Tetrahedron 58 (2002) 3629-3637 # New synthesis of 2,6-anhydro-β-D-fructofuranoses, pivotal [2.2.1] bicyclic acetals for the conversion of D-fructose into 2,2,5-trisubstituted tetrahydrofurans Fabrice Goursaud, Frédéric Peyrane and Alain Veyrières* Laboratoire de Synthèses et Activations de Biomolécules, CNRS UMR 6052, Ecole Nationale Supérieure de Chimie de Rennes, Campus de Beaulieu, 35700 Rennes, France Received 31 October 2001; revised 31 January 2002; accepted 26 February 2002 **Abstract**—2,6-Anhydro-β-D-fructofuranose derivatives were prepared by a novel tin-promoted 2,5-cyclisation of phenyl 2-thio-β-D-fructopyranosides. They were regioselectively opened by allyltrimethylsilane in the presence of catalytic $Sc(OTf)_3$ to give 2,2,5-trisubstituted tetrahydrofurans in high yields and major α -stereoselectivity. © 2002 Elsevier Science Ltd. All rights reserved. The synthesis of functionalized tetrahydrofuran rings has received considerable attention because of their presence in many biologically active compounds. Polyether antibiotics, such as lonomycin C, ionomycin or monensin, contain 2,5-di and 2,2,5-trisubstituted tetrahydrofuran units² which can be obtained by C-glycosylation techniques. Nucleophilic substitution at the anomeric centre of a carbohydrate derivative can be to this respect an excellent strategy, provided that the required furanosides are readily attainable. We have recently shown³ that iodocyclisation of 6-O-protected D-galactal, followed by radical reduction, affords [2.2.1] bicyclic acetals which are then regioselectively opened by various nucleophiles in the presence of an acid promoter to give exclusively furanosyl compounds. A 2,5-di-substituted tetrahydrofuran fragment of annonaceous acetogenins was thus prepared from D-galactal in a limited number of steps.⁴ Extension of these reactions to ketose derivatives should lead to 2,2,5-trisubstituted tetrahydrofurans which have been only scarcely obtained^{5,6} by *C*-glycosylation of furanose precursors. In 1960 Goldschmid and Perlin⁷ reported the isolation of crystalline 2,6-anhydro- β -D-fructofuranose (or 2,5-anhydro- α -D-fructopyranose) **1** in 9% yield among the products obtained by thermolysis of sucrose at 180°C. Acidic ethanolysis of **1** gave rapidly ethyl α -D-fructofuranoside **2** which slowly anomerized to the β -isomer (Scheme 1). Later on, **1** could be prepared^{8,9} in better yields under modified conditions of sucrose thermolysis; chromatography techniques were however required for its isolation. Vacuum pyrolysis of free ketoses gives the corresponding 2,6-anhydrofuranoses in very low yields. ¹⁰ ## Scheme 1. Keywords: allylation; bicyclic heterocyclic compounds; thioglycosides; tin and compounds. * Corresponding author. Tel.: +33-22-323-8075; fax: +33-22-323-8046 0040–4020/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: \$0040-4020(02)00233-8 Scheme 2. Reagents and conditions: (i) PhSH (1.4 equiv.), BF₃·OEt₂ (2.9 equiv.), CH₂Cl₂, 0°C→rt, 4 h; (ii) PhSH (1.5 equiv.), BF₃·OEt₂ (5.4 equiv.), CH₂Cl₂, 0°C→rt, 8 h. Scheme 3. Reagents and conditions: (i) PhSH (3.1 equiv.), BF₃·OEt₂ (9.1 equiv.), CH₂Cl₂, rt, 14 h; (ii) 5:1:1 MeOH–NEt₃–H₂O, 40°C. We now report a new access to various [2.2.1] bicyclic acetal derivatives of D-fructose based on the chemistry of 2-thio- β -D-fructopyranosides. Benzyl 2-thio-β-D-fructopyranoside is the only reported¹¹ 2-thio-D-fructopyranoside; it was isolated in 10% yield among a mixture of thermodynamically equilibrated glycosides obtained by addition of α -toluenethiol to D-fructose in DMSO at 60°C. We envisaged that crystalline 2'-chloroethyl β -D-fructopyranoside, readily prepared 12,13 from D-fructose in high yield, could be a convenient precursor of 2-thio-D-fructopyranosides, since glycosides of ketoses exhibit a high acid lability due to the easy formation of a tertiary oxycarbenium ion. 12 The standard Ferrier conditions¹⁴ (thiophenol, BF₃·OEt₂ as a promoter in CH₂Cl₂ at room temperature) allowed indeed the conversion of the acetylated derivative 3 of 2'-chloroethyl β-D-fructopyranoside into the 2-thio-β-D-fructopyranoside 4 in 74% yield. But further treatment of 4 with BF₃·OEt₂ and thiophenol gave the 1,2-dithio compound 5 in 54% yield together with unreacted 4 (Scheme 2). Migrations of anomeric sulfur atoms have been often reported¹⁵ among 1-thio-aldoglycosides, but only once for an heptulopyranose derivative. ¹⁶ In the case of 4, the addition of a second molecule of thiol occurs exclusively from the β-face delivering compound 5 stabilized by the anomeric effect of the sulfur atom, which implies that a 1,2-episulfonium intermediate A must be in equilibrium with an oxycarbenium ion B.¹⁷ 2 C₅ (D) Chair conformations of thioglycosides **4** and **5** were ascertained by the respective values of coupling constant $J_{3,4}$ 10.2 and 9.7 Hz and their β-configuration by the values of $[\alpha]_D$ –200 and –113. For preparative purposes it was found more advantageous to perform the addition of thiophenol (3.1 equiv.) to compound **3** in the presence of a large excess of BF₃·OEt₂ (9.1 equiv.) and to let the reaction go until a ~1:1 mixture of **4** and **5** with only traces of **3** became apparent on t.l.c. (\sim 14 h); prolonged treatment usually brought extensive decomposition. Deacetylation of the crude mixture of **4** and **5** gave crystalline thioglycosides **6** and **7** which were readily separated by extraction of **6** (41%) in hot water and crystallization of residual **7** (51%) from ethanol (Scheme 3). Treatment of polyols with (Bu₃Sn)₂O is known¹⁸ to give an equilibrium of partially O-stannylated products, which then reacts regioselectively with an electrophile in an inter- or intramolecular reaction. When thioglycosides 6 and 7 were reacted with (Bu₃Sn)₂O (1 mol equiv.) in boiling propionitrile, smooth 2,5-cyclisation occurred to give the bicyclic acetals 1 (94%) and 8 (85%), respectively (Scheme 4). Remarkably, no electrophilic activation of the anomeric sulfur was found to be necessary. The driving force of these unprecedented cyclisations must be the formation of the thermodynamically stable Sn-S bond¹⁹ (Bu₃SnSPh was indeed isolated from reaction mixtures); but the 2,5-trans diaxial configuration of reacting oxygen and sulfur atoms and the higher lability of anomeric groups in ketosides are also crucial. A 6-O-protected phenyl 1-thio-α-D-galactopyranoside²⁰ did not undergo cyclisation under the above conditions. **Scheme 4.