ORIGINAL PAPER

The Synthesis and Crystal Determination of 3-Hydroxy-4-(4-methoxyphenyl)-5-(2-nitrophenyl)furan-2(5H)-one

Zhu-Ping Xiao · Zhi-Yun Peng · Zhu-Xiang Liu · Li-Hua Chen · Hai-Liang Zhu

Received: 4 August 2010/Accepted: 30 December 2010/Published online: 13 January 2011 © Springer Science+Business Media, LLC 2011

Abstract The title compound, $C_{17}H_{13}NO_6$, was synthesized and structurally characterized by elemental analysis, MS, ¹H NMR and single crystal X-ray diffraction. It crystallizes in monoclinic system space group C 2/c with a = 27.981(6) Å, b = 12.996(3) Å, c = 8.0900(16) Å, $\beta = 91.06(3)^{\circ}, V = 2941.4(10) \text{ Å}^3, Z = 8, R_1 = 0.0675,$ $wR_2 = 0.1626$, and T = 298(2) K. The X-ray structure determination revealed that the center furanone ring is nearly coplanar with *p*-methoxybenzene ring and forms a dihedral angle of $87.2(1)^{\circ}$ with the nitrobenzene ring. O-H...O Intermolecular hydrogen bonds link pairs of molecules into centrosymmetric dimers, making a graph set motif of $R_2^2(10)$. The dimers are further assembled into a chain of edge-fused $R_4^4(34)$ rings running along the [001] direction. The final three-dimensional supramolecular architecture is stabilized by weak π - π interactions.

Keywords Synthesis · Crystal structure · 4,5-Diphenylfuran-2(5*H*)-one

Z.-P. Xiao $(\boxtimes) \cdot$ Z.-Y. Peng \cdot Z.-X. Liu \cdot L.-H. Chen \cdot H.-L. Zhu

School of Chemistry & Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China e-mail: xiaozhuping2005@163.com

H.-L. Zhu (🖂)

Introduction

Vitamin C, one of the most potent naturally occurring antioxidants, plays an important part in the prevention of a large number of chronic diseases [1]. 3-Hydroxyfuran-2-one is a lipophilic analogue of vitamin C, showing better lipophilicity and chemical stability. We therefore focused our efforts to design and synthesize 3-hydroxyfuran-2-ones for biological activity screen. Cotelle reported that 4-aryl-3-hydroxyfuran-2-one is a good inhibitor of HIV-1 integrase [2]. On the other hand, Bailly and Weber reported that 4,5-diaryl-3-hydroxy-2(5*H*)-furanone show excellent antioxidative and anti-inflammatory activities [3, 4]. In the course of our work on screening hydroxy-2(5*H*)-furanones as antibacterial, we synthesized the title compound and herein reported its crystal structure.

Experimental Section

Reagents and Techniques

2-Hydroxy-3-(4-methoxyphenyl)acrylic acid and 1,5-diazabicyclo[5.4.0]undecene (reagent grade) were purchased from Aldrich (U.S.A) and the other chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd (China). Melting points (uncorrected) were determined on a XT4 MP apparatus (Taike Corp., Beijing, China). EI mass spectra were obtained on a Waters GCT mass spectrometer, and ¹H NMR spectra were recorded on a Bruker AV-300 spectrometer at 25 °C with TMS and solvent signals allotted as internal standards. Chemical shifts were reported in ppm (δ). Elemental analyses were performed on a CHN-O-Rapid instrument and were within ±0.4% of the theoretical values.

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China e-mail: zhuhl@nju.edu.cn

Synthesis of 3-Hydroxy-4-(4-methoxyphenyl)-	
5-(2-nitrophenyl)furan-2(5H)-one	

The pyruvic acid (1.94 g, 10 mmol), 2-hydroxy-3-(4-methoxyphenyl)acrylic acid, was dissolved in dry DMF (50 mL, dried over 4A molecular sieves) at 0 °C. 1,5-diazabicyclo[5.4.0]undecene (DBU, 1.60 mL, 10.7 mmol) and methyl iodide (3.0 mL, 60 mmol) were successively added and the solution was stirred at 0 °C for 3 h and then overnight at room temperature. The solution was poured into a mixture of AcOEt (20 mL) and 1 M HCl (60 mL). The organic layer was separated and the aqueous layer was extracted four times with AcOEt (30 mL). The combined organic layers were washed with H₂O (20 mL) and dried over MgSO₄. Evaporation of the volatiles in vacuo afforded the methyl pyruvate, which was used without further purification. ¹H NMR (DMSO- d_6): 3.76 (s, 3H); 3.79 (s, 3H); 6.38 (s, 1H); 6.92(d, J = 8.8 Hz, 2H); 7.71 (d, J = 8.8 Hz, 2H); 8.95 (s, 1H).

