SynthesisandNematicidalActivitiesof1,2,3-Benzotriazin-4-oneDerivativesagainstMeloidogyneincognita

Gaolei Wang,[§] Xiulei Chen,[§] Yayun Deng,[§] Zhong Li,^{§,#} and Xiaoyong Xu^{*,§,#}

[§]Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China [#]Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130

Meilong Road, Shanghai 200237, China

*Corresponding author:

Tel: +86-21-64252945; Fax: +86-21-64252603

E-mail: <u>xyxu@ecust.edu.cn</u> (X. Xu)

1	ABSTRACT: A series of novel 1,2,3-benzotriazin-4-one derivatives were
2	synthesized by the reaction of 3-bromoalkyl-1,2,3-benzotriazin-4-ones with
3	potassium salt of 2-cyanoimino-4-oxothiazolidine in the presence of potassium
4	iodide. Nematicidal assays in vivo showed that some of them exhibited good control
5	efficacy against the cucumber root-knot nematode disease caused by Meloidogyne
6	incognita, up to 100% at the concentration of 10.0 mg L ⁻¹ , which indicated that
7	1,2,3-benzotriazin-4-one derivatives might be potential for novel
8	promising nematicides. The nematicidal activity was influenced by the combination
9	of substituent type, substituted position and linker length in the molecule. The
10	inhibition rate data at the concentrations of 5.0 and 1.0 mg L^{-1} for the compounds
11	with high inhibitory activities were also provided. When tested in vitro, none of
12	them showed direct inhibition against M. incognita. The investigation of significant
13	difference between <i>in vivo</i> and <i>in vitro</i> data is in progress.
14	KEYWORDS: 1,2,3-benzotriazin-4-one, 2-cyanoiminothiazolidin-4-one,

15 nematicide, Meloidogyne incognita, in vivo

16 **INTRODUCTION**

17	Plant-parasitic nematodes cause an annual loss of \$157 billion to world crops. ¹
18	Root-knot nematodes (Meloidogyne spp.) are one of the most severe plant-damaging
19	parasitic nematodes, attacking over 3000 plant species throughout the world. ^{2,3} Four
20	major species among them, namely M. incognita, M. javanica, M. arenaria, and M.
21	<i>hapla</i> , are responsible for approximately 95% of all damages caused by RKN. ⁴ M .
22	<i>incognita</i> , as one of the most important plant-parasitic species, ⁵ cause the formation
23	of large galls or 'knots' in roots of infected plants, and sequential physiological plant
24	disorders. ⁶

25 For decades, chemical nematicides have played a prominent role in the management of nematodes,⁷ which are efficacious, easy to apply and rapid-onset.⁸ 26 27 Dibromochloropropane (DBCP), known as an effective organochlorine nematicide, 28 has been banned since 1979 because of its mutagenicity, carcinogenicity and reproductive effects on human.⁹ Methyl bromide has been used widely as a fumigant 29 nematicide before it is restricted owing to its detrimental effects on ozonosphere.¹⁰ 30 31 Albeit with a long and controversial history in terms of environmental 32 contamination and adverse impacts on human health, the development of chemical 33 nematicides have never stopped. To date, a few commercial organophosphorous and 34 carbamate nematicides are mainly applied for the control of root-knot nematodes, such as ethoprophos, fosthiazate, and oxamyl,¹¹ and their repeated application has 35 given rise to the resistance development in the target pathogens.¹² The macrocyclic 36

37	lactone avermectin is commonly utilized as seed treatment nematicide because of its
38	low water solubility and light unstability. ^{13,14} Recently, the newly developed
39	trifluorobutenesulfanyl nematicide fluensulfone has been released to the market,
40	which exhibits high nematicidal activity against root-knot nematodes and a different
41	mode of action compared to conventional nematicides (Figure 1, compound 1). ¹⁵⁻¹⁷
42	Tioxazafen, a new class of 1,2,4-oxadiazole nematicide with excellent
43	broad-spectrum activity, is still undergoing worldwide development (Figure 1,
44	compound 2). ¹⁸ And some other nitrogen-containing heterocyclic compounds having
45	certain nematicidal potential are also reported (Figure 1, compounds 3-7). ¹⁹⁻²³
46	Besides, botanical nematicides based on plant secondary metabolites have gained
47	much scientific interest throughout the world. The majority of them are natural
48	product extracts or their simple derivatives, ^{5,6,24,25} and none has proven to be very
49	effective and used in the field. With the growing awareness of the adverse impact on
50	environment and human health, ^{5,6,17} organophosphorous and carbamate nematicides
51	will not adapt to the sustainable development of modern agriculture any more, and
52	the number of nematicidal agents available to effectively control nematodes will
53	become more limited. Therefore, the search for novel chemotypes of nematicides,
54	which are safer, environmentally friendly, and nematode-specific, has become
55	increasingly urgent. ²⁶

56 Triazinone, as a heterocyclic skeleton associated with a wide range of pesticide 57 activities (Figure 2, compounds **8–12**),²⁷⁻³¹ has attracted much attention. Metribuzin

4

58	is well-known as a widely used triazinone herbicide (Figure 2, compound 8). ²⁷
59	Compounds 9 and 10 exhibited plant-growth regulatory and insecticidal activities,
60	respectively. ^{28,29} The 1,2,3-benzotriazin-4-one derivative 11 was first reported to
61	have nematicidal activity against Anguillula nematodes in 1960, ³⁰ and compound 12
62	had certain nematicidal activity against Caenorhabditis elegans. ³¹ However, little
63	work has been done on nematicidal 1,2,3-benzotriazin-4-one derivatives against
64	plant-parasitic nematodes.
65	During the design of 1,2,3-benzotriazin-4-one derivatives, we found that
66	thiazolidin-4-one compounds exhibited good inhibitory activities against M .
67	$incognita^{20}$ and the neonicotinoid derivative 3 had significant nematicidal activity
68	against <i>M. incognita</i> at the concentration of 20.0 mg L^{-1} . ¹⁹ Hence, we attempted to
69	introduce 2-cyanoiminothiazolidin-4-one moieties into the 1,2,3-benzotriazin-4-one
70	structure, while the active fragment of compound 3 was also considered, aiming to
71	obtain more active compounds against <i>M. incognita</i> (Figure 3).
72	In the present study, we reported for the first time 1,2,3-benzotriazin-4-one
73	derivatives containing 2-cyanoiminothiazolidin-4-one moieties and their in vivo and

in vitro biological activities against *M. incognita*. We also discussed the relationship
between structure and nematicidal activity preliminarily and tried to illuminate the
mechanism of our compounds against nematodes.