** Reagents and conditions: (i) (Bu₃Sn)₂O (1 mol equiv.), EtCN, 4 Å mol. sieves, reflux; (ii) BnBr, NaH, DMF, rt; (iii) Raney Ni, THF, rt. Scheme 5. Reagents and conditions: (i) Bu₂SnO (1.2 equiv.), CH₃CN, 4 Å mol. sieves, reflux, then BzCl (1.5 equiv.), rt; (ii) (Bu₃Sn)₂O (1 mol equiv.), EtCN, 4 Å mol. sieves, reflux; (iii) Bu₂SnO (1.3 equiv.), MeOH, reflux, then concentration, BnBr (1.5 equiv.), CsF (1.3 equiv.), DMF, rt; (iv) Ac₂O, pyridine, rt. Acetals **1** and **8** were *O*-benzylated to give **9** (67%) and **10** (85%) respectively. Desulfurization of **10** with Raney nickel in THF gave acetal **11** with an angular methyl group in 62% yield (Scheme 4). Treatment of thioglycosides **6** and **7** with Bu₂SnO induced no cyclisation; mixtures of dibutylstannanediyl acetals ('stannylene') thus obtained¹⁸ reacted rather with benzoyl chloride preferentially at equatorial O-4 to give respectively **13** (69%) and crystalline **15** (70%), where signals of H-4 at δ 5.24 and 5.42 were largely deshielded by the benzoyl group (Scheme 5). In the case of **6**, a 1,4-di-*O*-benzoyl derivative **14** (26%) was also isolated. The postulated tin derivative **12** obtained by opening of the 4,5-stannylene ring did not undergo cyclisation even after prolonged heating, most probably because the electron-attracting influence of the chlorine atom reduced too much the nucleophilicity of O-5. Treatment of the 4-*O*-benzoyl compounds **13** and **15** with $(Bu_3Sn)_2O$ induced no cyclisation either, but gave orthoester intermediates **16** which were hydrolyzed regioselectively²¹ during work-up to give the 5-*O*-benzoyl isomers **17** (70%) and **18** (70%) respectively, where signals of H-5 at δ 5.31 and 5.49 confirmed the 4 \rightarrow 5 migration of the benzoyl group (Scheme 5). The absence of migration (and cyclisation as well) in intermediates such as **12** has already been observed²² in carbohydrates, but does not apply to more flexible systems (phenylethylene glycol).²³ 4-O-Benzyl derivatives **19** (57%) and **21** (42%) were also obtained by reaction of the stannylene derivatives of **6** and **7** with benzyl bromide in refluxing acetonitrile (Scheme 5); the moderate yields can be attributed to side reactions of the anomeric thiophenyl group leading to sulfonium salts. The yield of **21** could be slightly improved (58%) by performing benzylation of **7** in DMF at room temperature under CsF activation. Conversion of triol **19** into the acetylated derivative **20** allowed to ascertain the location of benzyl group at O-4 (H-4 at δ 3.94), H-3 and H-5 being respectively deshielded at δ 5.66 and 5.41 by acetyl groups. Thioglycoside **21** underwent cyclisation by treatment with (Bu₃Sn)₂O to give the bicyclic acetal **22** in 85% yield. Raney nickel desulfurization of **22** gave the deoxy compound **23** in modest yield (40%); a side radical elimination led to a tetrahydrofuran intermediate with an *exo* methylene group, which was reduced into 2,5-anhydro-1-deoxy-D-mannitol **24** (Scheme 6). Its methyl group appeared as a doublet (J=6.6 Hz) at δ 1.30 in 1 H NMR spectrum and gave a 13 C signal at δ 18.63. A minor product, C-2 epimer of 24 (α - β ~9:1), gave corresponding signals at $\delta_{\rm H}$ 1.29 (J=6.4 Hz) and $\delta_{\rm C}$ 13.34. The Scheme 6. Reagents and conditions: (i) (Bu₃Sn)₂O (1 equiv.), EtCN, 4 Å mol. sieves, reflux; (ii) Raney Ni, THF, rt. Scheme 7. Reagents and conditions: (i) Me₃SiCH₂CH=CH₂ (5 equiv.), Sc(OTf)₃ (0.1 equiv.), CH₂Cl₂, −30→0°C, then MeOH–AcOH. D-manno configuration (α -methyl) of major **24** could be deduced by the higher value of the 13 C signal of its methyl group ($\Delta\delta$ +5.29 ppm), since the 13 C chemical shift of the carbon atom attached to the 'anomeric position' of *C*-glycosides and *C*-nucleosides is at higher field when this atom has a *cis*-relationship with the OR-group attached at C-3.5,25,26 The reaction of [2.2.1] bicyclic acetals **9**, **11** and **23** with allyltrimethylsilane in the presence of a Lewis acid revealed a total regioselectivity leading exclusively to 2,2,5-trisubstituted tetrahydrofuran derivatives **25**, **26** and **27** respectively (Scheme 7). When conducted with TMS triflate as a promoter, allylation of 9 in acetonitrile or CH_2Cl_2 gave 25 in 63% yield $(\alpha-\beta)$ 73:27). Configuration at the 'anomeric center' was ascertained as above for compound 24; ¹³C NMR signal of allylic CH₂ appeared at lower field (δ 39.76) in the major α -C-allyl glycoside than in the β -isomer (δ 37.61). Yield and stereoselectivity were both increased when catalytic Sc(OTf)₃ was used (83%, α – β 82:18). Lanthanide triflates are known to catalyze allylation reactions of carbonyl compounds^{27,28} and aldehyde acetals, but not ketone dimethyl acetals.