0.80 mL of DBU (5.35 mmol) was added under stirring to a cold (0 °C) solution of a mixture of the methyl pyruvate (1.1 g, 5 mmol) and 2-nitrobenzaldehyde (0.76 g, 5 mmol) in dry DMF (24 mL, dried over 4A molecular sieves). The mixture was stirred for 4 h at 0 °C and then poured into a mixture of AcOEt (10 mL) and HCl 1 M (50 mL). The organic layer was separated and the aqueous layer was extracted with AcOEt. The organic layers were combined, washed with water, dried over Na₂SO₄ and evaporated in vacuo. The oily residue was then purified by column chromatography on silica gel. The fraction was partially evaporated and furnished colorless blocks of (I), 3-hydroxy-4-(4-methoxyphenyl)-5-(2-nitrophenyl)furan-2(5H)-one, suitable for single crystal structure determination. Yield of 74%, mp 204–206 °C, ¹H NMR (DMSO- d_6): 3.75 (s, 3H); 6.91 (s, 1H); 6.95(d, J = 9.0 Hz, 2H); 7.36 (dd, J = 5.8 Hz, J = 3.3 Hz, 1H); 7.53(d, J = 8.9 Hz, 2H); 7.67 (dd, J = 5.7 Hz, J = 3.6 Hz, 1H); 8.06 (dd, J = 5.8 Hz, J = 3.6 Hz, 1H); 11.00 (s, 1H); EIMS *m*/*z* 327 (M^+) . Anal. Calcd for $C_{17}H_{13}NO_6$: C, 62.39; H, 4.00; N, 4.28; Found: C, 62.44; H, 3.99; N, 4.25.

X-ray Structure Determination of I

X-ray diffraction data were collected using a Bruker SMART APEX CCD diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at room temperature. A crystal with dimensions 0.2 mm × 0.1 mm × 0.1 mm was used. Data having theta less than or equal to 25° were integrated and the structure was solved by the direct method using the SHELXS-97 program [5], which refined by the fullmatrix least-squares method using the SHELXL-97 program [5]. Crystal data and experimental details are listed in Table 1, fractional coordinates and equivalent isotropic

Table 1	Crystal	data	and a	experimental	crystallographic	details
1 abit 1	Crystar	uata	anu	спретинении	ci y stanographic	uctans

7H ₁₃ NO ₆ 7.28 8(2) 11073 onoclinic 2/c 981(6)
7.28 8(2) /1073 onoclinic 2/c 981(6)
8(2) /1073 onoclinic 2/c 981(6)
981(6)
981(6)
2/c 981(6)
981(6)
981(6)
.996(3)
900(16)
.06(3)
41.4(10)
78
14
60
$2 \text{ mm} \times 0.1 \text{ mm} \times 0.1 \text{ mm}$
6–25.18°
$33 \le h \le 33$
$\leq k \leq 15$
$\leq l \leq 9$
07/2652
303
ll-matrix least-squares on 72
52/1/217
071
$= 0.0675, wR_2 = 0.1271$
$= 0.1626, wR_2 = 0.1958$
35/-0.236

thermal parameters in Table 2. H atoms were positioned geometrically and refined as riding atoms, with C–H of 0.93 Å for aromatic H atoms, 0.96 Å for CH₃ groups, 0.98 Å for CH groups and O–H of 0.82 Å, $U_{\rm iso}$ (H) values were set at 1.2 times $U_{\rm eq}$ (C) for aromatic H atoms and CH, 1.5 times $U_{\rm eq}$ (C) for CH₃ and 1.5 times $U_{\rm eq}$ (O) for O–H groups.

Results and Discussion

The title compound (I), 3-hydroxy-4-(4-methoxyphenyl)-5-(2-nitrophenyl)furan-2(5*H*)-one, crystallizes in the monoclinic space group C 2/c and the structure of (I) with the corresponding atomic numbering scheme is shown in Fig. 1. The bond lengths and angles of the center unsaturated

