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We have disclosed the catalytic potential hidden behind a
series of aqua-aminoorganoboron compounds in the formation
and reaction of nitronate species. The pivotal role of a single-
coordinated water molecule in the catalyst was demonstrated by
comparison with the D2O-analogue. The present results provide
a new strategy for the design of metal-free catalysts which function
via elaborative hydrogen-bonding networks involving water.

Naturally occurring enzymes frequently contain water in
their catalytic active sites, where the water plays a crucial role
in the catalysis.1 In contrast, attempts to impose catalytic func-
tion onto a water molecule represents a challenge in the develop-
ment of artificial molecular catalysts.2 We herein report that
aqua-aminoorganoboron compounds3 exhibit unique catalytic
activities in the nitro aldol reaction.4 The reaction pathways
involve subtle interplay between the multiple functions of the
catalyst.

A series of aqua-aminoorganoboron compounds 1a–1c
(Figure 1) were readily prepared according to literature proce-
dure3 with small modification. Single-crystal X-ray diffraction
analyses of 1a,3 1c,5 and 25 identified a single water molecule
as a common feature. The boron-coordinated water bridges
two of the three nitrogens via formation of two hydrogen bonds
(Figure 1), with the third amine remaining free from any detect-
able interactions. In contrast, the solution structures of 1a–1c
exhibited dynamic behavior in corresponding 1HNMR spectra,
consistent with intramolecular N���H(OH) exchange. According-
ly, this rapid positional exchange of the N���HOH���N bridge
makes the three nitrogens indistinguishable on the NMR time
scale.5

Treatment of a 1:3 mixture of PhCHO and CH3NO2 in THF
with a 1mol% of 1a at 25 �C for 8.5 h gave nitro aldol product
4a in 90% yield (Entry 1, Table 1). In contrast, compound 2, hav-
ing a structure similar to 1a but lacking one of the three amino-
residues, showed no catalytic activity (Entry 4). When a 1:1 mix-
ture of 2 and Et3N was used instead of 1a (Entry 5), the reaction
proceeded although at a significantly slower rate. The BPh3/

Et3N (1:3) catalyst neither improved the yield of 4a under anhy-
drous conditions nor in the presence of water (Entries 6 and 7).
Et3N (1mol%) or N,N-dimethylbenzylamine (3mol%) alone
showed scant catalytic activity under otherwise identical condi-
tions (Entries 8 and 9). The use of 1b, which differs in steric size
at the nitrogen-residue, was also effective, while the extremely
bulky diisopropylamine derivative 1c abolished the reactivity
(Entries 2 and 3). These experiments clearly demonstrate that
the three amino-residues worked in a cooperative fashion and
were critical for generating catalytic activity within some steric
restraints. Other examples listed in Tables 2 and 3 indicate the
versatile nature of catalyst 1a under protic or aprotic conditions.
Solvent-free conditions (R1CHO:CH3NO2 = 1:3) were benefi-
cial resulting in significant rate acceleration (Table 2, Entry 1),
although alcoholic solvents were the best choice for rate optimi-
zation (Table 3, Entries 2–5). The reaction showed substrate
generality with respect to both nitroalkane and aldehyde compo-
nents. Various functional groups were tolerated and self-dimeri-
zation of aldehydes was prevented owing to the mild (almost
neutral pH) reaction conditions (Tables 2 and 3). The optimal
results afforded aldol adducts in more than 90% yields in many
cases and turnover numbers (TON) of up to 800 (generally 70–
100).

The presence of a water molecule in the catalyst is pivotal
for catalytic activity. Kinetic studies with the D2O-derivative 3
(deuterium content: 75–80%) using CD3NO2 and hexanal in
THF at 27 �C showed that the initial reaction rate (kobs) is rough-
ly 35 times faster than that with Et3N alone (no water).6 The
reaction proceeded with pseudo-first-order dependence on
[hexanal]. Examination of reaction kinetic isotope effects
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Figure 1. Aqua aminoorganoboron compounds.

Table 1. Catalyst screening in the reaction of CH3NO2 with PhCHOa

CH3NO2+ PhCHO PhCH(OH)CH2NO2
additive
THF, 25  °C, 8.5 h

catalyst (1 mol%)

(3 equiv) (1 equiv) 4a

Entry Catalyst
Additive
(mol%)

Yieldb

/%

1 1a — 90 (93)c

2 1b — 80
3 1c — 0
4 2 — 0
5 2 Et3N (1) 29
6 BPh3 Et3N (3) 29
7 BPh3 Et3N (3), H2O (10) 26
8 — Et3N (1) 11
9 — Me2NBn (3) <5

aUnless otherwise specified, reaction was performed using 1mol% of

catalyst with respect to the amount of PhCHO in anhydrous THF at

25 �C for 8.5 h. bOf isolated, purified product. cWith 70mg/mL of

MS4A, which was dried at 150 �C under vacuum (1mmHg) for 12 h.
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(KIE) verified that the initial rate for 3 in CD3NO2 was ca. 1.5
times greater than that with 1a in CH3NO2 (kH=kD ¼ 0:68,
t ¼ 6{15min; conversion �5%).6