²⁹ Coordination of the small Sc(III) cation at the more nucleophilic O-6 atom induces formation of the five-membered cyclic oxycarbenium ion C which is preferentially attacked by the nucleophile on its less hindered α-face with concomitant formation of TMS triflate. The Sc alkoxide then reacts with TMS triflate to regenerate Sc(OTf)₃ and deliver the 6-O-trimethylsilyl derivative 25a which can be visualized by tlc and is converted to 25 by acid treatment (Scheme 8). Yamamoto³⁰ has reported stereoselective reductions of bicyclic acetals by DIBAH or Et₃SiH–TiCl₄ in CH₂Cl₂; the total lack of regioselectivity in the case of a [2.2.1] bicyclic acetal is striking and can be probably attributed to the bigger size of Al and Ti Lewis acids when compared to Sc cation. The absence of oxygen substituents precludes any chelation at the opposite of carbohydrate bicyclic acetals; coordination of O-1 and O-3 to Sc in intermediate C might contribute to the increase of diastereoisomeric excess when going from TMS triflate to Sc(OTf)₃ (de 46 vs 64%). Acetal 11 reacted with allyltrimethylsilane in the presence of catalytic Sc(OTf)₃ to give the tetrahydrofuran compound **26** (79%, α – β 67:33). Diastereoisomers **26** α and **26** β were separated by chromatography and showed optical rotation values $[\alpha]_p + 49$ and +36 respectively. Their five-membered ring structure was ascertained as follows: addition of trichloroacetyl isocyanate (Cl₃CCONCO) to ¹H NMR samples induced $\Delta\delta$ +0.7 and +0.5-0.6 ppm shifts of H-6a and H-6b signals due to the formation of a carbamate function at O-6; H-5 underwent only a 0.1 ppm shift, whereas the presence of a carbamate group at O-5 of a six-membered ring isomer would have shifted it more than 1 ppm. 13 C NMR signals of the methyl group at δ 21.27 and 23.31 and allylic CH₂ at δ 43.19 and 41.22 in $\alpha\text{-}$ and $\beta\text{-}products$ respectively confirmed the attribution of configuration. Finally, acetal **23** with a free OH-3 group gave under $Sc(OTf)_3$ -promoted allylation a 70:30 mixture of α - and β -C-allyl furanosides **27** in 85% yield. In conclusion, the opening reaction of now easily accessible 2,6-anhydro- β -D-fructofuranoses by allyltrimethylsilane in the presence of catalytic Sc(OTf)₃ occurs with a total regioselectivity and an acceptable α -stereoselectivity, leading to 2,2,5-trisubstituted tetrahydrofurans in high yield. Other *C*-nucleophiles, such as 2-(trimethylsilyloxy)furan and various silyl enolates, might lead to highly functionalized fragments of natural products. The $2\rightarrow 1$ migration of anomeric phenylthio group in D-fructopyranosides can probably be extended to other thiols and PhSeH, offering better opportunities for radical reduction and coupling reactions at C-1. # 1. Experimental #### 1.1. General methods Melting points were determined using a Kofler hot stage apparatus under a Reichert microscope and are uncorrected. Optical rotations were measured at room temperature on a Perkin–Elmer 341 automatic polarimeter (concentration in g/100 mL). NMR spectra were recorded on a Bruker ¹H NMR were obtained at ARX-400 instrument. 400.13 MHz (s=singlet, d=doublet, t=triplet, m=multiplet, bd=broad). Assignments were confirmed by homonuclear 2D COSY correlated experiments. ¹³C NMR were obtained at 100.62 MHz in the proton-decoupled mode. Heteronuclear 2D correlated spectra were recorded in order to assist in carbon resonance assignments. Chemical shifts are given in ppm relative to internal TMS $(\delta \text{ scale})$ and coupling constants (J) in Hz. Thin layer chromatography (TLC) was performed on Merck DC-Alufolien Kieselgel 60 F_{254} Art. 5554 with detection by UV light and charring with 1:10 H₂SO₄-EtOH. Flash chromatography was performed on Merck Kieselgel 60 (40–63 μm). All solvents were dried and distilled according to standard laboratory procedures. Elemental analyses were performed by the Service de Microanalyse du Centre National de la Recherche Scientifique (Gif-sur-Yvette, France). High resolution mass spectra (HRMS) were obtained by electrospray ionization (ESI) in a positive mode on a MS/ MS ZABSpec TOF spectrometer (Micromass) at the Centre Régional de Mesures Physiques de l'Ouest. 1.1.1. Phenyl 1,3,4,5-tetra-O-acetyl-2-thio-β-D-fructopyranoside (4). Boron trifluoride etherate (1.78 mL, 14.2 mmol) was added dropwise under stirring to a solution of 2'-chloroethyl 1,3,4,5-tetra-O-acetyl-β-D-fructopyranoside 3 (Ref. 12, 2 g, 4.9 mmol) and thiophenol (0.73 mL, 7.1 mmol) in dry CH₂Cl₂ (11 mL) at 0°C under nitrogen. The mixture was stirred at room temperature for 4 h, then diluted with CH₂Cl₂ (20 mL) and washed with saturated aqueous NaHCO₃ (25 mL) until neutral. The aqueous phase was extracted with CH₂Cl₂ (30 mL) and the combined organic extracts were dried (MgSO₄), then concentrated. The residue was crystallized from ethanol to give 4 $(1.09 \text{ g}, 51\%); R_f 0.69 \text{ (CH}_2\text{Cl}_2\text{-Et}_2\text{O}, 9:1); mp 130-$ 131°C; $[\alpha]_D$ -200 (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.46–7.30 (m, 5H, Ph), 5.77 (d, 1H, $J_{3,4}$ =10.2 Hz, H-3), 5.43 (m, 1H, H-5), 5.41 (dd, 1H, $J_{4,5}$ =3.3 Hz, H-4), 4.58 (dd, 1H, $J_{5,6a}$ =1 Hz, $J_{6a,6b}$ =13 Hz, H-6a), 4.35 (d, 1H, $J_{1a,1b}$ =12.2 Hz, H-1a), 3.96 (dd, 1H, $J_{5,6b}$ =1.8 Hz, H-6b), 3.89 (d, 1H, H-1b), 2.16, 2.10, 2.07 and 2.01 (4 s, 12H, 4 OAc); ¹³C NMR (CDCl₃): δ 170.40, 170.27, 170.07 and 169.48 (4C=O), 135.82 (C quat. arom.), 129.32, 129.18 and 128.07 (5C arom.), 91.31 (C-2), 69.03, 68.89, 66.44, 65.40 and 63.22 (C-1,3,4,5,6), 20.99, 20.81, 20.75 and 20.73 (4 CH₃CO). Anal. Calcd for C₂₀H₂₄O₉S: C, 54.54; H, 5.49. Found: C, 54.55; H, 5.48. The mother liquors were chromatographed on silica gel ($CH_2Cl_2-Et_2O$, 95:5) to give a further amount of **4** (0.49 g, 23%). **1.1.2.