

Synthesis of Aromatic (E)- or (Z)-α,β-Unsaturated Amides with Total or Very High Selectivity from α,β -Epoxyamides and Samarium Diiodide

José M. Concellón* and Eva Bardales

Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Clavería, 8, 33071 Oviedo, Spain

jmcg@sauron.quimica.uniovi.es

Received July 3, 2003

Abstract: Highly stereoselective synthesis of aromatic α,β unsaturated amides was achieved by treatment of aromatic α,β -epoxyamides with samarium diiodide. The starting compounds 1 and 3 are easily prepared by the reaction of enolates derived from α -chloroamides with carbonyl compounds at -78 °C. A mechanism to explain this transformation is proposed.

 α,β -Unsaturated amides have been used as building blocks in organic synthesis¹ to prepare natural products.² Moreover, α,β -unsaturated amides show both biological³ and insecticide activities.⁴ Consequently, several preparations of α,β -unsaturated amides have been described. However, the described methodologies afford (*E*)- α , β unsaturated amides and, to the best of our knowledge, only a paper describing the synthesis of (Z)- α , β -unsaturated amides has been published to date.⁵ An important limitation of this last method is that the preparation of the starting phosponate occurs in low yield (33%).

In addition, transformations of epoxides⁶ into alkenes with high diastereselectivity are very scarce.⁷

Recently, we reported several highly diastereoselective β -elimination reactions, promoted by samarium diiodide,⁸ leading (Z)-vinyl halides,⁹ (E)- α , β -unsaturated esters,¹⁰ or (Z)-vinylsilanes.¹¹ We also published the preparation of (*E*)- α , β -unsaturated amides from 2-chloro-3-hydroxyamides.¹² In addition, more recently we described the transformation of aromatic α,β -epoxyamides into α -hydroxyamides by reaction with SmI₂ in the presence of $H_2O.^{13}$

In this work we wish to describe a new synthesis of aromatic α,β -unsaturated amides starting from the easily available α , β -epoxyamides 1 and **3** by using SmI₂. Thus, aromatic (*Z*)- α , β -unsaturated amides were obtained from aromatic α,β -epoxyamides, in which the oxirane ring is trisubstituted, and (*E*)- α , β -unsaturated amides from aromatic di- and tetrasubstituted α,β -epoxyamides. These preparations take place with total or very high stereoselectivity. A mechanism is proposed to account for the different stereochemistries.

Starting α,β -epoxyamides **1** were prepared by reaction of the corresponding potassium enolates of α -chloroamides¹⁴ (generated by treatment of α -chloroamides with potassium hexamethyldisilazide at -78 °C) with different aldehydes at temperatures ranging from -78 to 25 °C. Disubstituted epoxyamides, compounds **3a** and **3b**, were prepared by reaction of lithium enolate of chloroacetamide (generated by treatment of α -chloroacetamide with LDA at -78 °C) with different aldehydes at -78 °C and further treatment with sodium hydride. Tetrasubstituted epoxyamides, compounds 3c-e, were obtained by reaction of lithium enolate of chloropropanamide with different ketones at temperatures ranging from -78 to 25 °C (Scheme 1 and Table 1).

Our first attempts were performed by using N,Ndiethyl-2-methyl-3-phenyl-2,3-epoxypropanamide as a model substrate, and several reaction conditions were tested. When the elimination reaction was carried out with 4 equiv of SmI₂, without cosolvents, a mixture of (Z) and (E)- α , β -unsaturated amides was obtained (roughly

^{(1) (}a) Caramella, P.; Reami, D.; Falzoni, M.; Quadrelli, P. Tetrahedron 1999, 55, 7027-7042. (b) Cardillo, G.; Hashem, M. A.; Tomasini, C. J. Chem. Soc., Perkin Trans. 1 1990, 1587-1490. (c) Jurczak, J.; Bauer, T.; Chapuis, C. In Stereoselective Synthesis (Houben-Weyl); Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme Verlag: Stuttgart, 1995; Vol E 21c, p 2735. (d) Gothelf, R. F.; Jorgensen, K. A. *Chem. Rev.* **1998**, *98*, 863–909.

