2 - SnMe_3$	Si - 352	$^{1}I=495/478$	$^{1}I_{\rm cr}$, crp=61.1	-104.7	CDCh
megon organez organez organez organez	$Si_{1} = -38.4$	${}^{2}I = 63/61 \cdot {}^{3}I = 31/29$	SIA-SIB-OI,I	101,7	02013
Me2Sn-Si-Me2-Si+Me2-Si+Me2-Si-Me2-SnMe2	$Si_{1}: -35.3$	$^{1}I=493/476$	${}^{1}I_{\text{S}}$, $c_{\text{S}}=60^{\circ}{}^{2}I_{\text{S}}$, $c_{\text{S}}=52$	-103.4	C ₄ D ₄
	Si_{h} : -37.9	${}^{2}I=60/57$; ${}^{3}I=32/30$	SIA-SIB 00, SIA-SIB 0,2	100,1	0000
$[Me_2Sn - Si_2Me_2 - Si_2Me_2 - Si_2Me_2 -]_2$	Si.: -37.7	$^{1}J=499/474$	${}^{1}J_{\text{S}:A}$ s:p=60: ${}^{1}J_{\text{S}:P}$ s:c=62:	-104.8	CDCl ₂
	Si_{b} : -40.4	$^{2}J = 65/62$	${}^{2}J_{\text{SiA}-\text{SiC}}=4.8; {}^{2}J_{\text{SiB}-\text{SiC}}=4.2$		
	Si _c : -40,9	$^{3}J=29/26$	SIA-SIC (14) SID-SIC (
$Ph_3Sn - SiMe_2 - SnPh_3$	-31,9	$^{1}J=521/497$	_	$-155,5^{2}J_{\text{Sn}^{119}-\text{Sn}^{117}}=712$	$CDCl_3$
$Ph_3Sn - (SiMe_2)_2 - SnPh_3$	-29,2	$^{1}J = 491/468$	-	-157,5	$CDCl_3$
$Ph_3Sn-Si_aMe_2-Si_bMe_2-Si_a'Me_2-SnPh_3$	Si _a : -30,3	$^{1}J=480/459; \ ^{3}J=39/37$	${}^{1}J_{SiA-SiB} = 61,0$	-155,0	$CDCl_3$
	Si _b : -36,3	$^{2}J=61/59$			
$Ph_3Sn-Si_aMe_2-Si_{b'}Me_2-Si_{a'}Me_2-SnPh_3$	Si _a : -29,8	$^{1}J = 483/461$	${}^{1}J_{\text{SiA}-\text{SiB}}=60; {}^{2}J_{\text{SiA}-\text{SiB}'}=5,5$	-156,4	$CDCl_3$
	$Si_b: -36,7$	$^{2}J=57; ^{3}J=32$			
$[Ph_3Sn-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2$	$Si_a: -29,3$	¹ J=475/454	${}^{1}J_{\text{SiA}-\text{SiB}}=60; {}^{1}J_{\text{SiB}-\text{SiC}}=59;$	-156,6	$CDCl_3$
	$Si_b: -37,0$	² J=59/57	${}^{2}J_{SiA-SiC}=5,2;$		
	$Si_c: -42,0$	J = 33/31	$2J_{SiB-SiC'}=4,6$		
Ph ₃ Sn-SiMe ₂ -Ph	-12,8	¹ J=668/638	-	-176,2	D ₂ O-Kap./
					THF
$Ph_3Sn-Si_aMe_2-Si_bMe_2-Si_cMe_2-Si_dMe_2-Ph$	Si _a : -28,3	$^{1}J = 492/470$	n.b.	-165,8	CDCl ₃
	$Si_{b}: -39,6$	$^{2}J=58/55$			
	$Si_c: -41,7$	³ J=32			
	Si_d : -19,9				
Me ₂ Sn(SiMe ₂ -Vinyl) ₂	-16,4	$^{1}J = 529/505$	_	-275,4	D ₂ O-Kap./
					THF
$Ph_2Sn[Si_aMe_2-Si_bMe_2-Si_cMe_2-Si_dMe_2-Ph]_2$	Si _a : -29,7	$^{1}J=362/347$	${}^{1}J_{\text{SiA}-\text{SiB}}=59; {}^{1}J_{\text{SiB}-\text{SiC}}=60;$	-232,5	CDCl ₃
	Si _b : -37,4	$^{2}J=n.$ gef.	${}^{1}J_{\rm SiC-SiD}=69,5;$		
	$Si_c: -42,7$	$^{3}J=35$	${}^{2}J_{\text{SiA}-\text{SiC}}=6,2; {}^{2}J_{\text{SiB}-\text{SiC}'}=4,7$		
	$Si_d: -17,7$				
$tBu_2Sn(Cl) - SiMe_2 - SiMe_2 - Sn(Cl)tBu_2$	-19.9	$^{1}J=240/230$; $^{2}J=51$	-	104.1	D ₂ O-Kap./
					THF
$tBu_2Sn(Cl) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - Sn(Cl)tBu_2$	Si _a : -19,9	$^{1}J=240/229; ^{3}J=44$	${}^{1}J_{\text{SiA}-\text{SiB}}=60$	100,8	CDCl ₃
	Sib: -35,7	$^{2}J=47$			
$tBu_2Sn(Cl) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - SiMe_2 -$	$Si_a: -20,0$	$^{1}J=241/230$	${}^{1}J_{\text{SiA}-\text{SiB}}=59; {}^{2}J_{\text{SiA}-\text{SiB}'}=5,5$	98,1	$CDCl_3$
$Sn(Cl)tBu_2$	Si _b : -35,9	$^{2}J = -41; \ ^{3}J = -41$			
$[tBu_2Sn(Cl)-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2$	Si _a : -19,5	$^{1}J=241/232$	${}^{1}J_{\text{SiA}-\text{SiB}} = 59; {}^{1}J_{\text{SiB}-\text{SiC}} = \text{n.b.};$	100,3	$CDCl_3$
	$Si_{b}: -36,6$	$^{2}J=45$	${}^{2}J_{\text{SiA}-\text{SiC}}=4,3; {}^{2}J_{\text{SiB}-\text{SiC}'}=4,2$		
	$Si_c: -36,7$	³ J=38			
$tBu_2Sn(Br) - SiMe_2 - SiMe_2 - Sn(Br)tBu_2$	-20,2	$^{1}J=223/212; ^{2}J=48$	-	102,9	$D_2O-Kap./$
	c : c o o	11.000/000		07.4	THF
$tBu_2 \operatorname{Sn}(Br) - \operatorname{Sl}_a \operatorname{Me}_2 - \operatorname{Sl}_b \operatorname{Me}_2 - \operatorname{Sl} \operatorname{Me}_2 - \operatorname{Sn}(Br) tBu_2$	$SI_a: -20,0$	J = 230/220	n.b.	97,4	D ₂ O-Kap./
$(\mathbf{R}_{\mathbf{H}}, \mathbf{S}_{\mathbf{P}}(\mathbf{R}_{\mathbf{r}}))$ Si Ma Si Ma Si Ma	$SI_b: -35, 7$	J = -4/; J = -4/	¹ <i>I</i> =60: ² <i>I</i> 4.9	077	CDCL
$SiMe_{Sn}(Br)/Bu_{a}$	$Si_a = 20,7$	J = 220/217 $2I = 242 \cdot 3I = -42$	JSIA-SIB-00, JSIA-SIB'=4,8	71,1	CDCI3
$[tBu_{2}Sn(Br)-Si_{2}Me_{2}-Si_{2}Me_{2}-Si_{2}Me_{2}-l_{2}$	$Si_{b} = -19.9$	1I=225/215	n b	98.3	D-O-Kan/
[Si_{h} : -36.2	$^{2}J=42$		10,0	THF
	Si _c : -36,6	$^{3}J=39$			