** Phenyl 3,4,5-tri-*O*-acetyl-1-deoxy-1-phenylthio-2-thio-β-D-fructopyranoside (5). Boron trifluoride etherate (0.86 mL, 6.8 mmol) was added dropwise under stirring to a solution of 4 (1 g, 2.3 mmol) and thiophenol (0.36 mL, 3.5 mmol) in dry CH₂Cl₂ (10 mL) at 0°C under nitrogen. The mixture was stirred at room temperature for 8 h, further additions of boron trifluoride etherate (2×0.35 mL, 2×2.8 mmol) being made after 2 and 5 h. The solution was worked up as described for the preparation of 4. The residue was purified by chromatography (CH₂Cl₂-Et₂O, 97:3) to give 5 (0.6 g, 54%) as an amorphous solid; $R_{\rm f}$ 0.52 (CH₂Cl₂–Et₂O, 95:5); $[\alpha]_D$ –113 (*c* 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.40–7.06 (m, 10H, 2Ph), 6.01 (d, 1H, $J_{3,4}$ =9.7 Hz, H-3), 5.35–5.32 (m, 2H, H-4,5), 4.42 (d, 1H, $J_{6a,6b}$ =13 Hz, H-6a), 3.79 (dd, 1H, $J_{5,6b}$ =1.5 Hz, H-6b), 3.32 (d, 1H, $J_{1a,1b}$ =13.7 Hz, H-1a), 3.07 (d, 1H, H-1b), 2.10, 2.03 and 1.95 (3 s, 9H, 3 OAc); 13 C NMR (CDCl₃): δ 170.52, 170.15 and 169.45 (3C=O), 136.78 and 135.98 (2C quat. arom.), 130.15, 129.12, 129.09, 129.05, 129.01, 128.62, 128.26, 126.27 and 125.34 (10C arom.), 93.54 (C-2), 69.48, 68.85 and 68.29 (C-3,4,5), 63.02 (C-6), 42.77 (C-1), 21.07, 20.91 and 20.75 (3 CH₃CO). Anal. Calcd for C₂₄H₂₆O₇S₂: C, 58.76; H, 5.34. Found: C, 58.68; H, 5.35. 1.1.3. Phenyl 2-thio-β-D-fructopyranoside (6) and phenyl 1-deoxy-1-phenylthio-2-thio-β-D-fructopyranoside (7). Boron trifluoride etherate (5.6 mL, 44.6 mmol) was added dropwise under stirring to a solution of 3 (2 g, 4.9 mmol) and thiophenol (1.55 mL, 15.2 mmol) in dry CH₂Cl₂ (20 mL). The mixture was stirred for 14 h at room temperature, then worked up as described for the preparation of 4. A solution of the residue in MeOH–NEt₃–H₂O (5:1:1, 35 mL) was heated for 16 h at 40°C, then concentrated. The resulting solid was extracted several times with hot water, then crystallized from ethanol to give 7 (0.9 g, 51%); $R_{\rm f}$ 0.50 $(CH_2Cl_2-MeOH, 9:1); mp 165-166^{\circ}C; [\alpha]_D -122 (c 1,$ MeOH); 1 H NMR (CD₃OD): δ 7.51–7.08 (m, 10H, 2Ph), 4.48 (d, 1H, $J_{3,4}$ =9.9 Hz, H-3), 4.42 (dd, 1H, $J_{5.6a}$ =1.3 Hz, $J_{6a.6b}$ =12.5 Hz, H-6a), 3.98 (m, 1H, H-5), 3.88 (dd, 1H, $J_{4.5}$ =3.3 Hz, H-4), 3.78 (dd, 1H, $J_{5,6b}$ =1.8 Hz, H-6b), 3.58 (d, 1H, $J_{1a,1b}$ =13.5 Hz, H-1a), 3.24 (d, 1H, H-1b); ¹³C NMR (CD₃OD): δ 137.26 (2C quat. arom.), 131.88, 130.31, 129.87, 129.65, 129.60 and 126.71 (10C arom.), 97.34 (C-2), 72.06 (C-4), 70.87 (C-5), 70.45 (C-3), 66.91 (C-6), 42.96 (C-1). Anal. Calcd for C₁₈H₂₀O₄S₂: C, 59.32; H, 5.53. Found: C, 59.23; H, 5.54. The cooled aqueous filtrate was extracted with EtOAc, then concentrated. The residue was crystallized from ethanol to give **6** (0.54 g, 41%); $R_{\rm f}$ 0.22 (CH₂Cl₂–MeOH, 9:1); mp 205–207°C; $[\alpha]_{\rm b}$ –277 (c 1, MeOH); ¹H NMR (CD₃OD): δ 7.49–7.30 (m, 5H, Ph), 4.47 (dd, 1H, $J_{5,6a}$ =1.4 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 4.28 (d, 1H, $J_{3,4}$ =10 Hz, H-3), 3.95 (m, 1H, H-5), 3.88 (dd, 1H, $J_{4,5}$ =3.5 Hz, H-4), 3.86 (d, 1H, $J_{1a,1b}$ =11.7 Hz, H-1a), 3.80 (dd, 1H, $J_{5,6b}$ =1.9 Hz, H-6b), 3.43 (d, 1H, H-1b); ¹³C NMR (CD₃OD): δ 137.01 (C quat. arom.), 131.67, 129.68 and 129.39 (5C arom.), 96.25 (C-2), 72.02 (C-4), 71.04 (C-5), 69.23 (C-3), 66.60 (C-6), 66.03 (C-1). Anal. Calcd for C₁₂H₁₆O₅S: C, 52.93; H, 5.92. Found: C, 52.86; H, 5.94. **1.1.4. 2,6-Anhydro-β-D-fructofuranose** (1). A mixture of thioglycoside **6** (0.5 g, 1.8 mmol), (Bu₃Sn)₂O (0.94 mL, 1.8 mmol) and activated 4 Å powdered molecular sieves (2 g) in dry propionitrile (25 mL) was heated at reflux for 20 h under vigorous stirring. The suspension was cooled, then filtered. The filtrate was concentrated and the residue was vigorously stirred for 1 h at room temperature in petroleum ether– H_2O (1:1, 30 mL). The aqueous phase was evaporated under reduced pressure to give **1** (0.28 g, 94%) as an oil; R_f 0.38 (CH₂Cl₂–MeOH, 4:1); [α]_D –110 (c 0.5, MeOH); lit.⁷ mp 118–119°C, [α]_D –107 (c 1, H_2O); ¹H NMR (CD₃OD): δ 4.50 (dd, 1H, $J_{3,5}$ =1.6 Hz, $J_{5,6exo}$ =3.9 Hz, H-5), 3.84 (dd, 1H, $J_{3,4}$ =1.3 Hz, H-3), 3.82 (s, 2H, H-1a,1b), 3.69 (d, 1H, H-4), 3.67 (d, 1H, $J_{6endo,6exo}$ =7.1 Hz, H-6endo), 3.61 (dd, 1H, H-6exo); ¹³C NMR (CD₃OD): δ 109.23 (C-2), 84.38 (C-3), 82.96 (C-5), 80.11 (C-4), 67.50 (C-6), 59.19 (C-1). Anal. Calcd for $C_6H_{10}O_5$: C, 44.55; H, 6.22. Found: C, 44.20; H, 6.25. 2,6-Anhydro-1,3,4-tri-O-benzyl-β-D-fructofura-1.1.5. nose (9). Sodium hydride (60% suspension in oil, 266 mg, 6.65 mmol) was added portionwise to a solution of triol 1 (300 mg, 1.85 mmol) and benzyl bromide (0.8 mL, 6.74 mmol) in dry DMF (3 mL) at 0°C. The mixture was stirred at room temperature for 5 h, then quenched at 0°C with MeOH (2 mL), diluted with ether (35 mL), washed with saturated aqueous NaCl, dried (MgSO₄) and concentrated. The residue was purified by chromatography (CH_2Cl_2) to give **9** (534 mg, 67%) as a yellow oil; R_f 0.62 $(CH_2Cl_2-Et_2O, 95:5); [\alpha]_D -28 (c 1.14, CHCl_3); {}^1H NMR$ (CDCl₃): δ 7.33–7.22 (m, 15H, 3Ph), 4.67 (dd, 1H, $J_{3.5}$ =1.6 Hz, $J_{5.6exo}$ =4.2 Hz, H-5), 4.64 and 4.53 (2d, 2H, J=12.1 Hz, CH_2Ph), 4.54 and 4.49 (2d, 2H, J=12.1 Hz, CH_2Ph), 4.43 and 4.36 (2d, 2H, J=12 Hz, CH_2Ph), 3.98 (dd, 1H, $J_{3,4}$ =1.3 Hz, H-3), 3.83 (d, 1H, $J_{1a.1b}$ =11.7 Hz, H-1a), 3.79 (d, 1H, H-1b), 3.66 (dd, 1H, J_{6endo}, _{6exo}=7.1 Hz, H-6exo), 3.59 (d, 1H, H-6endo), 3.57 (d, 1H, H-4); 13 C NMR (CDCl₃): δ 137.84, 137.83 and 137.68 (3C quat. arom.), 128.63, 128.55, 128.53, 128.31, 128.10, 128.05, 127.98 and 127.88 (15C arom.), 107.35 (C-2), 86.54, 83.97 and 80.36 (C-3,4,5), 73.79, 72.91 and 71.15 (3 CH₂Ph), 66.42 and 66.23 (C-1,6). HRMS m/z $473.1932 \text{ [C}_{27}\text{H}_{28}\text{O}_{5}\cdot\text{H}_{2}\text{O} \text{ Na } (\text{M}+\text{H}_{2}\text{O}+\text{Na}^{+}) \text{ requires}$ 473.19401]. 1.1.6. 