77 MATERIALS AND METHODS

78 Chemicals. Anthranilic acids (I-1–13) and triphosgene were purchased from

79	Shanghai Darui Fine Chemicals Co., Ltd. Ammonium carbonate, sodium nitrite,
80	hydrochloric acid, potassium hydroxide, potassium carbonate, anhydrous sodium
81	sulfate and all solvents were purchased from Shanghai Lingfeng Chemical Reagent
82	Co., Ltd. N-cyanodithiocarbonimidate, 1,2-dibromoethane, 1,3-dibromopropane,
83	1,4-dibromobutane, 1,5-dibromopentane, 1,6-dibromohexane and potassium iodide
84	were purchased from Shanghai Aladdin Chemistry Co., Ltd. All reagents and
85	solvents were of reagent grade without further purification.
86	Instrumental Analysis. Analytical thin-layer chromatography (TLC) was
87	performed on precoated glass plates (silica gel 60 F_{254}), visualizing the spots by a
88	UV lamp (254 nm). All melting points were determined on a Büchi Melting Point
89	B540 apparatus (Büchi Labortechnik AG, Flawil, Switzerland) and are uncorrected.
90	¹ H, ¹³ C, and ¹⁹ F NMR spectra were recorded in DMSO- d_6 on a Bruker AM-400 (400
91	MHz) spectrometer at ambient temperature. Chemical shifts are reported in δ (parts
92	per million) values with tetramethylsilane (TMS) as the internal standard. Coupling
93	constants (J) are reported in hertz. High-resolution mass spectra (HR-MS) were
94	recorded under electro-spray ionization condition on a Waters Micromass LC-TOF
95	spectrometer.

General Procedures. Synthesis of Isatoic Anhydrides³² (II-1–13). A mixture of
anthranilic acid (I-1–13, 40 mmol) and tetrahydrofuran (THF, 100 mL) was stirred
at -10 °C for 30 min. Then a solution of triphosgene (BTC, 40 mmol) in THF (20
mL) was added dropwise to the above mixture. After that, the mixture was stirred for

6

100	1 h at -10 °C – -5 °C, followed by 18 h at room temperature. The solvent was
101	removed under reduced pressure, and anhydrous ether (150 mL) was added to the
102	obtained residue with vigorous stirring. The precipitate was collected by filtration,
103	washed with anhydrous ether, and dried to afford II-1–13 in yields of 85–95%.
104	Synthesis of Anthranilamides ³³ (III-1-13). A suspension of isatoic anhydride
105	(II-1-13, 35 mmol), ammonium carbonate (140 mmol) and 1,4-dioxane (150 mL)
106	was heated at 60 °C. After stirring for 5-8 h, the reaction mixture was cooled to
107	room temperature, evaporated under reduced pressure, and then water (200 mL) was
108	added to the residue, which was extracted with EtOAc (80 mL \times 3). The organic
109	layer was washed with brine (80 mL), dried over anhydrous Na_2SO_4 , and
110	concentrated to give III-1–13 in yields of above 73–94%.
110 111	concentrated to give III-1–13 in yields of above 73–94%. Synthesis of 1,2,3-Benzotriazin-4-ones ³⁴ (IV-1–13). A solution of sodium nitrite
110 111 112	concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i> ³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then
 110 111 112 113 	concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i> ³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then anthranilamide (III-1–13, 30 mmol) dissolved in <i>N</i> , <i>N</i> -dimethylformamide (DMF,
 110 111 112 113 114 	 concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i>³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then anthranilamide (III-1–13, 30 mmol) dissolved in <i>N</i>, <i>N</i>-dimethylformamide (DMF, 15 mL) was added dropwise to the above solution for 40 min. After another 1 h of
 110 111 112 113 114 115 	 concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i>³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then anthranilamide (III-1–13, 30 mmol) dissolved in <i>N</i>, <i>N</i>-dimethylformamide (DMF, 15 mL) was added dropwise to the above solution for 40 min. After another 1 h of stirring at 0 °C, 30% aqueous ammonia was added slowly to adjust the pH to 10.0.
 110 111 112 113 114 115 116 	concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i> ³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then anthranilamide (III-1–13, 30 mmol) dissolved in <i>N</i> , <i>N</i> -dimethylformamide (DMF, 15 mL) was added dropwise to the above solution for 40 min. After another 1 h of stirring at 0 °C, 30% aqueous ammonia was added slowly to adjust the pH to 10.0. The reaction mixture was allowed to stir vigorously for 15 min, and then reacidified
 110 111 112 113 114 115 116 117 	concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i> ³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then anthranilamide (III-1–13 , 30 mmol) dissolved in <i>N</i> , <i>N</i> -dimethylformamide (DMF, 15 mL) was added dropwise to the above solution for 40 min. After another 1 h of stirring at 0 °C, 30% aqueous ammonia was added slowly to adjust the pH to 10.0. The reaction mixture was allowed to stir vigorously for 15 min, and then reacidified to pH 2.0. After stirring for 30 min, the precipitated product was filtered off with
 110 111 112 113 114 115 116 117 118 	concentrated to give III-1–13 in yields of above 73–94%. <i>Synthesis of 1,2,3-Benzotriazin-4-ones</i> ³⁴ (<i>IV-1–13</i>). A solution of sodium nitrite (4.14 g, 60 mmol) in 0.5 N HCl (240 mL) was stirred at 0 °C for 20 min. Then anthranilamide (III-1–13, 30 mmol) dissolved in <i>N</i> , <i>N</i> -dimethylformamide (DMF, 15 mL) was added dropwise to the above solution for 40 min. After another 1 h of stirring at 0 °C, 30% aqueous ammonia was added slowly to adjust the pH to 10.0. The reaction mixture was allowed to stir vigorously for 15 min, and then reacidified to pH 2.0. After stirring for 30 min, the precipitated product was filtered off with suction, washed with water (200 mL) and dried to afford IV-1–13 in yields of above