^{a)} Nur ¹¹⁹Sn- und ²⁹Si-spektroskopisch charakterisiert.

Mit 5a-h stehen nun erstmalig Bausteine zur Verfügung, die Metathesereaktionen zu Ringsystemen des Typs **B** (Schema 1) oder auch Polymerisationen ermöglichen sollten.

1.3 Charakterisierung der α, ω -Bis(organostannyl)oligosilane

Die Charakterisierung der erhaltenen Verbindungen erfolgte mittels Elementaranalyse, IR- und NMR-Spektroskopie sowie Massenspektrometrie. Von einigen Verbindungen wurden ²⁹Si–²⁹Si-gekoppelte Spektren aufgenommen, um eine Signalzuordnung unabhängig von den ²⁹Si–^{119/117}Sn-Kopplungen zu ermöglichen (s. Tab. I).

Die ${}^{1}J_{\text{Si}-\text{Si}}$ -Kopplungen sind mittels einer 29 Si 1D-INADEQUATE-Pulsfolge mit inverse gated decoupling bestimmt worden, wobei das kopplungsunabhängige Delay für einen Wert von ${}^{1}J_{\text{Si}-\text{Si}} = 60,0 \text{ Hz}$ optimiert wurde [9]. Die Bestimmung der ${}^{29}\text{Si}-{}^{29}\text{Si}$ -Kopplungen über zwei Bindungen gelang auf vergleichbare Weise mit einer ${}^{29}\text{Si}$ 1-D-INEPT-INADEQUATE-Pulsfolge [10– 12]. Die dafür notwendigen, auf Kopplungskonstanten beruhenden Delays wurden für ${}^{2}J_{\text{Si}-\text{Si}} =$ 10,0 Hz und für ${}^{2}J_{\text{Si}-\text{H}} = 14,0 \text{ Hz}$ optimiert. Die weiteren spektroskopischen Daten sind in den Tabellen II–V zusammengefaßt.

Die Molekülstrukturen für die Verbindungen **1b** und **2i** werden in den Abbildungen 1 und 2 gezeigt. Verbindung **2i** (Abb. 1) kristallisiert in Form von kettenförmigen Molekülen, in denen zwei Ph₃Sn-Einheiten durch eine Si₄-Kette verknüpft

Tab. II. Ausgewählte ¹H-NMR-Daten der Stannyloligosilane 1 bis 5.

Nr.	¹ H-Verschiebungen der SiMe ₂ -Gruppen δ [ppm]/ ^x J _{H-Sn119/117} [Hz]	¹ H-NMR für SnR ₂ R' δ [ppm]/ ^x J _{Sn-H} [Hz]	LM
1a	0.68 (s, 6H SiMe); ${}^{3}J=32$	1,45 (s, 36H CMe ₃), ³ J=62; 5,36 (s, 2H SnH), ¹ J=1280	C ₆ D ₆
1b	0.39 (s. 12H SiMe);	1,23 (s, 36H CMe ₃), ${}^{3}J$ =60; 5,05 (s, 2H SnH), ${}^{1}J$ =1282	C ₆ D ₆
1c	0.38 (s, 12H Si _a Me); ${}^{3}J=30$; 0.26 (s, 6H Si _b Me)	1,24 (s, 36H CMe ₃), ³ J=62; 5,27 (s, 2H SnH), ¹ J=1295	$C_6 D_6$
1d	0.65 (s, 12H Si _a Me); ${}^{3}J=n.b.$; 0.25 (s, 12H Si _b Me)	1.42 (s, 36H CMe ₃), ${}^{3}J=61$; 5.20 (s, 2H SnH), ${}^{1}J=1288$	C ₆ D ₆
1e	0.56 (s. 12H Si ₂ Me); ³ J=31; 0.43 (s. 12H Si ₂ Me); 0.41 (s. 12H Si ₂ Me)	1.42 (s, 36H CMe ₃), ${}^{3}J$ =60.6; 5.22 (s, 2H SnH), ${}^{1}J$ =1290	C ₆ D ₆
1f	0.31 (s. 12H SiMe ₂)	7,1-7,9 (m, 20H Ph); 5,9 (s, 2H SnH), ${}^{1}J=1565/1500$	C_6D_6
1i	0,15 (m, 36H SiMe ₂)	7,13-7,85 (m, 20H Ph); 6,0 (s, 2H SnH), ¹ J=1575/1505	C_6D_6
2a	0.31 (s, 6H SiMe); ${}^{3}J=40$	0.23 (s, 18H SnMe); $^{2}J=40$	CDCl ₃
2c	0,28 (s, 12H Si _a Me); ${}^{3}J=41$; 0,20 (s, 6H Si _b Me)	0,17 (s, 18H SnMe); $^{2}J=42$	$C_6 D_6$
2e	0.25 (s, 12H Si _a Me); ${}^{3}J=40$; 0.15 (s, 12H Si _b Me); 0.17 (s, 12H Si _c Me);	0,13 (s, 18H SnMe); $^{2}J=43$	CDCl ₃
2f	0.69 (s, 6H SiMe); ${}^{3}J=46$	7,1-7,8 (m, 30H Ph)	CDCl ₃
2g	0,62 (s, 12H SiMe); ${}^{3}J=40$	7,15-7,89 (m, 30H Ph)	CDCl ₃
2h	0.42 (s, 6H Si _b Me); 0.85 (s, 12H Si _a Me); ${}^{3}J=43$	7,2-7,8 (m, 30H Ph)	CDCl ₃
2i	0.04 (s. 12H Si _b Me); 0.48 (s. 12H Si _a Me); ${}^{3}J=41$	7,28-7,68 (m, 30H Ph)	CDCl ₃
2k	0,51 (s, 12H Si ₄ Me); ³ J=40; 0,15 (s, 12H Si _b Me); 0,07 (s, 12H Si ₆ Me);	7,21-7,63 (m, 30H Ph)	CDCl ₃
4b	0.03 (s, 12H SiMe); 0.14 (s, 12H SiMe);	7,26-7,70 (m, 20H PhSn);	CDCl ₃
	0,24 (s, 12H Si _b Me); 0,45 (s, 12H Si _a Me); ³ J=39	(m, 10H PhSi)	5
5a	$0,58$ (s, 12H SiMe); ${}^{3}J=38$	1,44 (s, 36H CMe ₃); ${}^{3}J=76/73$	CDCl ₃
5b	0,48 (s, 12H Si _a Me); ${}^{3}J=36$; 0,23 (s, 6H Si _b Me)	1,32 (s, 36H CMe ₃), ${}^{3}J=72/69$	CDCl ₃
5h	0,42 (s, 12H Si _a Me); ³ J=37; 0,27 (s, 12H Si _b Me); 0,15 (s, 12H Si _c Me)	1,25 (s, 36H CMe ₃), ³ J=74/71	CDCl ₃