⁽²⁾ Takai, K.; Tezuka, M.; Utimoto, K. J. Org. Chem. 1991, 56, 5980-5982

^{(3) (}a) Crombie, L.; Krasinski, A. H.; Manzoor-I-Khuda, M. J. Chem. Soc. 1963, 4970-4976. (b) Bohlmann, F.; Miethe, R. Chem. Ber. 1967, 3861-3868. (c) Hirayama, N.; Shimizu, K.; Shirahata, K.; Ueno, K.; Tamura, G. *Agric. Biol. Che.* **1980**, *44*, 2083–2087. (d) Onda, M.; Konda, Y.; Hinottozawa, K.; Omura, S. *Chem. Pharm. Bull.* **1982**, *30*, 1210-1214. (e) Cho, H.; Beale, J. M.; Graff, C.; Mocek, U.; Nakagawa, A.; Omura, S.; Floss, H. G. J. Am. Chem. Soc. 1993, 115, 12296-12304. (f) Ojika, M.; Niwa, H.; Shizuri, Y.; Yamada, K. J. Chem. Soc., Chem. Commun. 1982, 628-629. (g) Grote, R.; Zeeck, A.; Drautz, H.; Zähner, H. J. Antibiot. 1988, 41, 1275-1276. (h) Werner, G.; Hagenmaier, H.; Drautz, H.; Baumgartner, A.; Zähner, H. *J. Antibiot.* **1984**, *37*, 110–117. (i) Omura, S.; Imamura, N.; Hinitizawa, K.; Otoguro, K.; Lukacs, G.; Faghih, R.; Tolmaann, R.; Arison, B. H.; Smith, J. L. J. Antibiot. **1983**, *36*, 1783-1786.

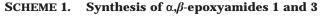
^{(4) (}a) Baldwin, J. E.; Dupont, W. A. *Tetrahedron Lett.* **1980**, *21*, 1881–1182.
(b) Mpango, G. B.; Mahalanabis, K. K.; Mahdavi-Damghani, Z.; Snieckus, V. *Tetrahedron Lett.* **1980**, *21*, 4823–4826.
(c) Greger, H.; Grentz, M.; Bohlmann, F. *Phytochemistry* **1981**, *20*, 2579–2581.
(d) Greger, H.; Grentz, M.; Bohlmann, F. *Phytochemistry* **1981**, *20*, 2000 **1982**, *21*, 1071–1074. (e) Bohlmann, F.; Gancer, M.; Kruger, M.; Nordhoff, E. *Tetrahedron* **1983**, *39*, 123–128.

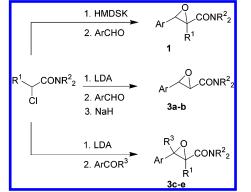
⁽⁵⁾ Fortin, S.; Dupont, F.; Deslongchamps, P. J. Org. Chem. 2002, 67, 5437-5439.

⁽⁶⁾ To see synthetic applications of epoxides: (a) Gansäuer, A.; Bluhm, H. *Chem. Rev.* **2000**, *100*, 2771–2788. (b) Li, J. J. *Tetrahedron* 2001, 57, 1-24. (c) Rao, A. S.; Panikar, S. K.; Kirtane, J. G. Tetrahedron 1983, 39, 2323–2365. (d) Gorzynski-Smith, J. Synthesis 1984, 629-656.

⁽⁷⁾ Synthesis of alkenes from epoxides can be carried out with very low diastereoselectivity by using SmI₂: Girard, P.; Namy, J. L.; Kagan, H. B. *J. Am. Chem. Soc.* **1980**, *102*, 2963–2968.

⁽⁸⁾ To see several reviews of synthetic applications of SmI_2 : (a) Molander, G. A. *Chem. Rev.* **1992**, *92*, 29–68. (b) Molander, G. A.; Harris, C. R. *Chem. Rev.* **1996**, *96*, 307–338. (c) Molander, G. A.; Harris, C. R. *Tetrahedron* **1998**, *54*, 3321–3354. (d) Krief, A.; Laval, A. M. Chem. Rew. 1999, 99, 745-777. (e) Still, P. G. J. Chem. Soc., Perkin Trans. 1 2001, 2727-2751.