120 Synthesis of Potassium Salt of 2-Cyanoimino-4-oxothiazolidine.³⁵ A stirring

121	mixture of dimethyl N-cyanodithiocarbonimidate (11.68 g, 80 mmol), ammonium
122	carbonate (4.22 g, 44 mmol) and EtOH (120 mL) was heated at 60 °C for 3 h. To this,
123	methyl thioglycolate (7.15 mL, 80 mmol) and 50% KOH (aq, 8.96 g, 80 mmol) were
124	added separately in one portion. The reaction mixture was heated to reflux for 5 h,
125	and then cooled to room temperature. The precipitate was collected by filtration,
126	washed with cold EtOH, and dried to give the desirable potassium salt as a light
127	yellow solid, yield 73%.
128	Synthesis of 3-Bromoalkyl-1,2,3-benzotriazin-4-ones ³⁶ (V-1–23). A stirring
129	suspension of 1,2,3-benzotriazin-4-one (IV-1-13, 6 mmol), dibromoalkane (30
130	mmol), potassium carbonate (1.66 g, 12 mmol) and acetone (50 mL) was refluxed
131	for 5-8 h, and then cooled to room temperature. The reaction mixture was
132	evaporated under reduced pressure, and water (100 mL) was added to the residue,

which was extracted with CH_2Cl_2 (50 mL × 2). The organic layer was dried over anhydrous Na₂SO₄, concentrated and purified with flash chromatography on silica gel, eluting with petroleum ether (60–90 °C)/EtOAc to afford V-1–23 in yields of 46–62%.

General Synthetic Procedure for Title Compounds (VI-1–23). To a mixture of V (2 mmol), potassium iodide (0.332 g, 2 mmol) and DMF (10 mL), potassium salt of 2-cyanoimino-4-oxothiazolidine (0.358 g, 2 mmol) was added, and then the mixture was stirred at 100 °C. The reaction process was monitored by TLC. After the complete consumption of V, the reaction was cooled to room temperature. The

142	solvent was removed under reduced pressure, and water (50 mL) was added to the
143	residue, which was extracted with CH_2Cl_2 (30 mL \times 2). The organic layer was dried
144	over anhydrous Na ₂ SO ₄ , concentrated and purified with flash chromatography on
145	silica gel, eluting with petroleum ether (60-90 °C)/EtOAc to afford VI-1-23. The
146	data of VI-1-10 are shown as follows, whereas data of VI-11-23 are deposited in
147	Supporting Information.
148	N-(4-Oxo-3-(3-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)thiazolidin-2-yliden
149	e)cyanamide (VI-1): yield, 41%; mp 156.9-157.6 °C; ¹ H NMR (400 MHz,
150	DMSO- d_6) δ 8.26 (d, J = 7.6 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.10 (t, J = 7.6 Hz,
151	1H), 7.94 (t, <i>J</i> = 7.6 Hz, 1H), 4.41 (t, <i>J</i> = 7.2 Hz, 2H), 4.30 (s, 2H), 3.74 (t, <i>J</i> = 7.2
152	Hz, 2H), 2.21–2.09 (m, 2H); ¹³ C NMR (100 MHz, DMSO- d_6) δ 179.6, 173.0, 155.3,
153	144.1, 135.9, 133.4, 128.5, 125.0, 119.7, 114.1, 47.1, 40.8, 36.1, 26.1. HRMS (ES+)
154	calcd for $C_{14}H_{13}N_4O_2S (M + H)^+$, 329.0821, found, 329.0823.
155	N-(3-(3-(7-Chloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidin
156	-2-ylidene)cyanamide (VI-2): yield, 52%; mp 163.4–164.2 °C; ¹ H NMR (400 MHz,
157	DMSO- d_6) δ 8.35 (d, J = 2.0 Hz, 1H), 8.25 (dd, J_1 = 8.4 Hz, J_2 = 2.0 Hz, 1H), 7.97
158	(dd, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 4.40 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 4.29 (s, 2H), 3.74 (t, $J = 7.2$ Hz, 3H), 3H, 3H),
159	7.2 Hz, 2H), 2.20–2.09 (m, 2H); 13 C NMR (100 MHz, DMSO- d_6) δ 179.6, 172.9,
160	154.8, 144.9, 140.3, 133.6, 127.7, 127.3, 118.6, 114.0, 47.3, 40.8, 36.1, 26.0. HRMS
161	(ES+) calcd for $C_{14}H_{11}N_6O_2NaS^{35}Cl (M + Na)^+$, 385.0250, found, 385.0258; calcd
162	for $C_{14}H_{11}N_6O_2NaS^{37}Cl (M + Na)^+$, 387.0221, found, 387.0232.

163	N-(3-(8-Bromo-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidin
164	-2-ylidene)cyanamide (VI-3): yield, 35%; mp 159.7–160.6 °C; ¹ H NMR (400 MHz,
165	DMSO- d_6) δ 8.38 (d, J = 7.6 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 7.82 (t, J = 7.6 Hz,
166	1H), 4.41 (t, J = 6.8 Hz, 2H), 4.30 (s, 2H), 3.75 (t, J = 6.8 Hz, 2H), 2.26–2.07 (m,
167	2H); ¹³ C NMR (100 MHz, DMSO- d_6) δ 179.6, 173.0, 154.5, 141.4, 139.4, 134.2,
168	124.9, 122.9, 121.8, 114.1, 47.5, 40.8, 36.1, 26.0. HRMS (ES+) calcd for
169	$C_{14}H_{12}N_6O_2S^{79}Br(M + H)^+$, 406.9926, found, 406.9927; calcd for $C_{14}H_{12}N_6O_2S^{81}Br$
170	$(M + H)^+$, 408.9905, found, 408.9908.
171	N-(3-(3-(7-Fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidinal statement of the stateme
172	-2-ylidene)cyanamide (VI-4): yield, 32%; mp 171.1-171.6°C; ¹ H NMR (400 MHz,
173	DMSO- d_6) δ 8.34 (dd, J_1 = 8.8 Hz, J_2 = 6.0 Hz, 1H), 8.09 (dd, J_1 = 9.2 Hz, J_2 = 2.4
174	Hz, 1H), 7.82 (td, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 1H), 4.41 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H),
175	3.74 (t, $J = 7.2$ Hz, 2H), 2.23–2.07 (m, 2H); ¹⁹ F NMR (376 MHz, DMSO- d_6) δ
176	-101.8 (td, J_1 = 9.0 Hz, J_2 = 5.6 Hz). HRMS (ES–) calcd for C ₁₄ H ₁₀ N ₆ O ₂ FS (M –
177	H) ⁻ , 345.0570, found, 345.0570.
178	N-(3-(6-(Trifluoromethyl)-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxot

- 179 hiazolidin-2-ylidene)cyanamide (VI-5): yield, 31%; mp 174.6–175.4 °C; ¹H NMR
- 180 (400 MHz, DMSO- d_6) δ 8.50 (s, 1H), 8.46–8.38 (m, 2H), 4.44 (t, J = 7.2 Hz, 2H),
- 181 4.30 (s, 2H), 3.75 (t, J = 7.2 Hz, 2H), 2.23–2.11 (m, 2H); ¹⁹F NMR (376 MHz,
- 182 DMSO- d_6) δ -61.5 (s). HRMS (ES+) calcd for C₁₅H₁₁N₆O₂F₃NaS (M + Na)⁺,
- 183 419.0514, found, 419.0519.