Tab. III. ¹³C-NMR-Daten ausgewählter Stannyloligosilane.

Nr.	$^{13}\text{C-NMR-Verschiebungen}$ δ [ppm]; $^{s}J_{\text{C-Sn}^{119/117}}$ [Hz]	LM
1b 1e 1i 2c 2e 2h 2i	$\begin{array}{c} 0.0\ (2\times \operatorname{SiMe}_2);\ {}^2J=-29;\ 34.6\ (2\times \operatorname{SnC}Me_3);\ 29.8\ (4\times \operatorname{SnCMe}_3);\ {}^1J=288/274\\ -2.5\ (2\times \operatorname{Si}_a\operatorname{Me}_2);\ {}^2J=30;\ -6.2\ (2\times \operatorname{Si}_b\operatorname{Me}_2);\ -6.3\ (2\times \operatorname{Si}_c\operatorname{Me}_2);\ 30.4\ (4\times \operatorname{SnCMe}_3);\ 29.6\ (4\times \operatorname{SnCMe}_3);\ {}^1J=300/287\\ -1.9\ (2\times \operatorname{Si}_a\operatorname{Me}_2);\ {}^2J=30;\ -3.4\ (2\times \operatorname{Si}_b\operatorname{Me}_2);\ -3.7\ (2\times \operatorname{Si}_c\operatorname{Me}_2);\ 139.2(C_i);\ {}^1J=404/386;\ 138.7(C_o);\ {}^2J=39;\ 129.3(C_m);\ {}^3J=42;\ 128.9(C_p)\\ -2.6\ (2\times \operatorname{SiMe}_2);\ {}^2J=30;\ -3.4\ (1\times \operatorname{SiMe}_2);\ -9.0\ (2\times \operatorname{SnMe}_3);\ {}^1J=240/229\\ -2.8\ (2\times \operatorname{Si}_a\operatorname{Me}_2);\ {}^2J=29.2;\ -3.3\ (2\times \operatorname{Si}_b\operatorname{Me}_2);\ -3.6\ (2\times \operatorname{Si}_c\operatorname{Me}_2);\ -10.2\ (2\times \operatorname{SnMe}_3);\ {}^1J=238/228\\ -2.4\ (2\times \operatorname{SiMe}_2);\ {}^2J=30;\ -4.4\ (1\times \operatorname{SiMe}_2);\ 140.0\ (C_i);\ {}^1J=390/376;\ 137.6(C_o);\ {}^2J=37;\ 128.4(C_m);\ {}^3J=42;\ 128.4(C_p)\\ -2.1\ (2\times \operatorname{Si}_a\operatorname{Me}_2);\ {}^2J=29;\ -4.3\ (2\times \operatorname{Si}_b\operatorname{Me}_2);\ 140.4\ (C_i);\ {}^1J=395/378;\ 137.5(C_o);\ {}^2J=37;\ 128.4(C_m);\ {}^3J=43;\ 128.1(C_p)\end{array}$	$\begin{array}{c} C_6 D_6 \\ C_6 D_6 \\ C_6 D_6 \\ CDC l_3 \end{array}$
5d 5g	-1.1 (2× Si _a Me ₂); ² <i>J</i> =26; -4.1 (2× Si _b Me ₂); -6.1 (2× Si _c Me ₂); 30.9 (4× SnCMe ₃); 39.6 (4× SnCMe ₃); <i>IJ</i> =270/256 0.2 (2× Si _a Me ₂); ² <i>J</i> =24; -2.9 (2× Si _b Me ₂); -3.1 (2× Si _c Me ₂); 31.7 (4× SnCMe ₃); 35.5 (4× SnCMe ₃); <i>IJ</i> =267/252	CDCl ₃ CDCl ₃

2	Q	2
2	0	Э

Nr.	Sn-H-Schwingung [cm ⁻¹]	Nr.	Sn-H-Schwingung [cm ⁻¹]
1a	1771		
1b	1769	1f	1813
1c	1767	1g	1807
1d	1770	1h	1806
1e	1771	1i	1807

Tab. IV. Infrarotspektroskopie – Sn-H-Schwingungen der Verbindungen 1.

sind. Wie in **1b** (Abb. 2) befindet sich zwischen den beiden zentralen Si-Atomen ein Inversionszentrum. Die Zinnatome sind in einer leicht verzerrt tetraedrischen Umgebung von drei Phenylund einer SiMe₂-Einheit umgeben. Es werden mittlere Sn–C-Abstände von 215,4(9) pm und ein Si–Sn-Abstand von 257,91(9) pm beobachtet. Sie Si–Si-Bindungslängen in der (SiMe₂)₄-Kette zeigen eine durchschnittliche Bindungslänge von 235,3(3) pm und die durchschnittlichen Si–C-Abstände betragen 188(2) pm (s. Tab. VIII).

Die Kristallstruktur von **1b** (Abb. 2) stellt eines der wenigen Beispiele für Strukturen von Zinnhydriden überhaupt dar, wobei der hydridische Wasserstoff am Zinnatom nicht in der Differenzfouriersynthese gefunden werden konnte. Die Zinnzentren besitzen ebenfalls eine leicht verzerrte tetreaedrische Umgebung. Die Bindungswinkel zwischen den C- und Si-Atomen am Zinn liegen zwischen 113 und 116°. Die mittleren Si-Sn-Ab-

Tab. V. Ausgewählte Massenzahlen der Stannyloligosilane 1 bis 5.