Table 2 Atomic coordinates and equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	z	U(eq)
C1	0.92366(19)	0.6932(4)	0.1977(7)	0.0913(18)
C2	0.89694(14)	0.5194(3)	0.2370(5)	0.0524(10)
C3	0.86326(15)	0.4555(3)	0.3039(5)	0.0574(11)
C4	0.86743(14)	0.3505(3)	0.2915(5)	0.0574(12)
C5	0.90569(13)	0.3042(3)	0.2115(5)	0.0460(10)
C6	0.94058(14)	0.3717(3)	0.1515(6)	0.0580(12)
C7	0.93575(15)	0.4763(3)	0.1601(5)	0.0633(12)
C8	0.90993(12)	0.1934(3)	0.1991(4)	0.0442(9)
C9	0.87465(13)	0.1195(3)	0.2761(4)	0.0431(9)
C10	0.93250(15)	0.0274(3)	0.1464(6)	0.0630(12)
C11	0.94215(13)	0.1348(3)	0.1232(5)	0.0502(11)
C12	0.82543(13)	0.1251(3)	0.2048(5)	0.0443(10)
C13	0.78078(14)	0.1339(3)	0.2887(5)	0.0438(9)
C14	0.73843(15)	0.1339(3)	0.2144(6)	0.0572(12)
C15	0.73354(16)	0.1264(3)	0.0417(5)	0.0564(11)
C16	0.77578(19)	0.1159(3)	-0.0478(6)	0.0674(13)
C17	0.81915(16)	0.1169(3)	0.0323(5)	0.0541(11)
N1	0.78123(13)	0.1439(3)	0.4734(4)	0.0493(9)
01	0.88819(11)	0.6216(2)	0.2518(4)	0.0756(10)
02	0.98134(10)	0.1681(2)	0.0411(4)	0.0718(10)
03	0.95401(11)	-0.0483(2)	0.1004(4)	0.0784(11)
O4	0.89231(9)	0.0175(2)	0.2363(4)	0.0604(8)
05	0.74294(11)	0.1265(3)	0.5390(4)	0.0749(10)
O6	0.81632(12)	0.1703(3)	0.5467(4)	0.0761(10)

Fig. 1 Molecular structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level. *Dashed lines* indicate hydrogen bonds

lactone ring are within the ranges reported for analogues [6] (Table 2). C8–C11–O2 portion shows clear enol group character with C8–C11 and C11–O2 bond lengths of

Table 3 Selected bond lengths (Å) and bond angles (°) of Compound I

Bond	Dist.
C(5)–C(8)	1.448(5)
C(9)–O(4)	1.454(4)
C(10)–O(3)	1.215(5)
C(11)–C(8)	1.338(5)
C(13)–N(1)	1.500(5)
O(6)–N(1)	1.188(4)
C(8)–C(9)	1.519(5)
C(10)–O(4)	1.357(5)
C(10)–C(11)	1.436(6)
C(11)–O(2)	1.363(4)
O(5)–N(1)	1.225(4)
Angle	(°)
C(5)-C(8)-C(9)	123.0(3)
C(9)–C(8)–C(11)	106.1(3)
O(6)-N(1)-C(13)	120.9(3)
O(5)-N(1)-O(6)	124.0(4)
C(5)-C(8)-C(11)	130.8(4)
C(8)-C(9)-C(12)	114.5(3)
O(5)-C(13)-N(1)	115.1(4)

1.338(5) and 1.363(4) Å respectively, which are close to those of typical enol-lactone [7, 8].

The enol-lactone motif and p-methoxybenzene ring are nearly coplanar with the mean deviation of 0.0272 Å. In comparison with C5-C8-C9 angle (123.1(3)°) (Table 3), the mildly increased C5-C8-C11 angle (130.9(3)°) may result from the coplanar atoms (H16 and O2) increasing their steric strain. This was supported by the other reported analogues [6, 7, 9]. In those compounds, the bigger the dihedral angle between enol-lactone motif and the attached benzene ring is, the smaller the above mentioned angle is. The nitro group is tilted out of the mean plane that it attached by $18.0(2)^{\circ}$, which is significantly higher than that observed in the other nitrobenzenes [10, 11]. The increase in the dihedral angle may be attributed to the presence of the C4-H4...O6 hydrogen bond represented by a graph-set motif of S(9), which increases the torsion angle of C12-C13–N1–O6 $(19.1(5)^{\circ})$ (Fig. 1). The tiltation of nitro group is therefore disrupted the conjugation with its attached benzene ring, and elongate the bond length of C13-N1 from about 1.46 Å [10, 11] to 1.500(5) Å. The pendent aryl ring (C12-C17) is almost vertical to the enol-lactone ring with the dihedral angle of $87.2(1)^{\circ}$.

