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ABSTRACT A novel enantioselective Michael addition of malononitrile to trans-b-nitroole-
fins in the presence of bifunctional amine thiourea organocatalyst is developed. The Michael
reaction catalyzed by amine thioureas containing both central and axial chiral elements pro-
ceeded smoothly and provided the desired adducts with high yields (up to 96% yield) and mod-
erate enantioselectivities (up to 83% enantiomeric excess). Chirality 23:514–518, 2011.
VVC 2011 Wiley-Liss, Inc.
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INTRODUCTION

Michael addition to electron-deficient nitroolefins is one of
the important reactions in organic synthesis that provides
access to useful functionalized nitroalkanes,1,2 which are
readily converted into other useful compounds such as nitrile
oxide,3,4 amine,5–7 ketone,8 carboxylic acid,9 or other func-
tionalized compounds.10

In the last few years, asymmetric organocatalysis has
proved to be a practical and powerful tool for the stereoselec-
tive preparation of chiral molecules in the field of natural or
biologically active compounds.11–18 Recently, the development
of organocatalytic asymmetric Michael addition reactions of
nitroolefins has received growing attention.1 Various organo-
catalysts activating the nucleophile or the electrophile via for-
mation of covalent bonds or weaker interactions, such as ion
pairing hydrogen bonding, have been reported.11–18 Among
them, the development of chiral bifunctional thioureas as
powerful hydrogen-bond-donating organocatalysts has rapidly
developed19–21 since Jacobsen and coworkers22–26 successfully
developed an efficient chiral Schiff base-thiourea catalyzed
asymmetric Strecker reaction. Takemoto and coworkers27,28

reported the first example of a thiourea-organocatalyzed
asymmetric Michael addition to nitroolefins by tertiary amine
thiourea bifunctional catalyst. Primary amine thiourea catalyst
developed by Jacobsen and coworkers29 also demonstrated
excellent catalytic activity in the asymmetric Michael addition
of ketones to nitroolefins. Ma and coworkers30,31 reported an
efficient organocatalyst for the asymmetric addition of aceto-
phenone to nitroolefins with saccharide-derived bifunctional
thiourea. In addition, other type of thiourea catalysts such as
cinchona alkaloid-based thioureas,32–34 pyrrolidine-thiour-
eas,35,36 and 4-dimethylaminopyridine-thioureas37 have been
found to be useful for Michael addition reactions. Recently,
the enantioselective addition reactions of aldehydes and
ketones,38–43 malonate esters,44,45 b-keto esters,46,47 and
1,3-diketone48,49 to nitroolefins have been presented. More-
over, malononitrile and cyanoacetate have been used as
Michael donors.50–54 To the best of our knowledge, addition
reactions of malononitrile to nitroolefins catalyzed by bifunc-
tional thiourea have been rarely explored.

EXPERIMENTAL

Melting points are recorded with an XRC-1 micro-melting point appara-
tus and uncorrected. 1H and 13C NMR spectra were recorded on Brucker-
400 and 2300 instruments. Proton chemical shifts (d) are given in ppm
relative to tetramethylsilane (d 0.00 ppm) in CDCl3 or to the residual pro-
ton signals of the deuterated solvent CD3OD. Silica gel (200–300 mesh)
(from Qingdao Haiyang Chemical Company) was used for column chro-
matography. All reactions were monitored by thin layer chromatography.
Chiral high performance liquid chromatography (HPLC) analyses were
carried out on a Hewlett Packard Series 1100 instrument. High resolution
mass spectrometer (HRMS) were obtained in electron impact (EI) mode
using a Bruker Esquire 3000 mass spectrometer. Elemental analyses
were performed on an EA-1110 instrument. All regents and solvents were
purchased from commercial sources and purified commonly before used
by standard procedures as specified in Ref. 55.

Synthesis of Chiral Amine Thiourea Catalysts (1)

(R)-2,20-Di(bromomethyl)-1,10-binaphthyl and phthalic anhydride-
monoprotected (1S,2S)-cyclohexyldiamine were prepared by modified lit-
erature procedure.54,56

To a solution of primary amine (392 mg, 1 mmol) in dry tetrahydro-
furan (5 ml), a solution of 3,5-bis (trifluoromethyl)phenyl isothiocyanate
(271 mg, 182 ll, 1 mmol) in dry tetrahydrofuran (5 ml) was added under
nitrogen atmosphere. After the mixture was stirred for 12 h at room tem-
perature, the mixture was concentrated under reduced pressure. The
residue was purified by column chromatography on silica gel to give the
bifunctional thiourea catalyst 1 (white solid, 591 mg, 81% yield).