184

N-(3-(3-(8-Methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidin

185	-2-ylidene)cyanamide (VI-6): yield, 34%; mp 166.5–167.3 °C; ¹ H NMR (400 MHz,
186	DMSO- d_6) δ 8.07 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 7.2 Hz, 1H), 7.80 (t, J = 7.6 Hz,
187	1H), 4.41 (t, J = 7.2 Hz, 2H), 4.29 (s, 2H), 3.73 (t, J = 7.2 Hz, 2H), 2.77 (s, 3H),
188	2.23–2.09 (m, 2H); ¹³ C NMR (100 MHz, DMSO- d_6) δ 179.6, 172.9, 155.4, 142.4,
189	137.7, 136.5, 133.1, 122.6, 119.8, 114.0, 47.1, 40.9, 36.1, 26.1, 17.1. HRMS (ES+)
190	calcd for $C_{15}H_{15}N_6O_2S (M + H)^+$, 343.0977, found, 343.0979.
191	N-(3-(3-(8-Methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidi
192	<i>n-2-ylidene)cyanamide (VI-7)</i> : yield, 40%; mp 190.0–190.9 °C; ¹ H NMR (400 MHz,
193	DMSO- d_6) δ 7.86 (t, J = 8.0 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 8.0 Hz,
194	1H), 4.39 (t, $J = 7.2$ Hz, 2H), 4.29 (s, 2H), 4.04 (s, 3H), 3.72 (t, $J = 7.2$ Hz, 2H),
195	2.22–2.04 (m, 2H); ¹³ C NMR (100 MHz, DMSO- d_6) δ 179.6, 172.9, 155.9, 155.1,
196	134.5, 134.4, 120.8, 116.8, 115.5, 114.1, 57.0, 47.1, 40.8, 36.1, 26.1. HRMS (ES-)
197	calcd for $C_{15}H_{13}N_6O_3S (M - H)^-$, 357.0770, found, 357.0769.
198	N-(3-(3-(5-Bromo-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidin
199	-2-ylidene)cyanamide (VI-8): yield, 39%; mp 201.5–202.5 °C; ¹ H NMR (400 MHz,
200	DMSO- d_6) δ 8.18 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 7.2 Hz, 1H), 7.91 (t, J = 8.0 Hz,
201	1H), 4.35 (t, J = 7.2 Hz, 2H), 4.31 (s, 2H), 3.75 (t, J = 7.2 Hz, 2H), 2.22–2.07 (m,
202	2H); ¹³ C NMR (100 MHz, DMSO- d_6) δ 179.6, 173.0, 153.5, 145.7, 138.7, 136.1,
203	128.7, 119.2, 118.1, 114.1, 47.6, 40.9, 36.1, 25.9. HRMS (ES-) calcd for
204	$C_{14}H_{10}N_6O_2S^{79}Br (M - H)^-$, 404.9769, found, 404.9773; calcd for $C_{14}H_{10}N_6O_2S^{81}Br$

205 $(M - H)^{-}$, 406.9749, found, 406.9753.

206	N-(3-(3-	(6-Nitro-4-ox	obenzo[d][1.	2,3]triazin-3	(4H)-vl)prop	vl)-4-oxothiazolidin-2
				, , , , , , , , , , , , , , , , , , , ,	\ ' / J '/F 'F.	

- 207 -ylidene)cyanamide (VI-9): yield, 46%; mp 186.0–187.8 °C; ¹H NMR (400 MHz,
- 208 DMSO- d_6) δ 8.86 (d, J = 2.4 Hz, 1H), 8.78 (dd, J_1 = 8.8 Hz, J_2 = 2.0 Hz, 1H), 8.47

209 (d,
$$J = 9.2$$
 Hz, 1H), 4.45 (t, $J = 6.8$ Hz, 2H), 4.30 (s, 2H), 3.76 (t, $J = 6.8$ Hz, 2H),

210 2.27–2.12 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.7, 173.0, 154.6, 149.2,

- 211 146.4, 130.8, 129.8, 121.0, 120.6, 114.1, 47.7, 40.8, 36.1, 26.0. HRMS (ES-) calcd
- 212 for $C_{14}H_{10}N_7O_4S$ (M H)⁻, 372.0515, found, 372.0519.
- 213 N-(3-(3-(7-Bromo-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propyl)-4-oxothiazolidin
- 214 *-2-ylidene)cyanamide (VI-10)*: yield, 41%; mp 180.9–181.0 °C; ¹H NMR (400 MHz,
- 215 DMSO- d_6) δ 8.49 (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.10 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.6$
- 216 Hz, 1H), 4.40 (t, J = 7.2 Hz, 2H), 4.29 (s, 2H), 3.73 (t, J = 7.2 Hz, 2H), 2.20–2.08
- 217 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 179.6, 173.0, 154.9, 144.9, 136.3, 130.7,
- 218 129.2, 127.3, 118.9, 114.1, 47.3, 40.8, 36.1, 26.0. HRMS (ES-) calcd for
- 219 $C_{14}H_{10}N_6O_2S^{79}Br (M H)^-$, 404.9769, found, 404.9780; calcd for $C_{14}H_{10}N_6O_2S^{81}Br$
- 220 $(M H)^{-}$, 406.9749, found, 406.9760.
- Assay of Nematicidal Activity. The second-stage juveniles (J2) of *M. incognita*used in all tests were cultured by Huzhou Modern Agricultural Biotechnology
 Innovation Center, Chinese Academy of Sciences, China.
- *In vivo.* All compounds (VI-1–23) were dissolved with DMF and diluted with
- distilled water to obtain series concentrations of 40.0, 25.0, 10.0, 5.0, and 1.0 mg L^{-1}

