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Despite the rapid progress in the development of metal-
catalyzed cross-coupling reactions,[1] many challenges remain
for the as yet unrealized classes of metal-catalyzed C�C bond-
forming reactions. 1,3-Diketones are important basic building
blocks, which are traditionally prepared by the acylation of
ketone enolates, or by an aldol reaction of enolates with
aldehydes followed by oxidation.[2, 3] A transition-metal-based
hydroacylation approach would give a short and atom-
economic method to generate 1,3-diketones from readily
available enones and aldehydes (Scheme 1, bottom). How-
ever, known examples of the hydroacylation of enones show
that a reaction pathway that leads to 1,4-diketones is
preferred (Scheme 1, top).[4] In principle, if the catalyst can
support the three consecutive unit reaction processes of:
1) hydrometalation of enones to form metal enolates, 2) a
cross-aldol reaction to form an alkoxymetal species, and 3) a
b-metal hydride elimination of the resulting alkoxymetal
species, it would give the desired 1,3-diketones with regen-
eration of the metal hydride. Herein we report an efficient
method for the synthesis of 2-alkyl-substituted 1,3-diketones
from readily available enones and aldehydes by using
[RuHCl(CO)(PPh3)3] as a catalyst.

[5]

We surveyed a variety of ruthenium hydride complexes
using the reaction of 2-cyclohexenone (1d) and p-fluoroben-
zaldehyde (2c) as a model system (Table 1). We thereby
found that [RuHCl(CO)(PPh3)3] catalyzed the required
reaction of 1d and 2c effectively to give 2-(p-phenacyl)cy-
clohexanone 3 f. Thus, the reaction of 1d with 2c in the
presence of 10 mol% [RuHCl(CO)(PPh3)3] in benzene under
reflux for 5 h gave 3 f in 75% yield after isolation by
chromatography on silica gel (Table 1, entry 4). A phos-
phine-free ruthenium hydride system was unsuccessful as the
catalyst (Table 1, entry 9).[6] Since PPh3 is known to catalyze
the Morita–Baylis–Hillman reaction,[7,8] we performed an
experiment using 30 mol% PPh3 under similar conditions
(benzene, reflux, 5 h); the experiment gave neither 3 f nor the
Morita–Baylis–Hillman product (Table 1, entry 10).[9] We then examined the generality of the reaction by using

a variety of unsaturated ketones and aldehydes (Table 2). The
reaction of ethyl vinyl ketone (1a) with aldehydes 2a and 2b
gave the corresponding 1,3-diketones 3a and 3b in good
yields (Table 2, entries 1 and 2). The reaction was also
effective for b-mono- and dialkyl-substituted enones such as
1b, 1c, and 1d (Table 2, entries 3–6). On the other hand, the
reaction of enone 1e, which has an a-methyl substituent,
failed to give the 2-ethyl-2-methyl-1,3-diketone (Table 2,
entry 7); in this case, 1e was recovered. Since the ruthenium
hydride catalyst employed affects the isomerization of double
bonds,[5a,10] we then tested enones with a remote C�C double

Scheme 1. Two regiochemical pathways for the catalytic hydroacylation
of aldehydes to enones.

Table 1: Effect of the Ru catalyst source on the reaction.[a]

Yield[b]

Entry Catalyst Quantity
[mol%]

Solvent T [8C] 3 f
[%]

1d
[%]

1 [RuH2(PPh3)4] 10 C6H6 80 0 87
2 [RuHCl(PPh3)3] 10 C6H6 80 0 94
3 [RuH2(CO)(PPh3)3] 10 C6H6 80 9[c] 65
4 [RuHCl(CO)(PPh3)3] 10 C6H6 80 75[d] 0
5 [RuHCl(CO)(PPh3)3] 5 C6H6 80 49 35
6 [RuHCl(CO)(PPh3)3] 10 (ClCH2)2 80 83 40
7 [RuHCl(CO)(PPh3)3] 10 tBuOCH3 55 10 75
8 [Ru3(CO)12] 10 C6H6 80 0 n.d.[e]