⁽⁹⁾ Concellón, J. M.; Bernad, P. L.; Pérez-Andrés, J. A. Angew. Chem. 1999, 111, 2528–2530; Angew. Chem., Int. Ed. Engl. 1999, 2384–2386.
 (10) (a) Concellón, J. M.; Bernad, P. L.; Pérez-Andrés, J. A.;


Rodríguez-Solla, H. Angew. Chem. 2000, 112, 2773–2775; Angew. Chem., Int. Ed. Engl. 2000, 112, 2866–2868. (b) Concellón, J. M.; Bardales, E. Org. Lett. 2002, 4, 189–191.

 ⁽¹¹⁾ Concellón, J. M.; Bardales, E. Org. Lett. 2001, 3, 937–939.
 (12) Concellón, J. M.; Pérez-Andrés, J. A.; Rodríguez-Solla, H. Chem. Eur. J. 2001, 7, 3062–3068.

⁽¹³⁾ Concellón, J. M.; Bardales, E.; Gómez, C. Tetrahedron Lett. 2003. 44. 5323-5326.

⁽¹⁴⁾ Chloroamides were prepared by treatment of 2-chloro acid chlorides with amines

TABLE 1. Synthesis of α , β -Epoxiamides 1 and 3

product	Ar	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	yield (%) ^a
1a	Ph	Me	Et	Н	83
1b	Ph	Bu	Et	Н	65
1c	<i>p</i> -MeOC ₆ H ₄	Me	Et	Н	79
1d	p-MeOC ₆ H ₄	Me	<i>i-</i> Pr	Н	72
1e	p-ClC ₆ H ₄	Me	<i>i-</i> Pr	Н	74
3a	Ph	Н	Et	Н	67
3b	<i>p</i> -MeOC ₆ H ₄	Н	Et	Н	69
3c	Ph	Me	Et	Me	90
3d	Ph	Me	Et	Et	95
3e	Ph	Me	<i>i-</i> Pr	Et	93

^{*a*} Isolated yield after flash column chromatography based on starting carbonyl compound.

SCHEME 2. Synthesis of Trisubstituted Aromatic (Z)- α , β -Unsaturated Amides 2

10:1). When 2.5 equiv of SmI₂ was used in the presence of MeOH as a cosolvent,¹⁵ a mixture of the (*Z*)-unsaturated amide and the corresponding 2-hydroxyamide were isolated (roughly 5:1). The best yields and the highest (*Z*)-diastereoselectivity were obtained by using 4 equiv of SmI₂ and MeOH as a cosolvent.¹⁶

Thus, treatment of α,β -epoxyamides **1a**-**e** in THF (4 mL) and MeOH (0.5 mL) with a solution of SmI₂¹⁷ (4 equiv) in THF for 30 min at room temperature afforded, after hydrolysis, the corresponding trisubstituted (*Z*)- α,β -unsaturated amides **2** with total stereoselectivity (Scheme 2 and Table 2).¹⁸

This β -elimination reaction was general, and trisubstituted aromatic α , β -unsaturated amides **2** could be obtained bearing electron rich or deficient groups at the aromatic ring or bulky groups R² (ⁱPr) on nitrogen (Table 2).

TABLE 2.Synthesis of Trisubstituted Aromatic(Z)- α,β -Unsaturated Amides 2

2	Ar	\mathbb{R}^1	\mathbb{R}^2	ed (%)	yield (%) ^a
2a	Ph	Me	Et	>98	75
2b	Ph	Bu	Et	>98	87
2c	<i>p</i> -MeOC ₆ H ₄	Me	Et	97	67
2d	p-MeOC ₆ H ₄	Me	<i>i-</i> Pr	>98	70
2e	p-ClC ₆ H ₄	Me	<i>i-</i> Pr	>98	78
2d	<i>p</i> -MeOC ₆ H ₄	Me			

^a Isolated yield after flash column chromatography based on compound **1**.

SCHEME 3. Synthesis of Di- and Tetrasubstituted (*E*)- α , β -Unsaturated Amides 4

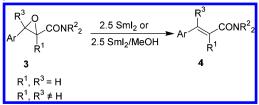


TABLE 3. Synthesis of Di- and Tetrasubstituted Aromatic (*E*)- α , β -Unsaturated Amides 4

4	Ar	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	ed (%)	yield (%) ^a
4a	Ph	Н	Et	Н	>98	75
4b	p-MeOC ₆ H ₄	Н	Et	Н	>98	80
4 c	Ph	Me	Et	Me	>98	95
4d	Ph	Me	Et	Et	>98	84
4e	Ph	Me	<i>i</i> -Pr	Et	>98	91

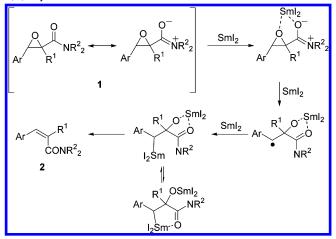
^{*a*} Isolated yield after flash column chromatography or vacumm distillation based on compound **3**.