226	for bioassays. The final concentration of DMF in each treatment never exceeded 1%
227	v/v. The one-week age cucumber seedlings were replanted in sterilized sand in test
228	tubes (one seedling per test tube, tube size: 20 \times 250 mm), and the roots of each
229	seedling were treated with 3 mL of test solution. Then approximately 2000 living J2
230	nematodes were inoculated into the rhizosphere sand of each host plant. Fenamiphos
231	and avermectin (B1) at concentrations of 5.0 and 1.0 mg $L^{\text{-}1}$ served as positive
232	control, and the negative control group was prepared in the same way but lacked the
233	tested compound. Distilled water without nematodes served as blank control. Each
234	treatment was replicated four times and the experiment was repeated three times. All
235	the above test tubes were incubated at 20-25 °C for 20 days, with 10 h in the
236	daylight and 14 h in the dark per day. The number of root knots in each test tube was
237	counted and recorded a score. The inhibition rate on J2 of M. incognita was
238	calculated by comparison with the negative control group:
239	Inhibition rate (%) = [(score of negative control – score of treatment) / (score of
240	negative control)] \times 100.
241	Scoring criteria:
242	0: 0-5 knots; 5: 6-10 knots; 10: 11-20 knots; 20: more than 20 knots.
243	In vitro. Pure compounds (VI-1-23) were dissolved in DMF and diluted with
244	distilled water to obtain stock solutions of double the treatment concentration. Then
245	2 mL of J2 aqueous suspension containing approximately 200 living nematodes was

added onto a 6 cm diameter Petri dish, and treated with 2 mL of the above solution,

247	providing series concentrations of 50.0, 25.0, 10.0, 5.0 and 1.0 mg L^{-1} in the
248	meanwhile. The final concentration of DMF in each treatment never exceeded 1%
249	v/v. Avermectin (B1) at the above same treatment concentrations served as positive
250	control, and the negative control group was prepared in the same way but lacked the
251	tested compound. Distilled water served as blank control. All the above test dishes
252	were covered with the laboratory parafilm to avoid the possible evaporation or
253	pollution. Each treatment was incubated at 25 °C for 24 hours and had three
254	repetitions. Nematodes in each test dish were collected after washing in sterile water
255	through a 500-mesh sieve, and finally the activities of tested compounds were
256	monitored under a microscope by recording the death rates of tested nematodes.
257	Nematodes that did not move when prodded with a needle were considered to be
258	dead. The LC_{50} values of tested compounds were calculated using the probit method.

259 **RESULTS AND DISCUSSION**

260 Synthesis. Starting from anthranilic acids (I-1–13), the desired isatoic anhydrides (II-1–13) were readily prepared via the annulation reaction with BTC.³² As shown in 261 262 Figure 4, various substituents at nearly every position of the benzene ring were well 263 tolerated except 5-NO₂ and 8-NO₂. 5-NO₂ or 8-NO₂ isatoic anhydride could not be 264 obtained from the corresponding anthranilic acid due to the possible formation of 265 intramolecular hydrogen bond between NO₂ and adjacent carboxyl or amino. Subsequently, II-1-13 reacted with ammonium to afford anthranilamides³³ (III-1-266 267 13). Notably, ammonium carbonate was utilized here as ammonium source, which

268	made synthetic manipulation relatively easier. 1,2,3-Benzotriazin-4-ones (IV-1							
269	were synthesized from III-1-13 through the combination of diazotization							
270	nucleophilic addition and cyclization in one pot. ³⁴							

271 The synthesis of 3-bromoalkyl-1,2,3-benzotriazin-4-ones (V-1-13) was carried 272 out through N-alkylation of IV-1-13 at 3-position, using dibromoalkane as alkylation agent³⁶ (Figure 6). To minimize the 'bis-' product, 5 equiv. of 273 274 dibromoalkane was necessary, owing to the existing two reaction sites of 275 dibromoalkane. Potassium salt of 2-cyanoimino-4-oxothiazolidine was prepared following the procedure reported in the literature³⁵ (Figure 5). The potassium salt of 276 277 2-cyanoimino-4-oxothiazolidine has higher nucleophilic activity than 278 2-cyanoimino-4-oxothiazolidine, which promoted the nucleophilic substitution. 279 Then the title compounds (VI-1-23) were synthesized by the reaction of 280 3-bromoalkyl-1,2,3-benzotriazin-4-ones salt of with potassium 281 2-cyanoimino-4-oxothiazolidine in the presence of potassium iodide (Figure 6). The structures of the title compounds were well characterized by ¹H NMR, ¹³C NMR and 282 283 HR-MS (ESI).

Nematicidal Activity. As shown in Table 1, the *in vivo* nematicidal activities of title compounds (VI-1–23) against *M. incognita* were initially evaluated at the concentration of 40.0 mg L⁻¹. Some compounds such as VI-1, VI-3, VI-6 and VI-7 showed high nematicidal activities with inhibition rates of 100%, whereas others were severely toxic to plants with a symptom of root rot. To minimize the

289	phytotoxicity of test compounds, a lower treatment concentration was tried. When
290	treated at the concentration of 25.0 mg L ⁻¹ , the phytotoxicity was significantly
291	improved and quite a few compounds exhibited moderate to high nematicidal
292	activities. Among them, compounds VI-2, VI-5, VI-8, VI-14, VI-20, and VI-23
293	were 100% inhibitory against <i>M. incognita</i> . When the treatment concentration was
294	reduced further to 10.0 mg L ⁻¹ , all compounds were nematicidal without
295	phytotoxicity, and compounds VI-2, VI-9, VI-14, VI-20, and VI-23 still keep 100%
296	inhibitory activities.
297	On the basis of the <i>in vivo</i> data at 10.0 mg L ⁻¹ in Table 1, it was found that
298	compounds VI-2 (7-Cl, n=1), VI-9 (6-NO ₂ , n=1), VI-14 (7-Cl, n=0), VI-20 (7-NO ₂ ,
299	n=4), and VI-23 (7-OCH ₃ , n=4) still exhibited 100% inhibitory rates. But we did not
300	observe the obvious trend with electron withdrawing or donating substituents. When
301	Cl, NO ₂ , OCH ₃ were located at 7-position (VI-2, VI-14, VI-19, VI-20, and VI-23)
302	and CF_3 , NO_2 at 6-position (VI-5, VI-9), or Br at 5-position (VI-8) on the
303	1,2,3-benzotriazin-4-one ring, compounds with proper linkers displayed >90%
304	inhibitory activities. It indicated that high inhibitory activity seemed not to depend
305	upon the type of substituents on the 1,2,3-benzotriazin-4-one ring. When the linker
306	was fixed as a three-carbon chain, the activity of compound VI-2 (7-Cl) was the
307	highest among the compounds (VI-1–13) considering that compound VI-9 ($6-NO_2$)
308	had the phytotoxicity at 25.0 mg L ⁻¹ . Moreover, for other compounds with a
309	three-carbon chain, it showed that compound VI-8 (5-Br) had higher activity than