Nr.	Massenspektrometrie (ausgewählte Fragmente [M/%])
1a 1b 1c 1d 2a 2b 2d 2f 2h 2i 2k 5c 5f 5h	$\begin{array}{c} 524 \ [M^{+}/35); 355 \ [M^{+}-3\times tBu/90]; 296 \ [Sn_2SiMe_2/15] \\ 582 \ [M^{+}/30]; 408 \ [M^{+}-3\times tBu/100]; 296 \ [Sn_2Si_2Me_4/15] \\ 640 \ [M^{+}/3]; 465 \ [M^{+}-3\times tBu/20]; 408 \ [Sn_2Si_3Me_3/60]; 351 \ [SnSi_4Me_8tBu/80]; 294 \ [SnSi_4Me_8/100] \\ 698 \ [M^{+}/1]; 682 \ [M^{+}-Me/3]; 641 \ [M^{+}-Bu/5]; 295 \ [SnSi_2Me_4/Bu/30]; 232 \ [SnSi_2Me_4/100] \\ 643 \ [M^{+}-3\times tBu/5]; 584 \ [M^{+}-4\times tBu/10]; 350 \ [SnSi_3Me_6tBu/20]; 348 \ [Si_6Me_{12}/100] \\ 386 \ [M^{+}/2]; 371 \ [M^{+}-Me/4]; 233 \ [Me_3Sn-SiMe_2/15]; 135 \ [MeSn/40]; 73 \ [Me_3Si/100] \\ 444 \ [M^{+}/4]; 429 \ [M^{+}-Me/5]; 295 \ [SnSi_2Me_4/10]; 73 \ [Me_3Si/100] \\ 560 \ [M^{+}/6]; 545 \ [M^{+}-Me/5]; 395 \ [M^{+}-SnMe_3/12]; 135 \ [MeSn/40]; 73 \ [Me_3Si/100] \\ 760 \ [M^{+}/4]; 408 \ [M^{+}-SnPh_3/15]; 352 \ [SnPh_3/45]; 73 \ [Me_3Si/100] \\ 876 \ [M^{+}/2]; 799 \ [M^{+}-Ph/2]; 525 \ [M^{+}-SnPh_3/5]; 409 \ [Ph_3Sn-SiMe_2/10]; 73 \ [SiMe_3/100] \\ 580 \ [M^{+}-SnPh_3/5]; 522 \ [M^{+}-(Ph_3Sn-SiMe_2)/10]; 410 \ [Ph_3Sn-SiMe_2/12]; 73 \ [SiMe_3/100] \\ 699 \ [M^{+}-SnPh_3/5]; 522 \ [M^{+}-SnPh_4/8]; 548 \ [PhSn(SiMe_2)_6/20]; 348 \ (SiMe_2)_6/100] \\ 754 \ [M^{+}-Me/2]; 734 \ [M^{+}-Cl/3]; 712 \ [M^{+}-tBu_2/5]; 501 \ [tBu_2SnCl/100]; 312 \ [tBu_2SnSl/100] \\ 743 \ [M^{+}-tBu/3]; 720 \ [M^{+}-Br/2]; 487 \ [M^{+}-tBu_2SnBr/100]; 312 \ [tBu_2SnSi_2Me_4/100]; 290 \ [Si_5Me_{10}]; \\ 569 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Psi_5Me_5N/5]; 349 \ [tBu_2SnSi_2Me_4/100]; 290 \ [Si_5Me_{10}]; \\ 569 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Lausended] \\ 560 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Lausended] \\ 560 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Lausended] \\ 560 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Lausended] \\ 560 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Lausended] \\ 560 \ [tBu_2SnSi_6Me_{11}/10]; 512 \ [tBuSnSi_6Me_{11}/15]; 327 \ [Lausended] \\ 560 \ [tBu_2SnSi_6Me_{11}/10]; 510 \ [tBuSnSi_6Me_{11}/15];$
2k 5c 5f 5h	$\begin{array}{c} 699 \ [M^{+} - SnPh_{3}/15]; \ 622 \ [M^{+} - SnPh_{4}/8]; \ 548 \ [PhSn(SiMe_{2})_{6}/20]; \ 348 \ (SiMe_{2})_{6}/100] \\ 754 \ [M^{+} - Me/2]; \ 734 \ [M^{+} - Cl/3]; \ 712 \ [M^{+} - tBu_{2}/5]; \ 501 \ [tBu_{2}Sn(Cl)Si_{4}Me_{8}/100]; \ 267 \ [tBu_{2}SnCl/100] \\ 743 \ [M^{+} - tBu/3]; \ 720 \ [M^{+} - Br/2]; \ 487 \ [M^{+} - tBu_{2}SnBr/100]; \ 312 \ [tBu_{2}SnBr/10] \\ 569 \ [tBu_{2}SnSi_{6}Me_{11}/10]; \ 512 \ [tBuSnSi_{6}Me_{11}/15]; \ 397 \ [Si_{5}Me_{9}Sn/5]; \ 349 \ [tBu_{2}SnSi_{2}Me_{4}/100]; \ 290 \ [Si_{5}Me_{2}33 \ [tBu_{2}Sn/90] \end{array}$

Abb. 1. Molekülstruktur von **2i** (SHELXTL-Plus; ohne H-Atome). Die Auslenkungsparameter umschreiben eine Aufenthaltswahrscheinlichkeit von 30%, Symmetrieoperationen zur Erzeugung äquivalenter Atome #1 -x+1, -y+1, -z+2.

Abb. 2. Molekülstruktur von **1b** (SHELXTL-Plus; ohne H-Atome). Die Auslenkungsparameter umschreiben eine Aufenthaltswahrscheinlichkeit von 30%, Symmetrieoperationen zur Erzeugung äquivalenter Atome a: -x+1, -y+1, -z.

2 Experimenteller Teil

Alle Arbeiten mit luft- und feuchtigkeitsempfindlichen Stoffen wurden unter Schutzgas durchgeführt. Die verwendeten Lösungsmittel wurden nach Standardmethoden gereinigt und getrocknet [13]. Die Massenspektren wurden mit einem MAT800 Massenspektrometer, die IR-Spektren mit einem BRUKER IFS 28 IR-Gerät und die NMR-Spektren mit den BRUKER-Kernresonanzspektrometern DPX 300 (Meßfrequenzen [MHz]; ²⁹Si: 59,63; ¹¹⁹Sn: 111,92) und DRX 400 (Meßfrequenzen [MHz]; ¹H: 400,15; ¹³C: 100,63; ²⁹Si: 79,49; ¹¹⁹Sn: 149,21) aufgenommen.