2,6-Anhydro-1-deoxy-1-phenylthio-β-D-fructo**furanose** (8). A mixture of thioglycoside 7 (0.21 g, 0.58 mmol), (Bu₃Sn)₂O (0.29 mL, 0.58 mmol) and activated 4 A powdered molecular sieves (0.5 g) in dry propionitrile (10 mL) was heated at reflux for 5 h under vigorous stirring. The mixture was worked up as described for the preparation of **1** to give **8** (0.124 g, 85%) as an oil; R_f 0.46 (Et₂O– acetone, 4:1); $[\alpha]_D$ -58 (c 0.83, MeOH); ¹H NMR (CD₃OD): δ 7.46–7.15 (m, 5H, Ph), 4.50 (dd, 1H, $J_{3.5}=1.5 \text{ Hz}, J_{5.6exo}=4.1 \text{ Hz}, H-5), 3.91 \text{ (dd, 1H, } J_{3.4}=$ 1.3 Hz, H-3), 3.72 (d, 1H, H-4), 3.69 (d, 1H, $J_{6endo,6exo}$ = 7.1 Hz, H-6endo), 3.64 (dd, 1H, H-6exo), 3.45 (d, 1H, $J_{1a,1b}$ =14.4 Hz, H-1a), 3.38 (d, 1H, H-1b); ¹³C NMR (CD₃OD): δ 138.39 (C quat. arom.), 130.17, 129.87 and 127.06 (5C arom.), 108.99 (C-2), 84.97 (C-3), 84.42 (C-5), 80.18 (C-4), 67.92 (C-6), 34.09 (C-1). Anal. Calcd for C₁₂H₁₄O₄S·0.25H₂O: C, 55.69; H, 5.65. Found: C, 55.69; H, 5.72. **1.1.7. 2,6-Anhydro-3,4-di-***O***-benzyl-1-deoxy-1-phenyl-thio-**β**-D-fructofuranose** (**10**). Sodium hydride (60% suspension in oil, 200 mg, 5 mmol) was added portionwise to a solution of diol 8 (575 mg, 2.26 mmol) and benzyl bromide (0.65 mL, 5.43 mmol) in dry DMF (3 mL) at 0°C. The mixture was stirred at room temperature for 1 h, then worked up as described for the preparation of 9. The residue was purified by chromatography (CH₂Cl₂-Et₂O, 95:5) to give **10** (837 mg, 85%) as an oil; R_f 0.72 (petroleum ether–EtOAc, 1:1); $[\alpha]_D$ –43 (*c* 0.99, CHCl₃); ¹H NMR (CDCl₃): δ 7.43–7.15 (m, 15H, 3Ph), 4.69 (dd, 1H, $J_{3,5}=1.6 \text{ Hz}$, $J_{5,6exo}=4.2 \text{ Hz}$, H-5), 4.51 and 4.42 (2d, 2H, J=12 Hz, CH_2Ph), 4.49 and 4.45 (2d, 2H, J=12.8 Hz, CH_2Ph), 3.96 (dd, 1H, $J_{3,4}=1.2$ Hz, H-3), 3.75 (dd, 1H, *J*_{6endo,6exo}=7.1 Hz, H-6exo), 3.65 (d, 1H, H-6endo), 3.61 (d, 1H, H-4), 3.48 (d, 1H, $J_{1a,1b}$ =14.4 Hz, H-1a), 3.38 (d, 1H, H-1b); ¹³C NMR (CDCl₃): δ 137.53 and 136.63 (3C quat. arom.), 129.49, 128.94, 128.59, 128.53, 128.12, 128.05, 127.90 and 126.28 (15C arom.), 107.23 (C-2), 88.31 (C-3), 83.89 (C-5), 79.97 (C-4), 72.92 and 71.31 (2 CH₂Ph), 66.96 (C-6), 33.82 (C-1). Anal. Calcd for C₂₆H₂₆O₄S: C, 71.86; H, 6.03. Found: C, 71.91; H, 6.12. 1.1.8. 2,6-Anhydro-3,4-di-O-benzyl-1-deoxy-β-D-fructofuranose (11). Raney nickel (Acros, washed with water, then THF, 550 mg) was added portionwise within 3 h at room temperature to a solution of thioether 10 (150 mg, 0.35 mmol) in dry THF (5 mL). The mixture was filtered and the solid was washed with THF (3×10 mL). The combined filtrates were concentrated and the residue was purified by chromatography (CH₂Cl₂-Et₂O, 95:5) to give 11 (67 mg, 62%) as an oil; R_f 0.54 (petroleum ether-EtOAc, 3:2); $[\alpha]_D$ -35 (c 0.94, CHCl₃); ¹H NMR (CDCl₃): δ 7.39– 7.29 (m, 10H, 2Ph), 4.63 (dd, 1H, $J_{3.5}$ =1.5 Hz, $J_{5.6exo}$ =4.3 Hz, H-5), 4.62 and 4.58 (2d, 2H, J=12.2 Hz, CH_2Ph), 4.53 and 4.45 (2d, 2H, J=12 Hz, CH_2Ph), 3.70 (dd, 1H, J_{6endo,6exo}=7.1 Hz, H-6exo), 3.66 (dd, 1H, $J_{3,4}$ =1.1 Hz, H-3), 3.59 (d, 1H, H-4), 3.58 (d, 1H, H-6*endo*), 1.59 (s, 3H, C*H*₃); ¹³C NMR (CDCl₃): δ 137.58 (2C quat. arom.), 128.61, 128.55, 128.14, 128.05 and 127.92 (10C arom.), 106.56 (C-2), 90.01, 84.16 and 79.67 (C-3,4,5), 72.85 and 71.33 (2 CH₂Ph), 66.50 (C-6), 16.47 (C-1). Anal. Calcd for $C_{20}H_{22}O_4$: C, 73.60; H, 6.79. Found: C, 73.57; H, 6.79. 1.1.9. Phenyl 4-O-benzoyl-2-thio-β-D-fructopyranoside (13) and phenyl 1,4-di-O-benzoyl-2-thio-β-D-fructopyranoside (14). A mixture of thioglycoside 6 (200 mg, 0.73 mmol), Bu₂SnO (220 mg, 0.88 mmol) and activated 4 Å powdered molecular sieves (500 mg) in dry acetonitrile (10 mL) was heated at reflux for 5 h under vigorous stirring, then cooled to room temperature under a stream of nitrogen. Benzoyl chloride (128 µL, 1.1 mmol) was added and the mixture was stirred for 2.5 h at room temperature. The solution was filtered, then concentrated and the residue was purified by chromatography (petroleum ether–EtOAc, 1:1) to give first dibenzoate 14 (90 mg, 26%) which crystallized from ethanol; R_f 0.85 (CH₂Cl₂-MeOH, 4:1); mp 180°C; $[\alpha]_D$ -128 (c 1.07, CHCl₃); ¹H NMR (CD₃OD): δ 8.06 and 7.97 $(2d, 4H, J=7.2 \text{ Hz}, C_6H_3H-oH-o'CO), 7.51-7.28 \text{ (m, 11H, }$ Ph), 5.35 (dd, 1H, $J_{3,4}$ =10.5 Hz, $J_{4,5}$ =3.1 Hz, H-4), 4.73 (d, 1H, H-3), 4.59 (d, 1H, $J_{1a,1b}$ =11.6 Hz, H-1a), 4.50 (dd, 1H, $J_{5,6a}$ =1 Hz, $J_{6a,6b}$ =12.5 Hz, H-6a), 4.31 (d, 1H, H-1b), 4.24 (m, 1H, H-5), 3.78 (dd, 1H, $J_{5.6b}$ =1.9 Hz, H-6b); ¹³C NMR (CDCl₃): δ 166.86 and 166.47 (2C=O), 135.93, 133.61 and 133.44 (3C quat. arom.), 129.97, 129.95, 129.54, 129.44, 129.23, 129.17, 128.58, 128.56 and 128.52 (15C arom.), 94.09 (C-2), 73.97, 68.23, 67.33, 66.30 and 65.28 (C-1,3,4,5,6). Anal. Calcd for $C_{26}H_{24}O_7S \cdot 0.5H_2O$: C, 63.79; H, 5.15. Found: C, 63.97; H, 5.01. Then was eluted monobenzoate **13** (192 mg, 69%) as an oil; $R_{\rm f}$ 0.74 (CH₂Cl₂–MeOH, 4:1); ¹H NMR (CD₃OD): δ 8.02 (d, 2H, J=7.2 Hz, C₆H₃H–oH–o'CO), 7.51–7.18 (m, 8H, Ph), 5.24 (dd, 1H, $J_{3,4}$ =10.6 Hz, $J_{4,5}$ =3.2 Hz, H-4), 4.60 (d, 1H, H-3), 4.47 (dd, 1H, $J_{5,6a}$ =1 Hz, $J_{6a,6b}$ =12.4 Hz, H-6a), 4.16 (m, 1H, H-5), 3.81 (d, 1H, $J_{1a,1b}$ =11.8 Hz, H-1a), 3.72 (dd, 1H, $J_{5,6b}$ =1.9 Hz, H-6b), 3.38 (d, 1H, H-1b). HRMS m/z 399.0879 [C₁₉H₂₀O₆NaS (M+Na⁺) requires 399.08783]. 