310	compounds VI-3 (8-Br) and VI-10 (7-Br), and compounds VI-6 (8-CH ₃), VI-7
311	$(8-OCH_3)$ and VI-9 $(6-NO_2)$ were more active than compounds VI-11 $(6-CH_3)$,
312	VI-13 (7-OCH ₃) and VI-12 (7-NO ₂), respectively. Thus it seemed that the inhibitory
313	activity was affected by the co-effect of substituent type and substituted position on
314	the premise that the length of flexible linker was fixed.
315	Furthermore, when the NO ₂ or OCH ₃ group was fixed at 7-position, the effect of
316	linker length on inhibitory activity was investigated. It was observed that the
317	activities of compounds did not present a certain regularity with the increasing of
318	linker length, except compound VI-13. But for Cl at the same substituted position,
319	the activities did not present a certain regularity with the increasing of linker length.
320	Thus, it also suggested that inhibitory activities indeed had no positive correlation
321	with linker length. From the results above, it can be concluded preliminarily that the
322	inhibitory activity of our synthesized compounds was influenced by the combination
323	of substituent type, substituted position and linker length, not relying on only one
324	factor. It is different from the results reported by Che et al and Li et al. ^{37,38} Che et al
325	reported that a shorter chain length of R^3 and electron deficiency of the indolyl ring
326	were favorable to nematicidal activity, ³⁷ while Li <i>et al</i> reported that electron richness

327 of the benzyl ring was favorable to nematicidal activity.³⁸

To determine the strength of activity of title compounds, the nematicidal evaluation of the compounds with >90% inhibitory activities at 10.0 mg L⁻¹ such as VI-2, VI-5, VI-8, VI-9, VI-14, VI-19, VI-20 and VI-23 was continued at lower

17

concentrations of 5.0 and 1.0 mg L^{-1} , but it was found that the inhibitory activities 331 332 decreased very quickly with the decreasing of the treatment concentration. All of the 333 inhibitory rates were less than 41% at these two concentrations. The reason why the 334 inhibitory rates decreased so quickly still needs to be investigated further. 335 In addition, the *in vitro* nematicidal evaluation of compounds VI-1–23 against M. 336 *incognita* was conducted. As positive control, avermeetin had the LC₅₀ of 1.0 ± 0.1 337 mg L^{-1} . Unexpectedly, all synthesized compounds showed only <5% corrected 338 mortalities at 50.0 mg L^{-1} (not listed here), which indicated that these compounds 339 had no direct inhibition against *M. incognita*. The significant difference between *in* 340 vivo and in vitro data attracted our attention. One possible reason is that these 341 compounds could not kill the nematodes directly like some nervous toxicants such as avermectin but affect the movement and host finding of nematodes,^{39,40} or they 342 343 could change the plant's rhizosphere microbiology strengthening antagonism against nematodes,⁴¹ somewhat like the DiTera nematicide. Further research is still needed 344 345 to verify the possible mechanism.

In conclusion, a series of novel 1,2,3-benzotriazin-4-one derivatives bearing 2-cyanothiazolidin-4-one were synthesized, and both *in vivo* and *in vitro* nematicidal activities against *M. incognita* were evaluated. Despite no direct inhibition *in vitro*, some of them exhibited good *in vivo* inhibitory activities at 10.0 mg L⁻¹, which implied that 1,2,3-benzotriazin-4-one is a potential active structure worth to study further.

352 ACKNOWLEGEMENT

353	This work was financial supported by National Natural Science Foundation of China
354	(21272071), National High Technology Research and Development Program of
355	China (863 Program, 2011AA10A207, 2013AA065202). This work was also partly
356	supported by Special Fund for Agro-scientific Research in the Public Interest
357	(201103007) and the Fundamental Research Funds for the Central Universities.
358	

359 **REFERENCES**

- 360 (1) Abad, P.; Gouzy, J.; Aury, J. M.; Castagnone-Sereno, P.; Danchin, E. G.;
- 361 Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V. C.
- 362 Genome sequence of the metazoan plant-parasitic nematode *Meloidogyne incognita*.
- 363 Nat. Biotechnol. 2008, 26, 909–915.
- 364 (2) Abad, P.; Favery, B.; Rosso, M. N.; Castagnone-Sereno, P. Root-knot
- 365 nematode parasitism and host response: molecular basis of a sophisticated
- 366 interaction. *Mol. Plant Pathol.* **2003**, *4*, 217–224.
- 367 (3) Djian-Caporalino, C.; Fazari, A.; Arguel, M. J.; Vernie, T.; VandeCasteele, C.;
- 368 Faure, I.; Brunoud, G.; Pijarowski, L.; Palloix, A.; Lefebvre, V.; Abad, P. Root-knot
- 369 nematode (*Meloidogyne* spp.) *Me* resistance genes in pepper (*Capsicum annuum* L.)
- are clustered on the P9 chromosome. *Theor. Appl. Genet.* **2007**, *114*, 473–486.
- 371 (4) Sasser, J. N.; Eisenback, J. D.; Carter, C. C.; Triantaphyllou, A. C. The
- 372 international *Meloidogyne* project—its goals and accomplishments. Annu. Rev.
- 373 *Phytopathol.* **1983**, *21*, 271–288.
- 374 (5) Hu, Y.; Zhang, W.; Zhang, P.; Ruan, W.; Zhu, X. Nematicidal activity of
- 375 chaetoglobosin A produced by *Chaetomium globosum* NK102 against *Meloidogyne*
- 376 incognita. J. Agric. Food Chem. 2013, 61, 41–46.
- 377 (6) Jang, J. Y.; Le Dang, Q.; Choi, Y. H.; Choi, G. J.; Jang, K. S.; Cha, B.; Luu, N.
- 378 H.; Kim, J. C. Nematicidal activities of 4-quinolone alkaloids isolated from the
- aerial part of Triumfetta grandidens against Meloidogyne incognita. J. Agric. Food
- 380 Chem. 2015, 63, 68–74.