However, when tetrasubstituted α,β -epoxiamides **3**c-**e** were used as starting compounds, (*E*)- α,β -unsaturated amides were isolated with total stereoselectivity (Scheme 3 and Table 3), instead of (*Z*)-unsaturated amides. When the reactions were performed without MeOH, no differences were observed and similar yields and de were obtained. It is noteworthy that tetrasubstitution of C=C with total diastereoselectivity is very difficult to achieve.

In the case of *N*,*N*-diethyl-3-phenyl-2,3-epoxypropanamide (disubstituted α,β -epoxyamide), a mixture of *N*,*N*diethyl-3-phenyl-2-hydroxypropanamide and its corresponding reduction product (*N*,*N*-diethyl-3-phenylpropanamide) was obtained. On the basis of these results, the reaction was carried out without MeOH (to avoid both the reduction of the double bond C=C of the α,β -unsaturated amide and the synthesis of α -hydroxyamides). Thus, treatment of disubstituted α,β -epoxyamides **3a** and **3b** in THF (4 mL) with a solution of SmI₂ (2.5 equiv) in THF for 30 min at room temperature afforded, after hydrolysis, the corresponding disubstituted (*E*)- α,β unsaturated amides **4a**-**b** with total stereoselectivity (Scheme 3 and Table 3)

It is noteworthy that, although 3:1 mixtures of diastereoisomers of starting compounds 1 and 3 were used in all described reactions, the corresponding α , β -unsaturated amides 2 and 4 were obtained with high stereoselectivity.

The diastereoisomeric excess was determined on the crude reaction products by GC-MS and ¹H NMR spectroscopy.¹⁹ The stereochemistry in the double bond C=C of disubstituted α , β -unsaturated amides **4a**,**b** was assigned on the basis of the value of ¹H NMR coupling


⁽¹⁵⁾ Proton-donor solvents increase the oxidative potential of SmI_2 : Hasegawa, E.; Curran, D. P. J. Org. Chem. **1993**, 58, 5008–5010.

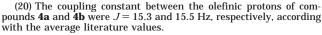
⁽¹⁶⁾ Elimination reactions of 1,2-dibromoalkanes to alkenes are accelerated in a methanolic medium: Yamada, R.; Negoro, N.; Yanada, K.; Fujita, T. *Tetrahedron Lett.* **1996**, *37*, 9313–9316.

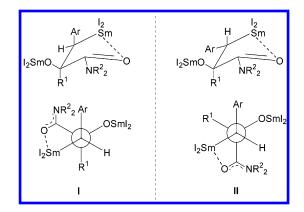
⁽¹⁷⁾ SmI₂ was very rapidly prepared by sonication of a mixture of samarium powder and diiodomethane in THF: Concellón, J. M.; Rodríguez-Solla, H.; Bardales, E.; Huerta, M. *Eur. J. Org. Chem.* **2003**, 1775–1778.

⁽¹⁸⁾ Minor amounts of 2-hydroxy-2-methyl-3-phenylpropanamide were obtained (11:1). In the other preparations of aromatic trisubstituted α , β -unsaturated amides, no 2-hydroxyamides were detected.

SCHEME 4. Mechanistic Proposal for the Synthesis of Trisubstituted Aromatic (Z)- α , β -Unsaturated Amides 2

constant between the olefinic protons²⁰ or by NOESY experiments in the case of the trisubstituted (compounds **2b** and **2d**) and tetrasubstituted (compound **4d**) amides. In addition, in the case of compounds **4c,d**, a comparison with the ¹H and ¹³C NMR values described in the literature for the corresponding (*E*)- α , β -unsaturated amides¹² was also carried out.