1.1.10. Phenyl 4-O-benzoyl-1-deoxy-1-phenylthio-2-thio**β-D-fructopyranoside** (15). A mixture of thioglycoside 7 (500 mg, 1.37 mmol), Bu₂SnO (376 mg, 1.51 mmol) and activated 4 Å powdered molecular sieves (2 g) in dry acetonitrile (25 mL) was heated at reflux for 5 h under vigorous stirring, then cooled in an ice-bath under a stream of nitrogen. Benzoyl chloride (160 µL, 1.37 mmol) was added and the mixture was stirred for 16 h at room temperature under nitrogen. The solution was filtered, then concentrated and the residue was purified by chromatography (petroleum ether-EtOAc, 7:3) to give 15 (450 mg, 70%) which crystallized from ethanol; R_f 0.80 (EtOAc-petroleum ether, 3:2); mp 170.5°C; [α]_D -87 (c 0.82, CHCl₃); ¹H NMR (CDCl₃): δ 8.10 (d, 2H, J=7.1 Hz, $C_6H_3H-oH-o'CO$), 7.61–7.12 (m, 13H, Ph), 5.42 (dd, 1H, $J_{3,4}$ =10.4 Hz, $J_{4,5}$ =3.1 Hz, H-4), 4.90 (dd, 1H, $J_{3,OH}$ =5 Hz, H-3), 4.59 (dd, 1H, $J_{5,6a}$ =1 Hz, $J_{6a.6b}$ =12.4 Hz, H-6a), 4.31 (m, 1H, H-5), 3.94 (dd, 1H, $J_{5,6b}$ =2.1 Hz, H-6b), 3.60 (d, 1H, $J_{1a,1b}$ =13.9 Hz, H-1a), 3.37 (d, 1H, H-1b), 2.57 (d, 1H, OH-3), 2.34 (bd, 1H, OH-5); 13 C NMR (CDCl₃): δ 166.70 (C=O), 136.79, 136.13 and 133.64 (3C quat. arom.), 130.00, 129.49, 129.42, 129.15, 129.10, 128.96, 128.91, 128.59 and 126.25 (15C arom.), 95.91 (C-2), 74.70, 68.28, 68.27 and 65.36 (C-3,4,5,6), 42.25 (C-1). Anal. Calcd for C₂₅H₂₄O₅S₂·0.25H₂O: C, 63.47; H, 5.22. Found: C, 63.51; H, 5.21. 1.1.11. Phenyl 5-O-benzoyl-2-thio-β-D-fructopyranoside (17). A mixture of the 4-O-benzoyl compound 13 (50 mg, 0.13 mmol), $(Bu_3Sn)_2O$ (71 μ L, 0.13 mmol) and activated 4 A powdered molecular sieves (200 mg) in dry propionitrile (4 mL) was heated at reflux for 2.5 h under vigorous stirring, then cooled, filtered and concentrated. The residue was purified by chromatography (EtOAc-petroleum ether, 7:3) to give **17** (35 mg, 70%) as an oil; R_f 0.48 (EtOAc– petroleum ether, 7:3); ¹H NMR (CD₃OD): δ 7.97 (d, 2H, $J=7.2 \text{ Hz}, C_6H_3H-oH-o'CO), 7.48-7.15 \text{ (m, 8H, Ph), 5.31}$ (m, 1H, H-5), 4.44 (dd, 1H, $J_{5,6a}$ =1 Hz, $J_{6a,6b}$ =12.5 Hz, H-6a), 4.42 (d, 1H, $J_{3,4}$ =10.1 Hz, H-3), 4.05 (dd, 1H, $J_{4,5}$ =3.4 Hz, H-4), 3.83 (dd, 1H, $J_{5,6b}$ =1.9 Hz, H-6b), 3.80 (d, 1H, $J_{1a,1b}$ =11.9 Hz, H-1a), 3.35 (d, 1H, H-1b); ¹³C NMR (CD₃OD): δ 167.65 (C=O), 137.14 and 134.23 (2C quat. arom.), 131.62, 131.53, 130.89, 130.69, 129.72, 129.46, 129.43 and 129.36 (10C arom.), 96.33 (C-2), 74.15, 70.52, 69.37, 65.57 and 64.24 (C-1,3,4,5,6). HRMS m/z 399.0877 $[C_{19}H_{20}O_6NaS (M+Na^+) \text{ requires } 399.08783].$ **1.1.12. Phenyl 5-***O***-benzoyl-1-deoxy-1-phenylthio-2-thioβ-D-fructopyranoside (18).** A mixture of the 4-*O*-benzoyl compound 15 (50 mg, 0.11 mmol), (Bu₃Sn)₂O (54 μL, 0.11 mmol) and activated 4 Å powdered molecular sieves (200 mg) in dry propionitrile (5 mL) was heated at reflux for 35 min under vigorous stirring, then cooled, filtered and concentrated. The residue was purified by chromatography (petroleum ether-EtOAc, 3:2) to give 18 (35 mg, 70%) as an oil; R_f 0.34 (petroleum ether–EtOAc, 3:2); ¹H NMR (CDCl₃): δ 8.15 (d, 2H, J=7.2 Hz, $C_6H_3H-oH-o'CO)$, 7.58-7.04 (m, 13H, Ph), 5.49 (m, 1H, H-5), 4.73 (d, 1H, $J_{3,4}$ =9.9 Hz, H-3), 4.52 (d, 1H, $J_{6a,6b}$ =12.9 Hz, H-6a), 4.22 (dd, 1H, $J_{4,5}$ =2.9 Hz, H-4), 4.02 (dd, 1H, $J_{5,6b}$ =1 Hz, H-6b), 3.62 (d, 1H, $J_{1a,1b}$ =13.9 Hz, H-1a), 3.34 (d, 1H, H-1b), 3.00 (m, 2H, 2 OH); 13 C NMR (CDCl₃): δ 166.53 (C=O), 136.86, 135.95 and 133.47 (3C quat. arom.), 130.08, 129.71, 129.36, 129.27, 129.08, 128.95, 128.87, 128.52 and 126.16 (15C arom.), 95.12 (C-2), 71.85, 70.48, 70.19 and 63.41 (C-3,4,5,6), 42.00 (C-1). **1.1.13.** Phenyl **1,3,5-tri-***O*-acetyl-**4**-*O*-benzyl-**2**-thio-β-D-fructopyranoside (**20**). A mixture of thioglycoside **6** (200 mg, 0.73 mmol), Bu₂SnO (220 mg, 0.88 mmol) and activated 4 Å powdered molecular sieves (500 mg) in dry acetonitrile (10 mL) was heated at reflux for 5 h under vigorous stirring, then cooled to room temperature under a stream of nitrogen. Benzyl bromide (105 μ L, 0.88 mmol) and tetrabutylammonium iodide (271 mg, 0.73 mmol) were added and the mixture was again heated at reflux for 17 h under stirring, then cooled, filtered and concentrated. The residue was purified by chromatography (petroleum ether, then EtOAc-petroleum ether, 3:2) to give **19** (153 mg, 57%) as an oil; R_f 0.54 (EtOAc). Acetic anhydride (1 mL) was added to a solution of compound 19 (153 mg, 0.42 mmol) in dry pyridine (3 mL). The solution was left for 16 h at room temperature, then quenched at 0°C with MeOH (0.5 mL) and concentrated. The residue was purified by chromatography (petroleum ether–EtOAc, 4:1) to give **20** (186 mg, 90%) as an oil; $[\alpha]_D$ –109 (c 1.1, CHCl₃); ¹H NMR (CDCl₃): δ 7.39–7.19 (m, 10H, 2Ph), 5.66 (d, 1H, $J_{3,4}$ =10.3 Hz, H-3), 5.41 (ddd, 1H, H-5), 4.63 and 4.43 (2d, 2H, J=12 Hz, CH_2Ph), 4.42 (dd, 1H, $J_{5,6a}=1.3$ Hz, $J_{6a,6b}=13$ Hz, H-6a), 4.28 (d, 1H, $J_{1a,1b}$ =12.1 Hz, H-1a), 3.94 (dd, 1H, $J_{4.5}$ =3.5 Hz, H-4), 3.92 (dd, 1H, $J_{5.6b}$ =2.1 Hz, H-6b), 3.77 (d, 1H, H-1b), 2.09, 2.01 and 1.99 (3 s, 9H, 3 OAc); ¹³C NMR (CDCl₃): δ 170.32, 170.30 and 169.29 (3C=O), 137.32 and 135.47 (2C quat. arom.), 128.95, 128.89, 128.27, 128.15, 127.69 and 127.39 (10C arom.), 91.25 (C-2), 74.23 (C-4), 71.47 (CH₂Ph), 67.71 and 67.61 (C-3,5), 65.26 and 63.26 (C-1,6), 20.91, 20.68 and 20.54 (3 CH_3CO). HRMS m/z: 511.1407 [C₂₅H₂₈O₈NaS $(M+Na^{+})$ requires 511.14026]. **1.1.14.