Die α, ω -Dichlor- und Difluoroligosilane wurden nach Literaturvorschriften hergestellt [4, 14–16], die Darstellung der Alkalimetallorganostannide erfolgte in Anlehnung an bekannte Methoden [17, 18].

2.1 Darstellung der α, ω -Bis(di- und triorganostannyl)oligosilane **1** und **2**

1) aus Alkalimetalltri- und -diorganostanniden und α, ω -Dihalogensilanen

Zu 10 mmol eines frisch bereiteten Alkalimetallstannids (M = Li, Na, K) in 50 ml THF werden bei -30 bis -40 °C (für R₃SnM [17]) oder -50 °C (für R₂Sn(H)Li [18]) 5 mmol des entsprechenden α,ω -Dihalogensilans in 20 ml THF langsam zugetropft. Es wird 2 h bei den angegebenen tiefen Temperaturen gerührt.

A) Aufarbeitung für R_3Sn

Die Reaktionslösung wird langsam auf R.T. erwärmt und 4 h nachgerührt. Anschließend wird das Lösungsmittel im Vakuum bei R.T. entfernt. Der verbleibende Rückstand wird mit 50 ml Diethylether aufgenommen und filtriert (G3). Das Lösungsmittel wird wiederum im Vakuum entfernt und der anfallende Feststoff aus Diethylether/Toluol (1:1) umkristallisiert bzw. das entstehende Öl destilliert.

B) Aufarbeitung für $R_2Sn(H)$

Die Lösung wird unter Rühren bis auf -30 °C erwärmt und dann mit 20 ml Petrolether versetzt. Es wird 30 min weitergerührt und anschließend auf 0 °C erwärmt. Bei dieser Temperatur wird mit 20 ml Sauerstoff-freiem Wasser hydrolysiert. Die organische Phase wird sofort abgetrennt und 12 h über $CaCl_2$ getrocknet. Es wird drucklos über eine Rohrfritte (G4) filtriert und anschließend das Lösungsmittel im Vakuum entfernt. Die Produkte bleiben als farblose, teilweise gelbliche Öle bzw. Feststoffe zurück.

2) aus Chlorstannanen, Magnesium und Fluorsilanen

12 mmol des jeweiligen Chlorstannans und 1,5 g Mg (200% Überschuß) werden in 50 ml THF gegeben und es werden 6 bzw. 12 mmol des Fluorsilans zugesetzt. Die Reaktionsmischung wird anschließend über 5–10 d bei R.T. gerührt. Der vollständige Umsatz des Chlorstannans kann mittels NMR oder GC–MS überprüft werden. Die Aufarbeitung erfolgt analog 1A.

Die Ansatzgrößen und Ausbeuten finden sich in Tab. VI, die spektroskopischen Daten der Verbindungen sind in den Tabellen I–V wiedergegeben.

2.2 Hydrierung von Dimethylphenylfluorsilan

Zu 1,4 g (9 mmol) PhMe₂SiF und 0,1 ml *i*Pr₂NH in 25 ml Hexan werden bei $-50 \,^{\circ}$ C 1,24 g (4,5 mmol) *t*Bu₂SnH₂ gegeben und 4 h bei gerührt. Es wird vom entstehenden Feststoff filtriert, das Lösungsmittel im Vakuum entfernt und der verbleibende Rückstand NMR-spektroskopisch untersucht. ²⁹Si-NMR: -18,1 ppm; ¹J_{Si-H} = 190 Hz. Ein Vergleichsexperiment ohne Di*iso*propylamin ergibt; ²⁹Si-NMR: 20,1 ppm; ¹J_{Si-F} = 280 Hz.

2.3 Versuche zur Halogenierung von 1 oder 2

3 mmol 1 bzw. 2 werden in 20 ml des jeweiligen Lösungsmittels gelöst und bei den angegebenen Temperaturen mit dem Halogenierungsmittel zur Reaktion gebracht. Es wird von evtl. angefallenem Feststoff abfiltriert und das Lösungsmittel im Vakuum entfernt. Der verbleibende Rückstand wird NMR-spektroskopisch untersucht. Die angegebenen Prozentanteile wurden mittels NMR-Spektroskopie bestimmt.

a) Umsetzungen von 2a und 2k mit SnCl₄

Lösungsmittel: 20 ml Toluol; Reaktionstemperatur: 20–25 °C.

2a: Ansatzgröße: 1,16 g.

¹¹⁹ Sn-NMR [ppm]:	164,6 (Me ₃ SnCl/35%);
	143,2 (Me ₂ SnCl ₂ /20%);
	24,6 (MeSnCl ₃ /10%) un-
	identifizierte Produkte
	bei 43,7; 66,2; 80,0.
²⁹ Si-NMR [ppm]:	33,1 für Me_2SiCl_2 .

Brought to you by | New York University Bobst Library Technical Services Authenticated Download Date | 7/19/15 3:17 AM

	Tab.	VI.	Ansatzgrößen,	Elementaranalysen	und Eigenschaf	ten der Stannyl	oligosilane	1, 2, 3	und	4
--	------	-----	---------------	-------------------	----------------	-----------------	-------------	---------	-----	---