Characterization of Bifunctional Thiourea Catalyst 1

Mp 149–1518C; 1H NMR (300 MHz, CDCl3): d 7.89 (d, J 5 8.2 Hz,
2H), 7.82 (d, J 5 8.2 Hz, 2H), 7.58 (s, 2H), 7.49 (s, 1H), 7.45 (m, 4H),
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7.39 (d, J 5 8.4 Hz, 2H), 7.27–7.25 (m, 2H), 6.72 (br s, 1H), 4.09 (br s,
1H), 3.78–3.72 (m, 2H), 3.62 (d, J 5 12.3 Hz, 2H), 2.95 (t, J 5 8.4 Hz,
1H), 1.87–1.80 (m, 1H), 1.75–1.71 (m, 3H), 1.37–1.27 (m, 4H); 13C NMR
(100 MHz, CDCl3): d 178.8, 141.7, 134.0, 132.2, 130.3, 128.1, 127.4, 126.4,
126.2, 125.1, 124.8, 123.3, 120.6, 117.8, 68.5, 54.7, 32.2, 28.8, 27.1, 27.0,
24.4, 23.7.

General Procedure for Organocatalytic
Micheal Addition Reaction

Malononitrile 2 (13.2 mg, 0.2 mmol) was added to a solution of cata-
lyst 1 (6.6 mg, 0.01 mmol, 10 mol %), 4 Å molecular sieve (12–15 mg),
and trans-b-nitrostyrene 3a (14.9 mg, 0.1 mmol) in toluene (1 ml) at
2108C. After 8 h, the resulting mixture was diluted with chloroform (2
ml) and washed with water (10 ml). The combined organic phase was
washed with brine and dried over anhydrous Na2SO4. Evaporation of the
solvents gave the crude product, which was purified by column chroma-
tography on silica gel (petro ether-ethyl acetate) to afford the desired
product 4a (15.05 mg, 70% yield).

Characterization of Micheal Addition Products

White solid; Mp 54–568C; HPLC analysis: Daicel Chiralcel AD-H, n-
Hexane-i-PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t
(minor) 5 11.3 min, t (major) 5 13.3 min.

1H NMR (400 MHz, CDCl3): d 7.49–7.47 (m, 3H), 7.37–7.35 (m, 2H),
4.95 (m, 2H), 4.44 (d, J 5 6.0 Hz, 1H), 4.11–4.06 (m, 1H); 13C NMR (100
MHz, CDCl3): d 131.5, 130.1, 129.6, 127.4, 110.1, 110.0, 74.6, 43.4, 29.4;
mass spectrometer (EI, 70 eV): m/z (%) 5 214.6 (M1); Anal. calcd for
C11H9N3O2: C, 61.39; H, 4.22; N, 19.53. Found: C, 60.89; H, 4.31; N,
19.22.

2-(2-Nitro-1-(4-nitrophenyl) ethyl) malononitrile (4b). Yellow
solid; Mp 142–1448C; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-
PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (minor) 5
28.1 min, t (major)5 34.1 min.

1H NMR (400 MHz, CD3OD): d 8.33 (d, J 5 8.8 Hz, 2H), 7.77 (d, J 5
8.8 Hz, 2H), 5.20 (d, J 5 7.2 Hz, 1H), 4.53 (d, J 5 7.2 Hz, 1H), 3.61 (q, J
5 6.8 Hz, 2H); 13C NMR (100 MHz, CD3OD): d 150.0, 142.4, 131.0,
125.3, 112.8, 112.6, 76.0, 44.0, 27.6; mass spectrometer (EI, 70 eV): m/z
(%) 5 259.6 (M1); Anal. calcd for C11H8N4O4: C, 50.77; H, 3.10; N, 21.53.
Found: C, 50.44; H, 3.22; N, 21.29.

2-(2-Nitro-1-(3-nitrophenyl) ethyl) malononitrile (4c). Light
yellow solid; Mp 126–1288C; HPLC analysis: Daicel Chiralcel AD-H, n-
Hexane-i-PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm,
t (minor) 5 21.5 min, t (major) 5 23.2 min.

1H NMR (400 MHz, CDCl3): d 8.38(d, J 5 6.8 Hz, 1H), 8.28 (s, 1H),
7.45 (d, J 5 7.6 Hz, 2H), 5.02 (m, 2H), 4.51 (d, J 5 6 Hz, 1H), 4.27 (d, J
5 6.4 Hz, 1H); 13C NMR (100 MHz, CDCl3): d 150.1, 137.6, 135.7, 131.8,
125.5, 124.6, 112.8, 112.7, 76.1, 44.0, 28.1; mass spectrometer (EI, 70
eV): m/z (%) 5 259.5 (M1); Anal. calcd for C11H8N4O4: C, 50.77; H, 3.10;
N, 21.53. Found: C, 50.48; H, 3.05; N, 20.41.