** Phenyl 4-*O*-benzyl-1-deoxy-1-phenylthio-2-thio-β-D-fructopyranoside (21). A mixture of thioglycoside 7 (4 g, 11 mmol) and Bu₂SnO (3.55 g, 14.3 mmol) in methanol (80 mL) was heated at reflux for 4 h under vigorous stirring, then cooled and concentrated. The residue was dried under good vacuum to eliminate traces of methanol, then dissolved in DMF (30 mL). Benzyl bromide (2 mL, 16.7 mmol) and CsF (2.17 g, 14.3 mmol) were added and the mixture was stirred at room temperature for 17 h, then diluted with CH₂Cl₂ (80 mL). The solution was washed with 1 M aqueous KF (100 mL), then water (100 mL), dried (MgSO₄) and concentrated. The residue was purified by chromatography (CH₂Cl₂-MeOH, 99.5:0.5) to give **21** (2.88 g, 58%) which crystallized from ethanol; R_f 0.80 (EtOAc-petroleum ether, 3:2); mp 172°C; $[\alpha]_D$ -52 (c 1.01, CHCl₃); ¹H NMR (CDCl₃): δ 7.49-7.10 (m, 15H, 3Ph), 4.76 and 4.68 (2d, 2H, J=11.5 Hz, CH_2 Ph), $4.64 \text{ (dd, 1H, } J_{3.4} = 9.8 \text{ Hz, } J_{3.OH} = 3.1 \text{ Hz, H-3), } 4.40 \text{ (dd, 1H, }$ $J_{5,6a}$ =1.1 Hz, $J_{6a,6b}$ =12.6 Hz, H-6a), 4.13 (m, 1H, H-5), 3.97 (dd, 1H, $J_{5.6b}$ =1.8 Hz, H-6b), 3.84 (dd, 1H, $J_{4.5}$ =3.2 Hz, H-4), 3.58 (d, 1H, $J_{1a,1b}$ =13.8 Hz, H-1a), 3.32 (d, 1H, H-1b), 2.58 (d, 1H, OH-3), 2.47 (bd, 1H, OH-5); ¹³C NMR (CDCl₃): δ 137.63, 137.07 and 135.94 (3C quat. arom.), 129.67, 129.60, 129.14, 128.92, 128.90, 128.46, 128.14 and 126.19 (15C arom.), 95.09 (C-2), 78.97 (C-4), 72.10, 69.02, 66.71 and 64.99 (C-3,5,6, CH₂Ph), 42.39 (C-1). Anal. Calcd for $C_{25}H_{26}O_4S_2$: C, 66.05; H, 5.76. Found: C, 66.15; H, 5.77. 1.1.15. 2,6-Anhydro-4-*O*-benzyl-1-deoxy-1-phenylthio**β-D-fructofuranose** (22). A mixture of thioglycoside 21 (455 mg, 1 mmol), (Bu₃Sn)₂O (0.5 mL, 1 mmol) andactivated 4 Å powdered molecular sieves (1 g) in dry propionitrile (20 mL) was heated at reflux for 5 h under vigorous stirring, then cooled, filtered and concentrated. The residue was purified by chromatography (petroleum ether, then petroleum ether-EtOAc, 7:3) to give 22 (293 mg, 85%) as an oil; R_f 0.40 (CH₂Cl₂-Et₂O, 95:5); ¹H NMR (CDCl₃): δ 7.44–7.16 (m, 10H, 2Ph), 4.68 (dd, 1H, $J_{3,5}=1.4 \text{ Hz}$, $J_{5,6exo}=4 \text{ Hz}$, H-5), 4.63 and 4.52 (2d, 2H, $J=12 \text{ Hz}, \text{ C}H_2\text{Ph}), 4.06 \text{ (ddd, 1H, H-3)}, 3.72 \text{ (dd, 1H, H-3)}$ J_{6endo,6exo}=7.3 Hz, H-6exo), 3.62 (d, 1H, H-6endo), 3.52 (d, 1H, $J_{3.4}$ =1 Hz, H-4), 3.49 (d, 1H, $J_{1a,1b}$ =14.4 Hz, H-1a), 3.42 (d, 1H, H-1b), 2.35 (d, 1H, $J_{3,OH}$ =10 Hz, OH-3); 13 C NMR (CDCl₃): δ 137.40 and 136.27 (2C quat. arom.), 129.85, 129.12, 128.69, 128.12 and 126.67 (10C arom.), 107.70 (C-2), 85.87, 82.04 and 80.90 (C-3,4,5), 70.82 (CH₂Ph), 67.36 (C-6), 33.74 (C-1). HRMS m/z $367.0981 [C_{19}H_{20}O_4NaS (M+Na^+) requires 367.09800].$ 1.1.16. 1-(1,3,4-Tri-O-benzyl-p-fructofuranosyl)-prop-2ene (25). TMSOTf (135 µL, 0.75 mmol) was added to a solution of acetal 9 (300 mg, 0.69 mmol) and allyltrimethylsilane (0.57 mL, 3.57 mmol) in dry acetonitrile (5 mL) at -30° C under nitrogen. The mixture was allowed to warm to 0°C, then stirred for 1.5 h at 0°C, diluted with CH₂Cl₂ and washed with saturated aqueous NaHCO3 until neutral. The organic phase was dried (MgSO₄) and concentrated. The residue was purified by chromatography (petroleum ether-EtOAc, 4:1) to give a non separable 73:27 mixture of 25α and 25β (209 mg, 63%) as an oil; R_f 0.42 (CH₂Cl₂– Et₂O, 95:5); 1 H NMR (CDCl₃): δ 7.38–7.26 (m, 15H, 3Ph), 5.93 (m, 0.27H, CH =), 5.79 (m, 0.73H, CH =), 5.14-5.06(m, 0.54H, CH_2 =), 5.10 (dd, 0.73H, 2J =2.2 Hz, 3J =10.2 Hz, CHaHb=), 5.03 (dd, 0.73H, 3J =17.1 Hz, CHaHb=), 4.70–4.53 (m, 6H, 3C H_2 Ph), 4.39 (dd, 0.73H, $J_{3.4}$ =5.5 Hz, $J_{4.5}$ =6.7 Hz, H-4), 4.19 (d, 0.27H, $J_{3.4}$ =4.8 Hz, H-3), 4.12 (dd, 0.27H, $J_{4.5}$ =6.6 Hz, H-4), 4.07 (d, 0.73H, H-3), 4.00-3.94 (m, 1H, H-5), 3.86-3.78 (m, 1H, H-6a), 3.65-3.58 (m, 1H, H-6b), 3.57 (d, 0.73H, $J_{1a.1b}=9.7$ Hz, H-1a), 3.48 (d, 0.73H, H-1b), 3.46 (s, 0.54H, H-1a,1b), 2.88 (m, 0.73H, OH-6), 2.57–2.32 (m, 2H, $CH_2CH=$), 2.05 (m, 0.27H, OH-6); 13 C NMR (CDCl₃, bold for **25** α): δ **138.27**, 138.11, **138.09**, 138.07 and **137.91** (3C quat. arom.), 134.56 and **133.11** (CH=), 128.69–127.76 (15C arom.), **118.98** and 118.46 ($CH_2=$), **86.42** and 86.29 (C-4), 84.62 and **84.29** (C-2), 83.38 and **83.02** (C-5), **81.49** and 80.86 (C-3), **73.71**, 73.62, **72.90**, **72.73**, 72.65, 72.63, 72.54 and **72.13** (C-1, CH_2Ph), 65.44 and **62.89** (C-6), **39.76** and 37.61 ($CH_2CH=$). Anal. Calcd for $C_{30}H_{34}O_5 \cdot H_2O : C$, 73.15; H, 7.37. Found: C, 73.25; H, 7.16. 1.1.17. 1-(3,4-Di-O-benzyl-1-deoxy-α-D-fructofuranosyl)prop-2-ene (26 α) and 1-(3,4-di-O-benzyl-1-deoxy- β -Dfructofuranosyl)-prop-2-ene (26 β). Sc(OTf)₃ (23 mg, 47 μmol) was added to a solution of acetal 11 (175 mg, 0.54 mg) and allyltrimethylsilane (0.44 mL, 2.7 mmol) in dry CH_2Cl_2 (4 mL) at $-30^{\circ}C$ under nitrogen. The mixture was allowed to warm to 0°C, then stirred for 3 h 40 at 0°C, diluted with CH₂Cl₂, washed with water, dried (MgSO₄) and concentrated. The residue was dissolved in 4:1 MeOH-AcOH (5 mL) and the solution was left at room temperature for 4 h, then concentrated. The residue was purified by chromatography (CH₂Cl₂-Et₂O, 95:5) to give a 67:33 mixture of 26α and 26β (156 mg, 79%). Further chromatography gave first **26** β (25 mg, 13%) as an oil; R_f 0.69 (CH₂Cl₂-Et₂O, 7:3); $[\alpha]_{D} + 36$ (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 7.39– 7.29 (m, 10H, 2Ph), 5.85 (m, 1H, CH=), 5.11 and 5.10 (2m, 2H, CH_2 =), 4.62 and 4.56 (2d, 2H, J=11.7 Hz, CH_2Ph), 4.61 and 4.48 (2d, 2H, J=11.5 Hz, CH_2Ph), 4.08 (m, 2H, H-4,5), 3.78 (m, 2H, H-3,6a), 3.68 (m, 1H, H-6b), 2.45 (m, 2H, $CH_2CH=$), 1.98 (bd, 1H, OH-6), 1.33 (s, 3H, CH_3); ¹H NMR (CDCl₃+Cl₃CCONCO): δ 8.45 (s, 1H, NH), 7.37–7.30 (m, 10H, 2Ph), 5.80 (m, 1H, CH=), 5.09 and 5.08 (2m, 2H, ${}^{2}J=2.2$ Hz, ${}^{3}J=9.7$ and 17 Hz, $CH_{2}=$), 4.61 and 4.55 (2d, 2H, J=11.8 Hz, CH₂Ph), 4.57 and 4.51 $(2d, 2H, J=11.6 \text{ Hz}, CH_2\text{Ph}), 4.46 \text{ (m, 1H, H-6a)}, 4.20 \text{ (m, }$ 1H, H-5), 4.18 (dd, 1H, $J_{5,6b}$ =6.7 Hz, $J_{6a,6b}$ =11.4 Hz, H-6b), 3.91 (dd, 1H, $J_{3,4}$ =2.7 Hz, $J_{4,5}$ =4.5 Hz, H-4), 3.77 (d, 1H, H-3), 2.43 (m, 2H, $CH_2CH=$), 1.31 (s, 3H, CH_3); ¹³C NMR (CDCl₃): δ 137.88 and 137.73 (2C quat. arom.), 134.60 (CH=), 128.59, 128.52, 127.97, 127.90, 127.78, 127.72 and 127.65 (10C arom.), 118.07 (CH_2 =), 88.14 (C-3), 84.24 (C-2), 83.88 and 