Verbindung Summenformel, Molmasse ber.	Fp(Kp) [°C]	Elementaranalyse C ber.(gef.) H ber.(gef.)	Herstellungs- methode	Ansatz [mmol] Silan	Verhältnis Silan:Stannan	Ausb. g [%]	Reinigung
$tBu_2Sn(H) - SiMe_2 - Sn(H)tBu_2$ $C_{18}H_{44}SiSn_2; 526,01$	33-35	nicht bestimmbar	1B	2,15 Cl-SiMe ₂ -Cl	1:2	1,0 [89]	umkrist. aus n-Hexan
$tBu_2Sn(H) - SiMe_2 - SiMe_2 - Sn(H)tBu_2$ $C_{20}H_{50}Si_2Sn_5; 584.17$	68-71	nicht bestimmbar	1B	2,15 Cl-(SiMe ₂) ₂ -Cl	1:2	1,15 [92]	umkrist. aus n-Hexan
1 1	30-33	nicht bestimmbar	1B	2,15 Cl-(SiMe ₂) ₃ -Cl	1:2	1,3 [94]	umkrist. aus n-Hexan
1 C ₂₄ H ₆ Si ₄ Si ₄ Sn; 700.48 C_2 -Si _b Me ₂ -SiMe ₂ -SiMe ₂ -Sn(H) <i>t</i> Bu ₂ C ₂₄ H ₆ Si ₄ Sn; 700.48 C_2 -Si	12-20	-	1B	2,15 Cl-(SiMe ₂) ₄ -Cl	1:2	1,35 [90]	farbloses Öl
$[fBu_2Sn(H)-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2$ $C_{28}H_{22}Si_2Sn_3: 816.79$	72	nicht bestimmbar	1B	2,15 Cl-(SiMe ₂) ₆ -Cl	1:2	1,5 [85]	umkrist. aus n-Hexan
$Ph_2Sn(H) - SiMe_2 - SiMe_2 - Sn(H)Ph_2$ $C_{28}H_{32}Si_2Sn_3; 664.13$	-	nicht bestimmbar	1B	10,1 Cl-(SiMe ₂) ₂ -Cl	1:2	3,3 [50]	farbloses Öl
$Ph_2Sn(H) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - Sn(H)Ph_2$ $C_{30}H_{40}Si_3Sn_5; 722.28$	-	-	1B	8,2 Cl-(SiMe ₂) ₃ -Cl	1:2	3,1 [53]	farbloses Öl
$Ph_2Sn(H) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - SiMe_2 - Sn(H)Ph_2$ $C_{32}H_{46}Si_4Sn_5; 780,44$	-	-	1B	6,4 Cl-(SiMe ₂) ₄ -Cl	1:2	2,4 [49]	farbloses Öl
				13,0 F-(SiMe ₂) ₄ -F	1:2	9,2 ^{e)} [90]	farbloses Öl ^{e)}
$[Ph_2Sn(H)-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2 C_{36}H_{58}Si_6Sn_2; 896,75$	230 ^{c)}	nicht bestimmbar	1B	6,6 Cl-(SiMe ₂) ₆ -Cl	1:2	4,0 [68]	-
Me ₃ Sn-SiMe ₂ -SnMe ₃ C ₈ H ₂₄ SiSn ₂ ; 385,74	(54 ^{a)})	24,91 (25,7) 6,27 (6,6)	1 A	37,8 Cl-SiMe ₂ -Cl	1:2	6,21 [85]	farbloses Öl dest.
$Me_3Sn - (SiMe_2)_2 - SnMe_3$ $C_{10}H_{30}Si_2Sn_2; 443.90$	(105 ^{a)})	27,06 (26,4) 6,81 (6,4)	1 A	7,5 Cl-(SiMe ₂) ₂ -Cl	1:2	2,7 [85]	farbloses Öl dest.
$Me_3Sn-Si_aMe_2-Si_bMe_2-Si_a'Me_2-SnMe_3$ $C_{12}H_{36}Si_3Sn_2$; 502,05	(145 ^{a)})	28,71 (29,3) 7,23 (6,9)	1A	12,6 F-(SiMe ₂) ₃ -F	1:2	5,5 [87]	farbloses Öl dest.
$Me_3Sn-Si_aMe_2-Si_bMe_2-Si_bMe_2-Si_aMe_2-SnMe_3$ $C_{14}H_{42}Si_4Sn_2$; 560,21	12-20	30,02 (28,9) 7,56 (7,1)	1 A	8,2 F-(SiMe ₂) ₄ -F	1:2	3,7 [85]	farbloses Öl
$[Me_3Sn-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2$ $C_{18}H_{54}Si_6Sn_2; 676,52$	31-34	31,96 (30,8) 8,05 (7,7)	1A	6,5 F-(SiMe ₂) ₆ -F	1:2	3,5 [80]	umkrist. aus n-Hexan
$Ph_{3}Sn - SiMe_{2} - SnPh_{3}$ $C_{38}H_{36}SiSn_{2}$; 758,12	120-123	60,20 (59,8) 4,79 (4,5)	1A	1,2 Cl-SiMe ₂ -Cl	1:2	0,54 [60]	umkrist. aus Et ₂ O
$Ph_3Sn - (SiMe_2)_2 - SnPh_3$ $C_{40}H_{42}Si_2Sn_5; 816,32$	-	-	1A	17 Cl-(SiMe ₂) ₂ -Cl	1:2	[90] ^{b)}	-
$Ph_3Sn - Si_aMe_2 - Si_bMe_2 - Si_{a'}Me_2 - SnPh_3$ $C_{42}H_{48}Si_3Sn_5; 874.48$	115-118	57,69 (56,6) 5,53 (5,1)	1A	7,53 Cl-(SiMe ₂) ₃ -Cl	1:2	5,25 ^d)	
				$12 F - (SiMe_2)_3 - F$		8,34 [80]	umkrist. aus Et ₂ O/Hexan
$\begin{array}{l} Ph_{3}Sn-Si_{a}Me_{2}-Si_{b}Me_{2}-Si_{b'}Me_{2}-Si_{a'}Me_{2}-SnPh_{3}\\ C_{44}H_{54}Si_{4}Sn_{2};932,63 \end{array}$	138-143	56,67 (58,4) 5,84 (5,5)	1A	7,34 Cl-(SiMe ₂) ₄ -Cl	1:2	3,27 ^d)	umkrist. aus Et ₂ O/Hexan
			2	8,0 F-(SiMe ₂) ₄ -F		5,24 [70]	umkrist. aus Et ₂ O/Toluol
			2	$F-(SiMe_2)_4-F$		1,02 [68]	
	120-122	54,96 (54,0) 6,34 (6,0)	1A	7,42 Cl-(SiMe ₂) ₆ -Cl	1:2	2,30 ^a)	umkrist. aus Et ₂ O/Hexan
	<i>(</i>)	(1.25.((1.0), 5.40.(5.1)	2	$F - (SiMe_2)_6 - F$	1.2	5,8 g [75]	
$Ph_3Sn - SIMe_2 - Ph$ $C_{26}H_{26}SiSn; 485,27$	64	64,35 (64,0) 5,40 (5,1)	2	57,3 FSiMe ₂ Ph	1:2	16,8 g	$Et_2O/Hexan$
$Ph_3Sn-Si_aMe_2-Si_bMe_2-Si_cMe_2-Si_dMe_2-Ph$	-	_	2	3,5 $F_{-}(SiMe_{-}) = Ph$	1:1	[95] n.b.	farbloses Öl
$Me_2Sn(SiMe_2-Vinyl)_2$ C. H. Si-Si-Si 319 16	(110 ^{a)})	_	2	14,4 FSiMe-Vinvl	1:2	1,3 g	Kugelrohr-
$Ph_2Sn[Si_aMe_2-Si_bMe_2-Si_cMe_2-Si_dMe_2-Ph]_2$ $C_{40}H_{68}Si_8Sn; 892.35$	-	53,84 (52,7) 7,68 (7,25)	2	5,0 F-(SiMe ₂) ₄ -Ph	1:2	2,7 [60]	farbloses Öl

a) Kp bei 10⁻³ Torr; b) nur ¹¹⁹Sn- und ²⁹Si-spektroskopisch charakterisiert; c) Zersetzung; d) 20 bis 80% Hexaorganodistannan; e) Produkt HSiMe₂-SiMe₂-SiMe₂-Si(H)Me₂; ²⁹Si-NMR: -36,2 ppm; ¹ J_{Si-H} =182 Hz; -44,0 ppm.