In (I), there is a single O–H···O hydrogen bond utilizing the enolic hydroxyl group as the donor (Table 4), and this links pairs of molecules into centrosymmetric dimers characterized by a graph-set motif of $R_2^2(10)$ (Fig. 2). In the

D–H…A	D–H	H…A	D…A	D−H…A		
O2–H2A…O3	0.82	2.59	2.956(4)	109		
C4-H4O6	0.93	2.60	3.450(5)	152		
С6-Н6…О2	0.93	2.38	3.022(5)	126		
С9–Н9…Об	0.98	2.11	2.832(5)	129		
C14-H14O5	0.93	2.28	2.628(6)	101		
$O2-H2A\cdots O3^i$	0.82	1.89	2.662(4)	157		
C16–H16…O5 ⁱⁱ	0.93	2.57	3.453(6)	159		

Table 4 Hydrogen-bond geometry (Å, °)

Symmetry transformations used to generate equivalent atoms: i = -x + 2, -y, -z; ii = x, y, z - 1

Fig. 2 Part of the crystal structure of (I), showing the formation of a hydrogen bonded dimer and R_4^4 motif built from paired O–H…O and C–H…O hydrogen bonds (*dashed lines*). For the sake of clarity, the H atoms not involved in the hydrogen bonds have been omitted

dimers packing along c-axis, the *p*-methoxyphenylenollactone motifs of the molecules at (x, y, z) and (-x + 2, z)-y, -z) are in lines (the least square line through all atoms of the *p*-methoxyphenylenol-lactone motif) alternatively running along the [233] and $[\bar{2}33]$ directions, which lie parallel to the $(01\overline{1})$ plane. However, the pendent *o*-nitrophenyl rings are strictly parallel, with an interplanar spacing of 2.502(4) Å. A relatively weak C16-H16...O5 interactions connect the dimers via interaction of one nitrophenyl ring with another, forming a $R_4^4(34)$ ring (Fig. 2). The combination of these motifs generates a chain of edge-fused rings running along the [001] direction, with $R_4^4(34)$ rings centered at (0, 0, n/2), where n represents an integer. The dimers along the other direction, alternatively presented in this chain, generate another chain (Fig. 3). A co-chain is therefore formed with an "x" pattern of the cross section.

In the structure of (I), weak $\pi - \pi$ interactions were found between nitrobenzene rings at (x, y, z) and those at (-x + 1/2, -y + 1/2, -z + 1), with minimum centroid separations of 4.111(3) Å (Fig. 4). These weak intermolecular contacts consequently link the above mentioned co-chains into a three dimensional network.

Fig. 3 Part of the crystal structure of (I), showing the formation of the co-chain. *Solid dashed line* indicate hydrogen bonds. For the sake of clarity, the H atoms not involved in the hydrogen bonds have been omitted

Fig. 4 Packing diagram of compound (I) viewing along c-axis, *Solid* dashed lines indicate π - π interactions

Supplementary Material

CCDC deposit number of CCDC 787202 for I contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac. uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre(CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223-336033; e-mail:deposit@ ccdc.cam.ac.uk].

Acknowledgments The work was financed by Scientific Research Fund of Hunan Provincial Education Department (Project 09B083) of China and by a grant (No. JSDXKYZZ0801) from Jishou University for talent introduction, China.

References

- 1. Jacob RA, Burri BJ (1996) J Clin Nutr 63:985S
- Cotelle P, Cotelle N, Teissier E, Vezin H (2003) Bioorg Med Chem 11:1087–1093

- Bailly F, Queffèlec C, Mbemba G, Mouscadet JF, Pommery N, Pommery J, Hènichart JP, Cotelle P (2008) Eur J Med Chem 43:1222–1229
- Weber V, Rubat C, Duroux E, Lartigue C, Madesclaire M, Coudert P (2005) Bioorg Med Chem 13:4552–4564
- 5. Sheldrick GM (2008) Acta Cryst A64:112-122
- 6. Boehlow TR, Rath NP, Spilling CD (1997) Acta Cryst C53:92–95
- Schüffler A, Kautz D, Liermann JC, Opatz T, Anke T (2009) J Antibiot 62:119–121
- Gazivoda T, Wittine K, Lovrić I, Makuc D, Plavec J, Cetina M, Mrvoš-Sermek D, Šuman L, Kralj M, Pavelić K, Mintas M, Raić-Malić S (2006) Carbohydr Res 341:433–442
- 9. Lee D, Newman SG, Taylor MS (2009) Org Lett 11:5486-5489
- Hashimoto A, Przybyl AK, Linders JTM, Kodato S, Tian X, Deschamps JR, George C, Flippen-Anderson JL, Jacobson AE, Rice KC (2004) J Org Chem 69:5322–5327
- Subramanyam M, Thiruvalluvar A, Mohan RTS, Kamatchi S (2007) Acta Cryst E63:o2717