This suggests that the �-C–H bond cleavage is not the rate-
determining step. In contrast, when each CH3NO2 and CD3NO2

was reacted in a separate experiment with hexanal in the pres-
ence of 10mol% of Et3N, the initial stage of the reaction
(t ¼ 10{40min; conversion �5%) conforms to kH=kD ¼ 1:19,6

suggesting that deprotonation is rate-determining and that C–C
bond formation is kinetically faster.7 The overall catalysis pro-
ceeds through different pathways with the interior H2O and
D2O altering the rate-determining step.

Although a possibility of an extended transition state could
not be fully ruled out, eq 1 summarizes our present understand-
ing and mechanistic models for the overall catalysis during the
initial reaction period.8 Presumably, one out of the three ami-
no-residues served as a deprotonating agent for the generation
of the nitronate B following attractive interaction of the O=N–
O� functionality with the boron-coordinated H2O molecule of
the catalyst. Here the formation of (O)H���O(N) hydrogen bonds
increases the acidity of the �-hydrogen (�+, structure A). The
D2O-anologue stabilize more favorably the nitronate anion since
D2O and Dþ are well accepted to make stronger hydrogen bonds
than H2O and Hþ, respectively.9 In any events, the rate acceler-
ation by 3 (cf. 1a) may result from a number of not fully under-

stood deuterium isotope effects,10 which facilitate the overall
catalysis.
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In summary, we have disclosed a catalytic potential hidden
behind a series of aqua aminoorganoborons in the formation and
reaction of nitronate species, where a single-coordinated water
molecule plays a critical role. Catalyst 1a is shelf-stable enough
to obviate the need for a strict removal of water and air from
reaction media. Thus the aqua-catalytic species persists through-
out the overall process, giving a TON of as high as 800.11
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Table 3. Nitro aldol reaction by use of CH3NO2 and various aldehydesa

CH3NO2 + R1CHO
(1.5 equiv) (1.0 equiv)

R1CH(OH)CH2NO2
1 =
1 =
1 =
1 =

(CH2)4CH3
c-Hex
t-Bu
CH2OH

5a  : R
5b : R
5c  : R
5d : R

1a (1 mol%)

solvent

Entry R1CHO
Conditions
�C, h

Solvent Product
Yieldb

/%

1 CH3(CH2)4CHO 50, 24 — 5a 97
2 CH3(CH2)4CHO 50, 8 MeOH 5a 91(94)c

3 CH3(CH2)4CHO 50, 8 MeOH 5a 91
3 c-HexCHO 50, 30 MeOH 5b 98d

4 t-BuCHO 50, 48 MeOH 5c 77d

5 HOCH2CHO
e 25, 24 MeOH 5d 99

aUnless otherwise specified, reaction was performed using 1mol% of 1a

with respect to the amount of R1CHO and CH3NO2 (1.5 equiv) under indi-

cated conditions. bOf isolated, purified product. ci-PrOH was used as solvent

instead of MeOH. dCH3NO2 (3.0 equiv) was used. eThe dimer was used.

Table 2. Nitro aldol reaction by use of various nitroalkanesa

RCH2NO2 PhCHO PhCHa(OH)CHb(R)NO2

3

2)3CO2CH3

4a  : R = H
4b : R = CH
4c    : R = Br
4d : R = (CH

no
solvent

1a (1 mol%)
+

Entry RCH2NO2 (equiv)
Conditions
�C, h

Product
Yieldb

/%

1 CH3NO2 (3) 25, 1 4a 95
2 CH3NO2 (3) 25, 24 4a 80c

3 CH3CH2NO2 (3) 25, 1 4b 84d

4 BrCH2NO2 (2) 25, 1 4c 71e

5 CH3O2C(CH2)4NO2 (3) 25, 2 4d 77f

aUnless otherwise specified, reaction was performed using 1mol% of 1a

with respect to the amount of PhCHO under indicated conditions. bOf iso-

lated, purified product. c0.1mol% of 1awas used. dsyn:anti = 67:33, deter-

mined as previously described.4c esyn:anti = 69:31, determined by the

coupling constant (JHa{Hb ) of syn (8.5Hz)-4c and anti (5.0Hz)-4c. fsyn

(JHa{Hb ¼ 8:9Hz)-4d:anti (JHa{Hb ¼ 4:9Hz)-4d = 60:40.
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