2k:	Ansatzgröße: 2,1 g ((2,4 mmol).
	¹¹⁹ Sn-NMR [ppm]:	-49,6 (Ph ₃ SnCl/35%);
		-36,2 (Ph ₂ SnCl ₂ /20%;
		-68,6 (PhSnCl ₃ /10%) un-
		identifizierte Produkte
		bei -108,2; -130,6;
		-146,2; -9852
		$(Ph_2Sn(Cl) - (SiMe_2)_6 -$
		$Sn(Cl)Ph_2/5\%$).
	²⁹ Si-NMR [ppm]:	27,7; -39,9; -41,0 (Cl-
		$(Me_2Si)_6 - Cl/80\%)$
		$-22,6; {}^{1}J_{\text{Si-119/117Sn}} = 390/$
		373 Hz; -36,1;
		${}^{2}J_{\text{Si-119/117Sn}} = 55/53 \text{ Hz};$
		-37,9 (Ph ₂ Sn(Cl)-
		$(SiMe_2)_6 - Sn(Cl)Ph_2/$
		5%).

b) Reaktionen von **2d** mit Trifluormethansulfonsäure/Lithiumchlorid

1,68 g (3 mmol) 2d gelöst in 20 ml Toluol werden bei -20 °C mit 0,9 g (6 mmol) F_3CSO_3H versetzt. Es wird 2 h gerührt und es werden 0,5 g LiCl (Überschuß) zugegeben. Nach Filtration und Entfernen des Lösungsmittels wird der Rückstand mittels NMR-Spektroskopie untersucht.

¹¹⁹Sn-NMR [ppm]: 167,3 (Me₃SnCl/30%); 143,8 (Me₂SnCl₂/40%); unidentifizierte Signale bei 44,8; 78,8; -80,5. 138,2 (Me₂Sn(Cl)-(SiMe₂)₄-Sn(Cl)Me₂/5%). ²⁹Si-NMR [ppm]:

26,3; -43,2 (Cl-(SiMe₂)₄-Cl/>45%); Signale bei 10,1; 12,9; 14,2 für $[-O-\underline{Si}Me_2-$ SiMe₂-]_x; -48,3; -49,2; 50,1 für $[-O-SiMe_2-\underline{Si}Me_2-]_x$ -22,6; ¹ $J_{Si-119/117Sn} = 390/373$ Hz; -36,5; (Me₂Sn(Cl)-(SiMe₂)₄-Sn(Cl)Me₂/5%).

c) Umsetzungen von **1i** mit CHCl₃

2,69 g (3 mmol) **1i** werden bei 0 °C mit 20 ml CHCl₃ zur Reaktion gebracht. NMR-spektroskopische Untersuchung des Rückstandes: ¹¹⁹Sn-NMR: -36,8 ppm für Ph₂SnCl₂

 29 Si-NMR: 27,3; -39,7; -41,2 ppm für Cl-(SiMe₂)₆-Cl

d) Umsetzung von 1a-e mit CHX₃

Lösungsmittel: Chloroform für **5a** bis **5d**; Reaktionstemperatur: 0 °C. 5–10 mmol CHBr₃ in 20 ml THF für **5f** bis **5h**; Temperatur: -20 °C.

Die Ansatzgrößen und Ausbeuten der Verbindungen **5** finden sich in Tab. VII, die spektroskopischen Daten in den Tabellen I–V.

2.4 Kristallstrukturuntersuchungen

Für die Kristallstrukturanalyse geeignete Einkristalle wurden durch Abkühlen gesättigter Lösungen von **2i** in *n*-Hexan/THF bzw. von **1b** in *n*-Hexan auf -20 °C gewonnen.

Tab.	VII.	Ansatzgrößen,	Elementaranalysen	und Eigenschaften	der halogenierten	Stannyloligosilane	5
		0	2	0	e		

Nr.	Verbindung Summenformel, Molmasse ber.	Fp [°C]	Elementaranalyse C ber. (gef.) H ber. (gef.)	Ansatz [mmol]	CHX ₃	Ausbeute g [%]	Reinigung
5a	$Bu_2Sn(Cl) - SiMe_2 - SiMe_2 - Sn(Cl) Bu_2 C_{20}H_{48}Cl_2Si_2Sn_2; 653,06$	64-66	36,78 (36,1) 7,41 (6,9)	3,02	CHCl ₃	1,98 [>98]	keine
5b	$tBu_2Sn(Cl) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - Sn(Cl)tBu_2 C_{22}H_{54}Cl_2Si_3Sn_2; 711,21$	98-102	37,15 (35,9) 7,65 (7,1)	2,58	CHCl ₃	1,75 [>98]	keine
5c	$tBu_2Sn(Cl) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - SiMe_2 - Sn(Cl)tBu_2 C_{24}H_{60}Cl_2Si_4Sn_2$; 769,37	108-110	37,47 (36,2) 7,86 (7,4)	2,72	CHCl ₃	2,05 [99]	keine
5d	$[tBu_2Sn(Cl)-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2$ $C_{28}H_{72}Cl_2Si_6Sn_2; 885,68$	89	37,79 (36,5) 8,19 (7,6)	2,13	CHCl ₃	1,85 [>98]	keine
5e	$Bu_2Sn(Br) - SiMe_2 - SiMe_2 - Sn(Br)tBu_2$ $C_{20}H_{48}Br_2Si_2Sn_2; 741,96$	-	-	3,06	CHBr ₃	1,81 ^{a)} [80]	umkrist. Hexan/Ether
5f	$tBu_2Sn(Br) - Si_aMe_2 - Si_bMe_2 - SiMe_2 - Sn(Br)tBu_2 C_{22}H_{54}Br_2Si_3Sn_2; 800,16$	102-105	32,02 (30,8) 6,80 (7,1)	3,0	CHBr ₃	2,4 ^{a)} [>95]	umkrist. Hexan/Ether
5g	$tBu_2Sn(Br)-Si_aMe_2-Si_bMe_2-SiMe_2-SiMe_2-Sn(Br)tBu_2$ C ₂₄ H ₆₀ Br ₂ Si ₄ Sn ₂ ; 858,27	-	-	3,2	CHBr ₃	2,6 ^{a)} [>95]	keine
5h	$ [tBu_2Sn(Br)-Si_aMe_2-Si_bMe_2-Si_cMe_2-]_2 \\ C_{28}H_{72}Br_2Si_6Sn_2; \ 974,58 $	-	-	2,11	CHBr ₃	1,75 ^{a)} [85]	umkrist. Hexan/Ether

a) Der Umsatz vor der Umkristallisation ist lt. ²⁹Si- und ¹¹⁹Sn-NMR-Spektren quantitativ.