The synthesis of products **2** could be explained (Scheme 4) by assuming the initial double coordination of samarium with both oxygen atoms of **1**. The coordination of samarium with the oxirane ring produces an effect similar to that of a Lewis acid and can open the oxirane ring by reduction of the C_{β} –O bond. The cleavage of the C_{β} –O bond in aromatic α,β -epoxyamides is favored, since it gives rise to a benzylic radical, which is stabilized by resonance.


A very fast second reduction with another equivalent of SmI₂ affords the corresponding anion, which suffers a β -elimination reaction (far faster than the hydrolysis of the anion by MeOH), affording the corresponding α_{β} unsaturated amide 2. Tentatively, we propose an anti elimination process, transition states I and II being possible (Figure 1), in which the samarium(III) center is coordinated with the oxygen atom of the amide group. I would be preferred because there is no steric hindrance between Ar and R¹ and no 1,3-diaxial interactions of Ar are present in the cyclic transition state. Elimination from **I** affords a trisubstituted (*Z*)- α , β -unsaturated amide. In the case of disubstituted epoxyamides, transition state **II** would be preferred, with the bulkier group Ar in the equatorial orientation and there is no steric hidrance between Ar and $R^1 = H$.

When the elimination is carried out from tetrasubstited epoxyamides, transition state **II** would be also preferred with the bulkier group Ar in the equatorial position.

Synthesis of 2 and 4, with total stereoselection, from a mixture of diastereoisomers of 1 and 3 could be explained by assuming that after the reaction of epoxyamides 1 and 3 with SmI₂, only one diastereoisomer is

⁽¹⁹⁾ When the minor diastereoisomer was not detected, ed >98% is showed in Tables 2 and 3.

FIGURE 1. Transition states proposal for the synthesis of trisubstituted aromatic (Z)- α , β -unsaturated amides **2**.

produced with the appropriate conformation for a double coordination of the samarium center with the alcohol oxygen.

The methodology herein described is complementary to the previously reported elimination of aromatic 2-chloro-3-hydroxyamides also promoted by SmI₂.¹² Thus, the elimination reaction from α,β -epoxyamides to obtain trisubstituted (*Z*)- α,β -unsaturated amides or tetrasubstituted (*E*)- α,β -unsaturated amides is recommendable, while synthesis of trisubstituted (*E*)- α,β -unsaturated amides can be achieved from 2-chloro-3-hydroxyamides. Similar results are obtained from α,β -epoxyamides or 2-chloro-3-hydroxyamides to obtain aromatic disubstituted (*E*)- α,β -unsaturated amides.

In conclusion, we have presented an easy, simple, and general methodology to obtain both (Z)- α , β -unsaturated amides from aromatic trisubstituted α , β -epoxyamides and (E)- α , β -unsaturated amides from di- or tetrasubstituted α , β -epoxyamides. These elimination reactions proceed with total or high diastereoselectity.

Experimental Section

General.²¹ Samarium diiodide was prepared by reaction of CH_2I_2 with samarium powder.¹⁷

General Procedure for the Synthesis of 2,3-Epoxyamides 1. To a -78 °C stirred solution of the corresponding 2-haloamide (2.5 mmol) in dry THF (4 mL) was added dropwise potassium hexamethyldisilazide (6.5 mL of 0.5 m solution in toluene, 3.25 mmol). After stirring for 10 min, a solution of the corresponding aldehyde (2.5 mmol) in dry THF (4 mL) was added dropwise at -78 °C and the mixture was allowed to warm to room temperature. The resulting solution was quenched with aqueous saturated solution of NH₄Cl (20 mL). Usual workup provided crude 2,3-epoxyamides 1, and purification by flash column chromatography over silica gel (hexane/ethyl acetate) provided pure compounds.

General Procedure of Synthesis of α , β -Unsaturated Amides 2. A solution of 1 (0.4 mmol) in THF (2 mL) was added to a stirred solution of SmI₂ (1.6 mmol) and MeOH (0.4 mL), under a nitrogen atmosphere, at 25 °C. The mixture was stirred for 30 min at this temperature and then quenched with aqueous HCl (0.1 M, 15 mL). Usual workup afforded crude α , β -unsaturated amides 2, which were purified by flash column chromatography on silica gel (hexane/AcOEt). Yields are given in Table 1.