2-(1-(4-Chlorophenyl)-2-nitroethyl) malononitrile (4d). White
solid; Mp 89–918C; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-
PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (minor) 5
12.8 min, t (major) 5 16.3 min.

1H NMR (400 MHz, CDCl3): d 7.47 (d, J 5 8.8 Hz, 2H), 7.32 (d, J 5
8.8 Hz, 2H), 4.94 (m, 2H), 4.43 (d, J 5 6.0 Hz, 1H), 4.11–4.06 (m, 1H);
13C NMR (100 MHz, CDCl3): d 135.8, 129.3, 128.2, 109.4, 109.3, 73.8,
42.2, 26.6.; mass spectrometer (EI, 70 eV): m/z (%) 5 248.7 (M1); Anal.
calcd for C11H8ClN3O2: C, 52.92; H, 3.23; N, 16.83. Found: C, 52.53; H,
3.03; N, 16.24.

2-(1-(2-Chlorophenyl)-2-nitroethyl) malononitrile (4e). White
solid; Mp 84–868C; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-
PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (minor) 5
12.5 min, t (major)5 17.2 min.

1H NMR (400 MHz, CDCl3): d 7.556–7.53 (m, 1H), 7.44–7.40 (m, 3H),
5.01 (m, 2H), 4.78 (q, J 5 6.8 Hz, 1H), 4.55 (d, J 5 6.8 Hz, 1H); 13C

NMR (100 MHz, CDCl3): d 133.2, 130.5, 130.2, 128.6, 127.4, 126.8, 109.5,
109.2, 72.9, 38.9, 28.8; mass spectrometer (EI, 70 eV): m/z (%) 5 248.5
(M1); Anal. calcd for C11H8ClN3O2: C, 52.92; H, 3.23; N, 16.83. Found:
C, 52.51; H, 3.43; N, 16.36.

2-(2-Nitro-1-p-tolylethyl) malononitrile (4f). White solid; Mp
99–1018C; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-PrOH 5
85:15, flow rate: 1.0 ml/min, 25 8C, UV: k 5 254 nm, t (minor) 5 10.7
min, t (major) 5 13.0 min.

1H NMR (400 MHz, CDCl3): d 728–7.22 (m, 4H), 4.93 (m, 2H), 4.42
(d, J 5 6.0 Hz, 1H), 4.07–4.02 (m, 1H), 2.38 (s, 3H); 13C NMR (100 MHz,
CDCl3): d 139.6, 129.6, 127.8, 126.6, 109.7, 109.6, 74.1, 42.5, 26.8, 20.3;
mass spectrometer (EI, 70 eV): m/z (%) 5 228.7 (M1); Anal. calcd for
C12H11N3O2: C, 62.87; H, 4.84; N, 18.33. Found: C, 62.77; H, 4.84; N,
17.59.

2-(1-(4-Methoxyphenyl)-2-nitroethyl) malononitrile (4g). White
solid; Mp 83–858C; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-
PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (minor) 5
27.6 min, t (major)5 29.7 min.

1H NMR (400 MHz, CDCl3): d 7.28 (d, J 5 8.8 Hz, 2H), 6.97 (d, J 5
8.8 Hz, 2H), 4.92 (m, 2H), 4.40 (d, J 5 5.6 Hz, 1H), 4.07–4.02 (m, 1H),
3.83 (s, 3H); 13C NMR (100 MHz, CDCl3): d 160.9, 129.0, 123.4, 115.2,
110.6, 110.5, 75.1, 55.4, 43.1, 27.8; mass spectrometer (EI, 70 eV): m/z
(%) 5 244.4 (M1); Anal. calcd for C12H11N3O3: C, 58.77; H, 4.52; N,
17.13. Found: C, 58.87; H, 4.51; N, 16.17.

2-(1-(2-Methoxyphenyl)-2-nitroethyl) malononitrile (4h). White
solid; Mp 90–928C; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-
PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (minor)
5 10.9 min, t (major)5 12.1 min.