Tab. VIII. Ausgewählte Bindungslängen [pm] und -winkel [°] der Bis(stannyl)oligosilane 1b und 2i.

1b		2i			
Sn(1) - Si(1)	259,4(2)	Sn(1) - Si(1)	257,95(7)		
Si(1)-Si(1a)	233,8(3)	Si(2) - Si(2a)	235,45(13)		
		Si(1) - Si(2)	235,5(1)		
Sn(1) - C(1)	218,8(7)	Sn(1) - C(1)	215,1(2)		
Sn(1) - C(5)	217,8(7)	Sn(1) - C(7)	215,8(2)		
C(5) - Sn(1) - C(1)	115,4(3)	C(7) - Sn(1) - C(1)	106,4(1)		
C(5) - Sn(1) - Si(1)	114,1(2)	C(7) - Sn(1) - Si(1)	106,63(6)		
C(1) - Sn(1) - Si(1)	113,8(2)	C(1) - Sn(1) - Si(1)	113,16(7)		

Kristalldaten von $Ph_3Sn - (SiMe_2)_4 - SnPh_3$ 2i (20 °C):

monoklin, Raumgruppe $P2_1/c$, Z = 4, a = 884,45(1) pm, b = 3243,83(1) pm, c = 799,47(1) pm, $\beta = 92,53^{\circ}, V = 2291,44(4) Å^3, Dx = 1,352 g/cm^3$ (ber.), Siemens SMART CCD Flächendetektor, MoK α -Strahlung, $\theta = 1,26-28,26^\circ$, ω -scans, 14438 gemessene Reflexe, davon 5447 symmetrieunabhängig ($R_{int} = 0.0226$), 4385 Reflexe beobachtet mit I>2 (I), halbempirische Absorptionskorrektur, Strukturlösung mit direkten Methoden, Vollmatrixverfeinerung an F², H-Atomlagen berechnet, 226 Parameter, Rechenprogramme SHELXS-86 (Sheldrick 1990) [19], SHELXL-93 (Sheldrick

1993) [20], $R_{\text{konv}} = 0,0307, wR_2$ (alle Daten) = 0.0629.

Kristalldaten von ${}^{t}Bu_{2}Sn(H) - (SiMe_{2})_{2} -$ Sn(H)^{*t*}Bu₂ 1b (20 °C):

monoklin, Raumgruppe C2/c, Z = 4, a =1377,2(1) pm, b = 1277,6(1) pm, c = 1763,2(1) pm, $\beta = 105,435(1)^{\circ}, V = 2990,50(4) \text{ Å}^3, Dx = 1,297 \text{ g/}$ cm³ (ber.), Nonius Kappa CCD, Mok α -Strahlung, $\theta = 3,07-25,68; \omega$ -scans, 14425 gemessene Reflexe, davon 2829 symmetrieunabhängig ($R_{int} = 0.053$), 1439 Reflexe beobachtet mit I>2 (I), Strukturlösung mit direkten Methoden, Vollmatrixverfeinerung an F², H-Atomlagen an C-Atomen berechnet. Rechenprogramme SHELXS-97 (Sheldrick 1990) [21], SHELXL-97 (Sheldrick 1997) [22], $R_{\text{konv}} = 0.0409, wR_2$ (alle Daten) = 0.0855.

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können in der Cambridge Crystallographic Database unter der Hinterlegungsnummer 101296 und 103043 angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, der Syracuse University (N.Y.), der National Science Foundation der USA und der W. M. Keck Foundation (Syracuse, N.Y.) für die Förderung dieser Arbeit mit Personal- und Sachmitteln. Herrn Prof. Dr. K. Jurkschat sei für die Unterstützung dieser Untersuchungen gedankt.

- [1] C. Kayser, R. Klassen, M. Schürmann, F. Uhlig, J. Organomet. Chem. 556, 165 (1998).
- [2] U. Hermann, I. Prass, F. Uhlig, Phosphorus, Sulfur & Silicon 124 & 125, 425 (1997).
- [3] F. Uhlig, W. Uhlig, Monatsh. Chem. 126, 919 (1995).
- [4] R. Hummeltenberg, K. Jurkschat, F. Uhlig, Phosphorus, Sulfur & Silicon 123, 255 (1997).
- [5] J. J. D'Errico, K. G. Sharp, Inorg. Chem. 28, 2886 (1989).
- [6] G. Roewer, U. Pätzold, U. Herzog, J. Organomet. Chem. 508, 147 (1996).
- [7] G. Roewer, E. Hengge, F. Uhlig, U. Pätzold, C. Grogger, U. Herzog, Monatsh. Chem. 126, 549 (1995).
- F. Uhlig et al., Publikation in Vorbereitung.
- [9] T. A. Blinka, B. J. Helmer, R. West, Adv. Organomet. Chem. 23, 193 (1984).
- [10] E. Hengge, F. Schrank, J. Organomet. Chem. 362, 11 (1989).
- [11] O. W. Sorensen, R. Freemann, T. A. Frenkiel, T. H. Mareci, R. Schuck, J. Magn. Reson. 46, 180 (1982).

- [12] E. Hengge, M. Eibl, Organometallics 10, 3185 (1991).
- [13] W. Bunge in Houben/Weyl "Methoden der organischen Chemie", Bd. 1/2, G. Thieme Verlag, Stuttgart (1959).
- [14] H. Gilman, S. Inoue, J. Org. Chem. 29, 3418 (1964).
- [15] A. E. Newkirk, J. Am. Chem. Soc. 67, 1768 (1945).
- [16] E. Hengge, F. Schrank, J. Organomet. Chem. 299, 1 (1986).
- [17] J.-P. Quintard, M. Pereyre, in Reviews on Silicon, Germanium, Tin and Lead Compounds (M. Gielen Herausg.) IV/3, 151 (1980).
- [18] M.-F. Connil, P. Jousseaume, M. Pereye, Organomet. 15, 4469 (1996).
- [19] G. M. Sheldrick, SHELXTL-Plus, Universität Göttingen (1992).
- [20] G. M. Sheldrick, SHELXL-93, Universität Göttingen (1993).
- [21] G. M. Sheldrick, Acta Crystallogr. A46, 467 (1990).
- [22] G. M. Sheldrick, SHELXL-97, Universität Göttingen (1997).