(Z)-N,N-Diethyl-2-methyl-3-phenylpropenamide (2a): ¹H NMR (400 MHz, [D₆]DMSO, 373 K) δ = 7.32–7.12 (m, 5 H), 6.34 (s, 1 H), 3.36 (q, J = 6.9 Hz, 2 H), 3.14 (q, J = 6.9 Hz, 2 H),

⁽²¹⁾ Concellón, J. M.; Bardales, E. J. Org. Chem. 2003, 68, 1585–1588.

1.99 (s, 3 H), 1.05 (t, J = 6.9 Hz, 3 H), 0.84 (t, J = 6.9 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 171.2$ (C), 135.8 (C), 133.4 (C), 128.0 (CH), 127.5 (CH), 127.1 (CH), 126.7 (CH), 41.9 (CH₂), 38.0 (CH₂), 22.4 (CH₃), 13.5 (CH₃), 11.9 (CH₃); MS (70 eV) m/z (%) 217 [M⁺] (81), 202 (32), 145 (100), 117 (97), 91 (40); HRMS calcd for C₁₄H₁₉NO 217.1467, found 217.1461; IR (neat) $\tilde{v} = 2973$, 1620, 1431 cm⁻¹; $R_f = 0.2$ (hexane/AcOEt 3/1). Anal. Calcd for C₁₄H₁₉NO: C, 77.38; H, 8.81; N, 6.45. Found: C, 77.51; H, 8.79; N, 6.41.

(Z)-2-Butyl-*N*,*N*-diethyl-3-phenylpropenamide (2b): ¹H NMR (200 MHz, CDCl₃) δ = 7.31–7.09 (m, 5 H), 6.32 (s, 1 H), 3.62–2.92 (m, 4 H), 2.41–2.31 (m, 2 H), 1.60–1.32 (m, 4 H), 1.08 (t, *J* = 6.9 Hz, 3 H), 0.92 (t, *J* = 6.9 Hz, 3 H), 0.73 (t, *J* = 6.9 Hz, 3 H); ¹³C NMR (50 MHz, CDCl₃) δ = 170.9 (C), 138.0 (C), 136.0 (C), 128.0 (CH), 127.7 (CH), 127.1 (CH), 125.8 (CH), 41.8 (CH₂), 37.8 (CH₂), 36.0 (CH₂), 29.7 (CH₂), 22.4 (CH₂), 13.7 (CH₃), 13.3 (CH₃), 11.8 (CH₃); *m*/*z* (%) 259 [M⁺] (43), 216 (100), 202 (30), 100 (23); IR (neat) $\tilde{\nu}$ = 2959, 1619, 1430 cm⁻¹; *R_f* = 0.3 (hexane/AcOEt 3/1). Anal. Calcd for C₁₇H₂₅NO: C, 78.72; H, 9.71; N, 5.40. Found: C, 78.64; H, 9.79; N, 5.42.

(Z)-N,N-Diethyl-3-[4-methoxyphenyl]-2-methylpropenamide (2c): ¹H NMR (400 MHz, [D₆]DMSO, 373 K) 7.21 (d, J = 8.8 Hz, 2 H), 6.84 (d, J = 8.8 Hz, 2 H), 6.26 (s, 1 H), 3.74 (s, 3 H), 3.38 (q, J = 6.9 Hz, 2 H), 3.17 (q, J = 6.9 Hz, 2 H), 1.96 (s, 3 H), 1.08 (t, J = 6.9 Hz, 3 H), 0.87 (d, J = 6.9 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 171.6$ (C), 158.7 (C), 131.3 (C), 128.9 (CH), 128.7 (C), 126.3 (CH), 113.5 (CH), 55.0 (CH₃), 41.9 (CH₂), 38.1 (CH₂), 22.3 (CH₃), 13.7 (CH₃), 12.0 (CH₃); MS (70 eV) m/z (%) 247 [M⁺] (69), 232 (20), 175 (100), 147 (45), 140 (18); HRMS calcd for C₁₅H₂₁NO₂ 247.1572, found 247.1562; IR (neat) $\tilde{\nu} = 2972$, 1608, 1513 cm⁻¹; $R_f = 0.3$ (hexane/AcOEt 1/1). Anal. Calcd for C₁₅H₂₁NO₂: C, 72.84; H, 8.56; N, 5.66. Found: C, 72.71; H, 8.50; N, 5.60.