1H NMR (400 MHz, CDCl3): d 7.46–7.42 (m, 1H), 7.287–7.26 (m, 1H),
7.07–6.99 (m, 2H), 5.00 (m, 2H), 4.55 (d, J 5 8.4 Hz, 1H), 4.45–4.41 (m,
1H), 3.94 (s, 3H); 13C NMR (100 MHz, CDCl3): d 155.8, 130.6, 128.7,
120.8, 118.9, 110.7, 110.0, 73.4, 54.8, 39.4, 24.4; mass spectrometer (EI,
70 eV): m/z (%) 5 244.5 (M1); Anal. calcd for C12H11N3O3: C, 58.77; H,
4.52; N, 17.13. Found: C, 58.87; H, 4.39; N, 16.19.

2-(1-(4-(Dimethylamino) phenyl)-2-nitroethyl) malononitrile
(4i). Yellow solid; Mp 84–868C; HPLC analysis: Daicel Chiralcel AD-
H, n-Hexane-i-PrOH 5 85:15, flow rate: 1.0 ml/min, 258C, UV: k 5 254
nm, t (major) 5 17.5 min, t (minor) 5 24.3 min.

1H NMR (400 MHz, CDCl3): d 7.81 (d, J 5 8.8 Hz, 1H), 7.47 (s, 1H),
7.18 (d, J 5 8.8 Hz, 2H), 4.90 (m, 2H), 4.37 (d, J 5 5.6 Hz, 1H), 4.01–3.96
(m, 1H), 2.98 (s, 6H); 13C NMR (100 MHz, CDCl3): d 157.3, 150.4, 132.9,
117.1, 110.0, 109.9, 74.4, 57.6, 39.3, 27.1; mass spectrometer (EI, 70 eV):
m/z (%) 5 257.3 (M1); Anal. calcd for C13H14N4O2: C, 60.45; H, 5.46; N,
21.69. Found: C, 61.38; H, 5.41; N, 20.46.

2-(1-(Furan-2-yl)-2-nitroethyl) malononitrile (4j). Yellow oil;
HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-PrOH 5 85:15, flow
rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (major) 5 14.0 min, t (minor)
5 16.0 min.

1H NMR (400 MHz, CDCl3): d 7.50 (s, 1H), 6.54 (d, J 5 3.2 Hz, 1H),
6.45 (d, J 5 3.2 Hz, 1H), 4.93 (d, J 5 6.4 Hz, 2H), 4.47 (d, J 5 6.0 Hz,
1H), 4.32–4.28 (m, 1H); 13C NMR (100 MHz, CDCl3): d 144.6, 144.5,
111.2, 111.0, 110.2, 110.0, 73.3, 38.2, 25.9; mass spectrometer (EI, 70
eV): m/z (%) 5 204.7 (M1); Anal. calcd for C9H7N3O3: C, 52.69; H, 3.44;
N, 20.48. Found: C, 52.36; H, 3.46; N, 20.28.

2-(1-Cyclohexyl-2-nitroethyl) malononitrile (4k). Colorless liq-
uid; HPLC analysis: Daicel Chiralcel AD-H, n-Hexane-i-PrOH 5 85:15,
flow rate: 1.0 ml/min, 258C, UV: k 5 254 nm, t (major) 5 11.7 min, t
(minor) 5 13.3 min.

1H NMR (400 MHz, CDCl3): d 4.63 (m, 2H), 4.26 (d, J 5 5.2 Hz, 1H),
2.79–2.73 (m, 1H), 1.87–1.71 (m, 6H), 1.35–1.14 (m, 4H); 13C NMR (100
MHz, CDCl3): d 110.5, 110.4, 72.7, 42.3, 37.9, 29.9, 27.9, 25.1, 23.4; mass
spectrometer (EI, 70 eV): m/z (%) 5 220.6 (M1); Anal. calcd for
C11H15N3O2: C, 59.71; H, 6.83; N, 18.99. Found: C, 59.35; H, 6.83; N,
18.36.
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RESULTS AND DISCUSSION

The effect of solvents was initially studied for the orga-
nocatalytic Michael addition of malononitrile 2 and nitro-
styrene 3a using amine thiourea 1 as the catalyst (Fig. 1
and Table 1). It was found that the reaction performed
best in toluene, providing high yield (83%) and moderate
enantioselectivity (42%) within 3 h at room temperature
(Table 1, entry 1). In other solvents, the adducts were
obtained with lower enantioselectivities (Table 1, entries
2–6). However, the enantioselectivity could be increased
from 42 to 58% by lowering the reaction temperature to
08C (entry 7). If the temperature was further decreased,
the reaction proceeded with lower enantioselectivity and
reaction rate (entry 8).