20

381	(7) Haydock, P. P. J.; Woods, S. R.; Grove, I. G.; Hare, M. C. Chemical control of
382	nematodes. In Plant Nematology; Perry, R. N.; Moens, M., Eds.; CABI: Wallingford,
383	UK, 2006; pp 392–408.
384	(8) Tian, B.; Yang, J.; Zhang, K. Q. Bacteria used in the biological control of
385	plant-parasitic nematodes: populations, mechanisms of action, and future prospects.
386	FEMS Microbiol. Ecol. 2007, 61, 197–213.
387	(9) Whorton, M. D.; Foliart, D. E. Mutagenicity, carcinogenicity and reproductive
388	effects of dibromochloropropane (DBCP). Mutat. Res. 1983, 123, 13-30.(10) Kearn,
389	J.; Ludlow, E.; Dillon, J.; O'Connor, V.; Holden-Dye, L. Fluensulfone is a
390	nematicide with a mode of action distinct from anticholinesterases and macrocyclic
391	lactones. Pest. Biochem. Physiol. 2014, 109, 44-57.
392	(11) Rich, J. R.; Dunn, R. A.; Noling, J. W. Nematicides: past and present uses. In
393	Nematology; Chen, Z. X.; Chen, S. Y.; Dickson, D. W., Eds.; CABI: Wallingford,
394	UK, 2004; Vol. 2, pp 1179–1200.
395	(12) Meher, H. C.; Gajbhiye, V. T.; Chawla, G.; Singh, G. Virulence development
396	and genetic polymorphism in Meloidogyne incognita (Kofoid & White) Chitwood
397	after prolonged exposure to sublethal concentrations of nematicides and continuous
398	growing of resistant tomato cultivars. Pest Manag. Sci. 2009, 65, 1201-1207.
399	(13) Putter, I.; Mac Connell, J. G.; Preiser, F. A.; Haidri, A. A.; Ristich, S. S.;

- 400 Dybas, R. A. Avermectins: novel insecticides, acaricides and nematicides from a soil
- 401 microorganism. *Experientia* **1981**, *37*, 963–964.

402	(14) Reddy, P. P.	Avermectins.	In Recent	Advances	in Crop	Protection;	Springer:
-----	-------------------	--------------	-----------	----------	---------	-------------	-----------

- 403 India, 2013; pp 13–24.
- 404 (15) Oka, Y.; Shuker, S.; Tkachi, N. Nematicidal efficacy of MCW-2, a new
- 405 nematicide of the fluoroalkenyl group, against the root-knot nematode *Meloidogyne*
- 406 *javanica. Pest Manag. Sci.* **2009**, *65*, 1082–1089.
- 407 (16) Oka, Y.; Shuker, S.; Tkachi, N. Systemic nematicidal activity of fluensulfone
- 408 against the root-knot nematode *Meloidogyne incognita* on pepper. *Pest Manag. Sci.*
- 409 **2012**, *68*, 268–275.
- 410 (17) Caboni, P.; Tronci, L.; Liori, B.; Tocco, G.; Sasanelli, N.; Diana, A.
- 411 Tulipaline A: structure-activity aspects as a nematicide and V-ATPase inhibitor. *Pest.*
- 412 Biochem. Physiol. 2014, 112, 33–39.
- 413 (18) Slomczynska, U.; Dimmic, M. W.; Wideman, A.; Haakenson, W.
- 414 P. Compositions and methods for controlling nematodes. US 20130217570, 2013.
- 415 (19) Jeschke, P.; Beck, M.; Krämer, W.; Wollweber, D.; Turberg, A.; Hansen,
- 416 O.; Martin, H. D.; Sauer, P.; Erdelen, C. Azoles having an insecticidal action. US
- 417 7417150, 2008.
- 418 (20) Xu, X.; Li, Z.; Wang, G.; Li, C.; Song, G.; Shao, X.; Xu, Z. Compound
- 419 containing N, S heterocycle and having nematocidal activity, preparation method
- 420 and use thereof. WO 2014117677, 2014.
- 421 (21) Lahm, G. P.; Lett, R. M.; Smith, B. T.; Smith, B. K.; Daly, C. A. Nematocidal
- 422 sulfonamides. US 20120114624, 2012.

22

423	(22) Sluder, A.; Shah, S.; Cassayre, J.; Clover, R.; Maienfisch, P.; Molleyres, L. P.;
424	Hirst, E. A.; Flemming, A. J.; Shi, M.; Cutler, P. Spiroindolines identify the vesicular
425	acetylcholine transporter as a novel target for insecticide action. Plos One 2012, 7,
426	e34712.
427	(23) Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang,
428	R. Synthesis and quantitative structure-activity relationship (QSAR) study of novel
429	N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal
430	agents. J. Agric. Food Chem. 2013, 61, 5696–5705.
431	(24) Wen, Y.; Meyer, S. L. F.; Masler, E. P.; Zhang, F.; Liao, J.; Wei, X.; Chitwood,
432	D. J. Nematotoxicity of drupacine and a Cephalotaxus alkaloid preparation against
433	the plant-parasitic nematodes Meloidogyne incognita and Bursaphelenchus
434	xylophilus. Pest Manag. Sci. 2013, 69, 1026–1033.
435	(25) Ntalli, N. G.; Caboni, P. Botanical nematicides: a review. J. Agric. Food
436	<i>Chem.</i> 2012 , <i>60</i> , 9929–9940.
437	(26) Sajid, M.; Azim, M. K. Characterization of the nematicidal activity of natural
438	honey. J. Agric. Food Chem. 2012, 60, 7428–7434.
439	(27) Draber, W.; Fedtke, C. Herbicide interaction with plant biochemical systems.
440	In Advances in Pesticide Science, part 3.; Geissbühler, H., Eds.; Pergamon Press:
441	Oxford, UK, 1979; pp 475–486.
442	(28) Kranz, E.; Santel, H. J.; Lürssen, K.; Schmidt, R. R.; Krauskopf, B. New
443	6-cyclo-butyl-1,2,4-triazinone derivs.—useful as herbicides and plant growth