81.92 (C-4,5), 72.38 and 71.88 (2 CH_2Ph), 63.19 (C-6), 41.22 ($CH_2CH=$), 23.31 (CH_3). HRMS m/z 391.1891 [C₂₃H₂₈O₄Na (M+Na⁺) requires 391.18853]. Then were eluted a mixture of 26α and 26β (68 mg, 34%) and finally pure 26α (62 mg, 31%) as an oil; R_f 0.62 $(CH_2Cl_2-Et_2O, 7:3); [\alpha]_D +49 (c 1.08, CHCl_3); {}^1H NMR$ $(CDCl_3)$: δ 7.38–7.29 (m, 10H, 2Ph), 5.82 (m, 1H, CH=), 5.12 and 5.07 (2m, 2H, ${}^{2}J=2$, ${}^{3}J=10.2$ and 17.2 Hz, CH_2 =), 4.61-4.51 (m, 4H, $2CH_2$ Ph), 4.09 (dd, 1H, $J_{3,4}$ =3.4 Hz, $J_{4,5}$ =5.7 Hz, H-4), 3.99 (ddd, 1H, H-5), 3.85 (d, 1H, H-3), 3.78 (dd, 1H, $J_{5,6a}$ =3 Hz, $J_{6a,6b}$ = 11.8 Hz, H-6a), 3.61 (dd, 1H, $J_{5,6b}$ =4.1 Hz, H-6b), 2.45 and 2.38 (2 dd, 2H, 2J =13.9, 3J =6.9 and 7.6 Hz, $CH_2CH=$), 1.95 (bd, 1H, OH-6), 1.29 (s, 3H, CH_3); ¹H NMR (CDCl₃+Cl₃CCONCO): δ 8.45 (s, 1H, NH), 7.38– 7.28 (m, 10H, 2Ph), 5.79 (m, 1H, C H =), 5.11 and 5.05 (2m, 1.01 m)2H, ${}^{2}J=2.1$, ${}^{3}J=10.2$ and 17 Hz, $CH_{2}=$), 4.60 and 4.53 (2d, 2H, J=11.7 Hz, CH_2Ph), 4.57 and 4.53 (2d, 2H, J=12.2 Hz, CH_2Ph), 4.46 (dd, 1H, $J_{5,6a}$ =3.1 Hz, $J_{6a,6b}$ =11.3 Hz, H-6a), 4.18 (dd, 1H, $J_{5.6b}$ =6.4 Hz, H-6b), 4.11 (ddd, 1H, $J_{4.5}$ =5.7 Hz, H-5), 3.94 (dd, 1H, H-4), 3.87 (d, 1H, H-3), 2.40 (m, 2H, $CH_2CH=$), 1.28 (s, 3H, CH_3); ¹³C NMR (CDCl₃): δ 138.00 and 137.92 (2C quat. arom.), 133.69 (CH=), 128.57, 128.50, 127.95, 127.85, 127.72 and 127.66 (10C arom.), 118.54 ($CH_2=$), 86.68 (C-3), 84.32 (C-4), 84.31 (C-2), 81.15 (C-5), 72.51 and 72.02 (2 CH_2Ph), 63.02 (C-6), 43.19 ($CH_2CH=$), 21.27 (CH_3). HRMS m/z 391.1886 [$C_{23}H_{28}O_4Na$ ($M+Na^+$) requires 391.18853]. **1.1.18. 1-(4-***O***-Benzyl-1-deoxy-D-fructofuranosyl)-prop-2-ene** (27). Raney nickel (4.8 g) was added portionwise within 6 h at room temperature to a solution of thioether **22** (1.65 g, 4.8 mmol) in dry THF (25 mL). The mixture was filtered and the solid washed with THF. The combined filtrates were concentrated and the residue was purified by chromatography (petroleum ether–EtOAc, 1:1) to give **23** (452 mg, 40%) as an oil; R_f 0.64 (EtOAc–petroleum ether, 4:1). Further elution with 7:3 EtOAc–petroleum ether gave **24** β (R_f 0.42) and **24** α (R_f 0.32). Sc(OTf)₃ (31 mg, 63 µmol) was added to a solution of 23 (100 mg, 0.42 mmol) and allyltrimethylsilane (0.35 mL, 2.2 mmol) in dry CH_2Cl_2 (4 mL) at $-30^{\circ}C$ under nitrogen. The mixture was allowed to warm to 0°C within 2.5 h, then worked up as described for the preparation of 26. The residue was purified by chromatography (CH₂Cl₂-Et₂O, 4:1) to give a 70:30 mixture (100 mg, 85%) of 27α (R_f 0.28) and **27** β (R_f 0.40); ¹H NMR (CDCl₃): δ 7.39–7.28 (m, 5H, Ph), 5.94-5.76 (m, 1H, CH=), 5.18-5.06 (m, 2H, CH_2 =), 4.75–4.54 (m, 2H, CH_2 Ph), 4.09–3.94 (m, 3H, H-3,4,5), 3.84-3.79 (m, 1H, H-6a), 3.63-3.59 (m, 1H, H-6b), 2.70–2.32 (m, 4H, CH_2CH =, 2 OH), 1.32 (s, 2.1H, CH₃), 1.24 (s, 0.9H, CH₃); ¹³C NMR (CDCl₃, bold for **27** α): δ 137.90 (C quat. arom.), 134.55 and **133.85** (CH=), 128.59, 128.58, 127.96, 127.94, 127.69 and 127.67 (5C arom.), **118.42** and 118.18 (CH₂=), 87.86, **87.31**, 85.68, 85.51, 82.27, 81.64, 79.44 and 78.74 (C-2,3,4,5), 72.46 and 72.29 (CH₂Ph), **42.43** and 41.24 (CH₂CH=), 22.19 and **20.50** (CH₃). ## References - Harmange, J.-C.; Figadère, B. Tetrahedron: Asymmetry 1993, 4, 1711–1754. - Westley, J. W. Polyether Antibiotics: Naturally Occurring Acid Ionophores, Vols. I and II; Marcel Dekker: New York, 1982. - Jaouen, V.; Jégou, A.; Lemée, L.; Veyrières, A. Tetrahedron 1999, 55, 9245–9260. - Lemée, L.; Jégou, A.; Veyrières, A. Tetrahedron Lett. 1999, 40, 2761–2764. - Nicotra, F.; Panza, L.; Russo, G. J. Org. Chem. 1987, 52, 5627–5630. - 6. Bennek, J. A.; Gray, G. R. J. Org. Chem. 1987, 52, 892-897. - Goldschmid, H. R.; Perlin, A. S. Can J. Chem. 1960, 38, 2178–2186. - Taba, K. M.; Köster, R.; Dahloff, W. V. Synthesis 1983, 1036–1037. - 9. Poncini, L. Indian J. Chem. 1991, 30B, 442. - Köll, P.; Deyhim, S.; Heyns, K. Chem. Ber. 1978, 111, 2909– 2912 - 11. Moody, W.; Richards, G. N. Carbohydr. Res. 1983, 124, 201– 213 - Chan, J. Y. C.; Cheong, P. P. L.; Hough, L.; Richardson, A. C. J. Chem. Soc., Perkin Trans. 1 1985, 1447–1455. - Raaijmakers, H. W. C.; Eveleens, S. M.; Arnouts, E. G.; Zwanenburg, B.; Chittenden, G. J. F. Recl. Trav. Chim. Pays Bas 1993, 112, 511–514. - Ferrier, R. J.; Furneaux, R. H. Carbohydr. Res. 1976, 52, 63–68 - Nicolaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholowski, A. J. Am. Chem. Soc. 1986, 108, 2466–2467. - Heskamp, B. M.; Noort, D.; van der Marel, G. A.; van Boom, J. H. Synlett 1992, 713–715. - 17. Jones, D. K.; Liotta, D. C. Tetrahedron Lett. **1993**, 34, 7209–7212 - 18. Grindley, T. B. Adv. Carbohydr. Chem. Biochem. 1998, 53, 17–142. - Baldwin, J. C.; Lappert, M. F.; Pedley, J. B.; Poland, J. S. J. Chem. Soc., Dalton Trans. 1972, 1943–1947. - 20. Craig, D.; Munasinghe, V. R. N.; Tierney, J. P.; White, A. J. P.; Williams, D. J.; Williamson, C. *Tetrahedron* **1999**, *55*, 15025–15044. - Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: Oxford, 1983. - Bredenkamp, M. W.; Spies, H. S. C. Tetrahedron Lett. 2000, 41, 543-546. - 23. Roelens, S. J. Org. Chem. 1996, 61, 5257-5263. - 24. Nagashima, N.; Ohno, M. Chem. Pharm. Bull. 1991, 39, 1972–1982. - 25. De las Heras, F. G.; Fernández-Resa, P. *J. Chem. Soc., Perkin Trans. 1* **1982**, 903–907. - Ohrui, H.; Jones, G. H.; Moffatt, J. G.; Maddox, M. L.; Christensen, A. T.; Byram, S. K. J. Am. Chem. Soc. 1975, 97, 4602–4613. - 27. Kobayashi, S. Top. Organometal. Chem. 1999, 2, 63-118. - Aggarwal, V. K.; Vennall, G. P. Tetrahedron Lett. 1996, 37, 3745–3746. - Yadav, J. S.; Subba Reddy, B. V.; Srihari, P. Synlett 2001, 673–675. - Ishihara, K.; Mori, A.; Yamamoto, H. Tetrahedron 1990, 46, 4595–4612.