(Z)-*N*,*N*-Diisopropyl-3-[4-methoxyphenyl]-2-methylpropenamide (2d): ¹H NMR (300 MHz, CDCl₃) 7.31 (d, J = 8.8 Hz, 2 H), 6.80 (d, J = 8.8 Hz, 2 H), 6.21 (s, 1 H), 4.95–4.12 (m, 1 H), 3.79 (s, 3 H), 3.37–3.23 (m, 1 H), 2.03 (s, 3 H), 2.02 (d, J = 6.9 Hz, 6 H), 1.09 (d, J = 6.7 Hz, 3 H), 0.56 (d, J = 6.7 Hz, 3 H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 171.4$ (C), 158.7 (C), 133.0 (C), 129.2 (C), 129.1 (CH), 125.2 (CH), 113.4 (CH), 55.1 (CH₃), 50.3 (CH), 45.3 (CH), 22.2 (CH₃), 21.3 (CH₃), 20.6 (CH₃), 20.0 (CH₃), 19.7 (CH₃); MS (70 eV) *m*/*z* (%) 275 [M⁺] (8), 260 (13), 175 (75), 91 (53); HRMS calcd for C₁₇H₂₅NO₂: C, 74.14; H, 9.15; N, 5.09. Found: C, 74.06; H, 9.20; N, 5.01.

(Z)-*N*,*N*-Diisopropyl-3-[4-chlorophenyl]-2-methylpropenamide (2e): ¹H NMR (200 MHz, CDCl₃) 7.29 (d, J = 8.2 Hz, 2 H), 7.19 (d, J = 7.4 Hz, 2 H), 6.18 (s, 1 H), 3.99–3.85 (m, 1 H), 3.33–3.20 (m, 1 H), 2.00 (s, 3 H), 1.43 (d, J = 5.9 Hz, 6 H), 1.06 (d, J = 6.4 Hz, 3 H), 0.53 (d, J = 6.4 Hz, 3 H); ¹³C NMR (50 MHz, CDCl₃) $\delta = 170.6$ (C), 135.5 (C), 134.5 (C), 132.5 (C), 129.0 (CH), 128.0 (CH), 124.2 (CH), 50.2 (CH), 45.2 (CH), 22.1 (CH₃), 21.0 (CH₃), 20.2 (CH₃), 19.8 (CH₃), 19.4 (CH₃); MS (70 eV) m/z (%) 279 [M⁺] (47), 264 (29), 179 (100), 168 (11); HRMS calcd for C₁₆H₂₂NOCl 279.1390, found 279.1425; IR (neat) $\tilde{\nu} = 2984$, 1612, 1493 cm⁻¹; $R_f = 0.4$ (hexane/AcOEt 3/1). Anal. Calcd for C₁₆H₂₂CINO: C, 68.68; H, 7.93; N, 5.01. Found: C, 68.80; H, 7.89; N, 5.11.

General Procedure for the Synthesis of 2,3-Epoxyamides 3a–e: To a –78 °C stirred solution of the corresponding 2-haloamide (4.5 mmol) in dry THF (4 mL) was added dropwise lithium diisopropylamide [prepared from MeLi (3.2 mL of 1.5 m solution in diethyl ether, 5 mmol) and diisopropylamine (0.8 mL, 5 mmol) in THF 25 mL) at 0 °C]. After stirring for 10 min, a solution of the corresponding aldehyde or ketone (3.5 mmol) in dry THF (4.5 mL) was added dropwise at -78 °C and the mixture was stirred for 1 h. In the case of 2,3-epoxyamides **3a,b**, the reaction mixture was quenched with an aqueous saturated solution of NH₄Cl (20 mL). Usual workup provided crude 2-halo-3-hydroxyamides, which were diluted with CH₂Cl₂ (20 mL) and treated with sodium hydride (1 g, 45 mmol) at 25 °C. The mixture was stirred for 2.5 h at this temperature and then quenched with H₂O. In the case of 2,3-epoxyamides **3c**-e, the mixture was allowed to warm to room temperature. The resulting solution was quenched with an aqueous saturated solution of NH₄Cl (20 mL). Usual workup afforded crude 2,3-epoxyamides **3a**-e, and purification by flash column chromatography on silica gel (hexane/AcOEt) provided pure compounds.