9 [Ru3(CO)12]/
Et2MeN·HI

10 C6H6 80 0 n.d.

10 PPh3 30 C6H6 80 0 n.d.

[a] All reactions were performed using 1d (0.4 mmol), 2c (0.52 mmol),
catalyst (5 or 10 mol%), and solvent (1.5 mL) for 5 h at reflux. [b] Yield
based on GC analysis relative to dodecane as an internal standard.
[c] Yield based on 1H NMR analysis relative to Cl2CHCHCl2 as an internal
standard. [d] Yield of isolated product. [e] Not determined.
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bond, such as 1 f, in the hope that migration of the double
bond would be followed by a coupling reaction to give 1,3-
diketones. Indeed we were able to obtain good yields of 1,3-
diketones by an alkene isomerization/dehydrogenative aldol
reaction sequence (Table 2, entries 8–12). Aliphatic alde-

hydes 2g and 2h as well as a,b-unsaturated aldehyde 2 i were
effective for the synthesis of 1,3-diketones (Table 2,
entries 13–15). We examined the reaction of 2.3 equivalents
of 1a with dialdehyde 2j in the hope of obtaining a three-
component coupling product (Table 2, entry 16). As hoped,

Table 2: Synthesis of b-diketones by a RuH-catalyzed regioselective addition of aldehydes to enones.[a]

Entry Enones 1 Aldehydes 2 1,3-Diketones 3 Yield [%][b]

1 1a 2a 3a 76

2 1a 2b 3b 72

3 1b 2a 3c 64

4 1c 2a 3d 73

5 1d 2a 3e 75[c]

6 1d 2c 3 f 75[c]

7 1e 2a n.r.[f ]

8 1 f 2a 3g 92

9 1 f 2c 3h 83

10 1 f 2d 3 i 85

11 1 f 2e 3 j 91

12 1 f 2 f 3k 95

13 1 f 2g 3 l 66[c]

14 1 f 2h 3m 69[d]

15 1 f 2 i 3n 91

16[e] 1a 2 j 3o 77[c],[d]

[a] General conditions: enone 1 (1 mmol), aldehyde 2 (1.3 mmol), [RuHCl(CO)(PPh3)3] (0.1 mmol), C6H6 (3.75 mL), reflux, 5 h. [b] Yields of isolated
products after column chromatography on silica gel. [c] Obtained as a mixture of keto and enol forms. For details, see the Supporting Information.
[d] d.r.=ca. 1:1 (13C NMR). [e] 2.3 equivalents of 1a and 20 mol% of catalyst were used. [f ] No reaction.

Communications

5560 www.angewandte.org � 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2007, 46, 5559 –5561

http://www.angewandte.org


the envisaged tetracarbonyl compound 3o was obtained
(77% yield).

To get some insight into the mechanism, we carried out a
separate experiment using [D]benzaldehyde (2a’). Deute-
rium was introduced mainly at the b-carbon atom of the
enone (65%), which lends support for the proposed mech-
anism, however, deuterium incorporation at the a-carbon
atom was also observed (35%). This finding may suggest that
a hydroruthenation step leading to b-Ru ketones also exists in
rapid equilibrium, which allows for the introduction of
deuterium into the a-position of 1a by a back b-hydride
elimination (Scheme 2). Thus, the hydroruthenation of
enones gives two types of ruthenium enolates, A and
A’,[11,12] which then undergo an aldol reaction with the
aldehydes to give b-keto alkoxyruthenium complexes B and
B’. A b-elimination then takes place to give the 1,3-diketones
C and C’, with regeneration of the ruthenium hydride catalyst
for use in further reactions.

In summary, we have reported a novel regioselective
addition reaction of aldehydes to enones, which provides an
atom-economic and straightforward access to a wide variety
of 2-alkyl-substituted 1,3-diketones. Synthetic applications of
the present reaction as well as detailed mechanistic studies
are currently underway.

Experimental Section
General procedure for the synthesis of 2-substituted 1,3-diketones
catalyzed by [RuHCl(CO)(PPh3)3]: A mixture of ethyl vinyl ketone
(1a ; 86 mg, 1.03 mmol), benzaldehyde (2a ; 138 mg, 1.3 mmol), and
[RuHCl(CO)(PPh3)3] (96.0 mg, 0.1 mmol) in benzene (3.75 mL) was
stirred at reflux for 5 h under nitrogen. Purification by column
chromatography on silica gel using 2% AcOEt in hexane as the
eluent gave 2-propanoylpropiophenone (3a) (149 mg, 76%).
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Scheme 2. Possible reaction mechanism.
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