- 444 regulators. DE 3917043, 1990.
- 445 (29) Rigterink, R. H. Insecticidal use of
 446 S-((4-oxo-1,2,3-benzotriazin-3(4H)-yl)-methyl)phosphorothioates and
 447 phosphorodithioates. US 3551562, 1970.
- 448 (30) Hosler, J. F.; Hardy, W. B. *N*-Trichloromethylthio-1,2,3-benzotriazine-4-one
- 449 as a novel nematocide. US 2935445, 1960.
- 450 (31) Nishiwaki, K.; Okamoto, A.; Matsuo, K.; Hayase, Y.; Masaki, S.; Hasegawa,
- 451 R.; Ohba, K. Tetrahydrobenzotriazines as a new class of nematocide. *Bioorg. Med.*
- 452 *Chem.* **2007**, *15*, 1341–1345.
- 453 (32) Kalusa, A.; Chessum, N.; Jones, K. An efficient synthesis of
 454 2,3-diaryl(3*H*)-quinazolin-4-ones via imidoyl chlorides. *Tetra. Lett.* 2008, 49, 5840–
 455 5842.
- 456 (33) Staiger, R. P.; Wanger, E. C. Isatoic anhydride. II. Reactions of isatoic
 457 anhydride with ammonia. *J. Org. Chem.* 1948, *13*, 347–352.
- 458 (34) Clark, A. S.; Deans, B.; Stevens, M. F. G.; Tisdale, M. J.; Wheelhouse, R. T.;
- 459 Denny, B. J.; Hartley, J. A. Antitumor imidazotetrazines. 32. Synthesis of novel
- 460 imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of
- the antitumor drug Temozolomide. J. Med. Chem. 1995, 38, 1493–1504.
- 462 (35) Yoneda, F.; Watabe, M.; Sakae, M.; Katsurada, M.; Sabado, T. Preparation of
- 463 2-(*N*-cyanoimino)thiazolidin-4-one derivatives. JP 09110845, 1997.
- 464 (36) Sarma, P. K. S.; Sharma, S.; Dharmarajan, S.; Shelke, S. Y.; Pal, A.;

24

465	Kondaskar, A.; Gupta, P.; Chugh, A.; Tiwari, A.; Nanda, K. Adrenergic receptor
466	antagonists. WO 2006117760, 2006.
467	(37) Che, Z.; Zhang, S.; Shao, Y.; Fan, L.; Xu, H.; Yu, X.; Zhi, X.; Yao, X.; Zhang,
468	R. Synthesis and quantitative structure-activity relationship (QSAR) study of novel
469	N-arylsulfonyl-3-acylindole arylcarbonyl hydrazone derivatives as nematicidal
470	agents. J. Agric. Food Chem. 2013, 61: 5696–5705.
471	(38) Li, J.; Zhang, Z.; Xu, X., Shao, S.; Li, Z. Nematicidal activities of diamides
472	with diphenylacetylene scaffold against Meloidogyne Incognita. Aust. J. Chem. 2015,
473	http://dx.doi.org/10.1071/CH15065.
474	(39) Twomey, U.; Rolfe, R. N.; Warrior, P.; Perry, R. N. Effects of the biological
475	nematicide, DiTera [®] , on movement and sensory responses of second stage juveniles
476	of Globodera rostochiensis, and stylet activity of G. rostochiensis and fourth stage
477	juveniles of Ditylenchus dipsaci. Nematol. 2002, 4: 909–915.
478	(40) Spence, K. O.; Lewis, E. E. Biopesticides with complex modes of action:
479	direct and indirect effects of DiTera [®] on <i>Meloidogyne incognita</i> . Nematol. 2010, 12:
480	835–846.
481	(41) Fernández, C.; Rodríguez-Kábana, R.; Warrior, P.; Kloepper, J. W. Induced
482	soil suppressiveness to a root-knot nematode species by a nematicide. Biol. Control
483	2001 , <i>22</i> : 103–114.

List of figure captions

- Figure 1. Nematicidal chemicals developed in recent years.
- Figure 2. Bioactive agrochemicals containing triazinone skeletons.
- Figure 3. Design of title compounds (VI-1–23).
- Figure 4. Synthetic route of 1,2,3-benzotriazin-4-ones (IV-1-13).
- Figure 5. Synthetic route of potassium salt of 2-cyanoimino-4-oxothiazolidine.
- Figure 6. Synthetic route of title compounds (VI-1–23).

Figure 1. Nematicidal chemicals developed in recent years.

Figure 2. Bioactive agrochemicals containing triazinone skeletons.

Figure 3. Design of title compounds (VI-1–23).

Figure 4. Synthetic route of 1,2,3-benzotriazin-4-ones (IV-1–13).

Figure 5. Synthetic route of potassium salt of 2-cyanoimino-4-oxothiazolidine.

Figure 6. Synthetic route of title compounds (VI-1–23).

Table 1. Control Efficacy of Compounds VI-1-23 against the Cucumber

Root-knot Nematode Disease Caused by *M. incognita* in Test Tubes

$ \begin{array}{c} $								
				, VI				
				J2 o	of M. incognita			
Compd	D			Inhibition rate (%)				
	K	п	40.0 mg L ⁻¹	25.0 mg L^{-1}	10.0 mg L ⁻¹	5.0 mg L ⁻¹	1.0 mg	
							L ⁻¹	
VI-1	Н	1	100	76.5	58.3			
VI-2	7-Cl	1	pt^{c}	100	100	38.7	27.2	
VI-3	8-Br	1	100	78.0	63.5			
VI-4	7-F	1	pt	pt	74.5			
VI-5	6-CF ₃	1	pt	100	90.8	31.5	19.4	
VI-6	8-CH ₃	1	100	88.7	67.3			
VI-7	8-OCH ₃	1	100	88.1	66.7			
VI-8	5-Br	1	pt	100	91.8	34.0	20.3	
VI-9	6-NO ₂	1	pt	pt	100	37.2	23.9	
VI-10	7-Br	1	pt	91.5	70.6			
VI-11	6-CH ₃	1	pt	62.7	41.1			
VI-12	7-NO ₂	1	pt	pt	64.3			
VI-13	7-OCH ₃	1	pt	pt	54.0			
VI-14	7-Cl	0	pt	100	100	36.4	20.0	
VI-15	7-Cl	2	pt	pt	53.6			
VI-16	7-Cl	3	pt	pt	26.1			
VI-17	7-Cl	4	pt	pt	63.4			
VI-18	7-NO ₂	2	pt	pt	71.4			
VI-19	7-NO ₂	3	pt	pt	90.1	30.1	17.6	
VI-20	7-NO ₂	4	pt	100	100	37.2	22.2	
VI-21	7-OCH ₃	2	pt	pt	38.9			
VI-22	7-OCH ₃	3	pt	pt	83.3			
VI-23	$7\text{-}OCH_3$	4	pt	100	100	40.5	30.6	
\mathbf{FM}^{a}						100	100	
AVM ^b						100	100	

^{*a*} **FM**: fenamiphos; ^{*b*} **AVM**: avermectin; ^{*c*} pt: phytotoxic.

TOC graphic