It is interesting to note that the addition of different acti-
vated molecular sieves (MSs) gave different improvements in
the enantiomeric excess (ee).57–60 Addition of 5 Å MS did not
improve the enantioselectivity (Table 1, entry 11), and 3 Å
MS gave the product 4a with 65% ee (Table 1, entry 9). How-
ever, the use of 4 Å MS gave the product 4a with 68% ee (Ta-
ble 1, entry 10). Thus, 4 Å MS was used at 2108C to promote
the reaction.

To evaluate the generality of the reaction, a wide range of
nitroalkenes bearing electron-donating, electron-withdrawing,
electron-neutral, heteroaromatic, or alkyl groups were investi-
gated (Table 2). The substituent at different position of the
aromatic ring of nitrostyrenes exhibited a strong impact on
the enantioselectivity. For example, the use of 4-NO2-trans-b-
nitrostyrene led to a higher enantioselectivity (Table 2, entry
2) when compared with 3-NO2-trans-b-nitrostyrene (Table 2,
entry 3). Moreover, steric hindrance on ortho-methoxy sub-
strate 3h provided a high yield (96%) and good enantioselec-
tivity (80% ee). Likewise, the employment of ortho-chloro
substituent 3e obtained moderate enantioselectivity (Table 2,
entry 5). However, para-chloro substituent 3d as electron-
withdrawing groups resulted in a marked loss of enantiose-
lectivity (Table 2, entry 4). As for other nitroolefin substrates,
the introduction of either an electron-donating or electron-
neutral aryl group at the para-position of aromatic ring or het-
erocyclic group favored the reaction. The corresponding
conjugate addition products were obtained with moderate
enantioselectivities (Table 2, entries 6, 7, and 10). In addition,
the substrate of cyclohexyl 3k also afforded the product with
an alkyl nitroolefin with high enantioselectivity (Table 2,
entry 11). Although the enantioselectivity of some products
is not so high, this is the first example of enantioselective
Michael addition of malononitrile to nitroolefins.

CONCLUSION

In summary, we have presented the first addition reac-
tion of malononitrile to nitroolefins catalyzed by amine thi-

ourea organocatalyst with high yields and moderate to
high enantioselectivities. Moreover, 4 Å MS was found to
have positive effects on the reaction. Modification of these
organocatalysts and their use in other asymmetric reac-
tions is underway in our laboratory.

TABLE 1. Screening of different reaction solvents and
temperatures for the addition of malononitrile 2 to

nitrostyrene 3a using catalyst 1a

Entry Solvent Temperature (8C) Time (h) Yield (%)b ee (%)c

1 Toluene 25 3 83 42
2 CH2Cl2 25 3 80 29
3 Xylene 25 3 77 41
4 Mesitylene 25 3 80 42
5 Et2O 25 3 74 17
6 THF 25 3 72 28
7 Toluene 0 6 73 58
8 Toluene 210 8 71 54
9d Toluene 210 8 80 65
10e Toluene 210 8 70 68
11f Toluene 210 8 71 55

aExperimental conditions (unless stated otherwise): a mixture of 2 (0.2
mmol), 3a (0.1 mmol), and catalyst 1 (10 mol %) in solvent (1 ml) was per-
formed at room temperature.
bIsolated yields.
cDetermined by chiral HPLC analysis.
d3 Å molecular sieve was used.
e4 Å molecular sieve was used.
f5 Å molecular sieve was used.

TABLE 2. Organocatalytic enantioselective addition
of malononitrile to various nitroolefins catalyzed by

amine thioureasa

Entry R Yield (%)b ee (%)c

1 Ph (3a) 70 68
2 4-NO2-C6H4 (3b) 77 83
3 3-NO2-C6H4 (3c) 57 47
4 4-Cl-C6H4 (3d) 67 43
5 2-Cl-C6H4 (3e) 94 64
6 4-CH3-C6H4 (3f) 87 66
7 4-CH3O-C6H4 (3g) 90 50
8 2-CH3O-C6H4 (3h) 96 80
9 4-N(CH3)2-C6H4 (3i) 85 43
10 Furyl (3j) 59 62
11d Cyclohexyl (3k) 93 82

aExperimental conditions (unless stated otherwise): a mixture of 2 (0.2
mmol), 3a (0.1 mmol), 4 Å molecular sieve (MS) (12 mg), and catalyst 1 (10
mol %) in toluene (1 ml) was performed.
bIsolated yields.
cDetermined by chiral HPLC analysis.
dThe reaction mixture was consumed completely for 44 h.Fig. 1. Bifunctional amine thiourea catalyst 1.
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