General Procedure of Synthesis of α , β -Unsaturated **Amides 4.** A solution of **3** (0.4 mmol) in THF (2 mL) was added to a stirred solution of SmI₂ (1.0 mmol), in THF (12 mL), under a nitrogen atmosphere, at 25 °C. The mixture was stirred for 30 min at this temperature and then quenched with aqueous HCl (0.1 M, 15 mL). Usual workup afforded crude α , β -unsaturated amides **4**, which were purified by flash column chromatography on silica gel (hexane/AcOEt). Yields are given in Table 2.

(*É*)-*N*,*N*-Diethyl-3-phenylpropenamide (4a). See ref 12. (*E*)-*N*,*N*-Diethyl-3-[4-methoxyphenyl]propenamide (4b): ¹H NMR (400 MHz, [D₆]DMSO, 373 K) $\delta = 7.55$ (d, J = 8.5 Hz, 2 H), 7.42 (d, J = 15.5 Hz, 1 H), 6.95 (d, J = 8.5 Hz, 2 H), 6.84 (d, J = 15.5 Hz, 1 H), 3.81 (s, 3 H), 3.45 (q, J = 7.1 Hz, 4 H), 1.15 (t, J = 7.1 Hz, 6 H); ¹³C NMR (50 MHz, CDCl₃) $\delta = 165.9$ (C), 160.5 (C), 141.7 (CH), 129.1 (CH), 128.0 (C), 115.2 (CH), 114.0 (CH), 55.1 (CH₃), 42.1 (CH₂), 40.9 (CH₂), 14.5 (CH₃), 13.1 (CH₃); MS (70 eV) m/z (%) 233 [M⁺] (21), 218 (6), 161 (100), 133 (25); IR (neat) $\tilde{\nu} = 2974$, 1646, 1460 cm⁻¹; $R_f = 0.3$ (hexane/ AcOEt 1/1). Anal. Calcd for C₁₄H₁₉NO₂: C, 72.07; H, 8.21; N, 6.00. Found: C, 72.18; H, 8.29; N, 6.15.

(*E*)-*N*,*N*-Diethyl-2-methyl-3-phenylbut-2-enamide (4c). See ref 12.

(*E*)-*N*,*N*-Diethyl-2-methyl-3-phenylpent-2-enamide (4d). See ref 12.

(*E*)-*N*,*N*-Diisopropyl-2-methyl-3-phenylpent-2-enamide (4e): ¹H NMR (200 MHz, CDCl₃) 7.34–7.16 (m, 5 H), 3.97–3.84 (m, 1 H), 3.12–2.98 (m, 1 H), 2.32–1.95 (m, 2 H), 1.95 (s, 3 H), 1.36 (d, J = 6.9 Hz, 3 H), 1.06 (d, J = 6.9 Hz, 3 H), 0.99 (d, J = 6.7 Hz, 3 H), 0.94 (t, J = 6.7 Hz, 3 H), 0.37 (d, J = 6.7 Hz, 3 H); ¹³C NMR (50 MHz, CDCl₃) $\delta = 171.9$ (C), 140.8 (C), 136.9 (C), 129.4 (C), 128.5 (CH), 127.6 (CH), 126.6 (CH), 49.7 (CH), 44.9 (CH), 25.8 (CH₂), 21.4 (CH₃), 20.4 (CH₃), 19.7 (CH₃), 19.4 (CH₃), 16.7 (CH₃), 124. (CH₃); MS (70 eV) m/z (%) 273 [M⁺] (2), 244 (49), 173 (100), 145 (70), 128 (21); IR (neat) $\tilde{\nu} = 2967$, 1619, 1440 cm⁻¹; $R_f = 0.5$ (hexane/AcOEt 3/1). Anal. Calcd for C₁₈H₂₇NO: C, 79.07; H, 9.95; N, 5.12. Found: C, 79.19; H, 9.84; N, 5.11.

Acknowledgment. We thank II Plan Regional de Investigación del Principado de Asturias (PB-EXP01-11) and Ministerio de Ciencia y Tecnología (BQU2001-3807) for financial support. J.M.C. thanks Carmen Fernández-Flórez for her time and E.B to Principado de Asturias for a predoctoral fellowship. Thanks to Robin Walker for his revision of the English.

Supporting Information Available: Spectral data of compounds **1** and **3** and ¹³C NMR spectra of compounds **2** and **4**. This material is available free of charge via Internet at http://pubs.acs.org.

JO0349577