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SYNTHESIS AND BIOPHYSICAL STUDIES OF N2′-FUNCTIONALIZED
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� A synthetic route towards a selected set of N-acylated and N-alkylated derivatives of 2 ′-amino-
α-L-LNA phosphoramidite building blocks has been developed. Biophysical studies suggest that the
2-oxo-5-azabicyclo[2.2.1]heptane skeleton of 2 ′-amino-α-L-LNA allows precise positioning of inter-
calators in the core of nucleic acid duplexes.
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INTRODUCTION

The high affinity hybridization of LNA,[1] 2′-amino-LNA,[2] α-L-LNA,[3]

and 2′-α-L-amino-LNA[4] toward complementary DNA/RNA complements
are well established. As an extension of our recent efforts to use N2′-
functionalized 2′-amino-LNA monomers as building blocks in nucleic acid
based diagnostics and therapeutics,[5] we have developed an interest in
N2′-functionalized 2′-amino-α-L-LNA building blocks. Among these, double
stranded 2′-N-(pyren-1-yl)methyl-2′-amino-α-L-LNA have been shown to tar-
get double-stranded DNA.[6] Herein, we present the synthesis and biophysi-
cal studies of N2′-functionalized 2′-amino-α-L-LNA.

RESULTS AND DISCUSSION

The synthesis of a selected set of N2′-functionalized 2′-amino-α-L-
LNA phosphoramidites is conveniently achieved in two steps from key
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SCHEME 1 Reagents and conditions: a) NC(CH2)2OP(Cl)N(i-Pr)2, EtN(i-Pr)2, 56% for 3Q, 63% for
3S, 90% for 3V, 88% for 3W, 60% for 3X, 75% for 3Y and 36% for 3Z; b) DNA synthesizer; DMTr =
4,4′-dimethoxytrityl, Fmoc = 9′-fluorenylmethoxycarbonyl, Py = pyren-1-yl.

intermediate 1 by chemoselective carbamoylation (monomer Q) or EDC-
mediated N-acylation (monomers X-Z), reductive amination (monomers
S and W), or peracylation followed by selective deacylation (monomer
V, Scheme 1). Further details on the synthesis and incorporation of
N2′-functionalized 2′-amino-α-L-LNA phosphoramidites 3Q-Z into short
oligodeoxyribonucleotides (ONs) will be presented elsewhere.

Incorporation of a single pyrene functionalized 2′-amino-α-L-LNA
monomer (W-Z) results in dramatic increases in duplex stability with
DNA complements of up to +19.5◦C and significantly smaller increases
in duplex stability with RNA complements. A single incorporation of
non-functionalized 2′-amino-α-L-LNA monomer Q results in comparably
more modest increases in duplex stability with DNA/RNA complements
(Table 1).[4] Surprisingly, single incorporations of ethyl or acetyl substi-
tuted 2′-amino-α-L-LNA monomers (S or V) into ONs result in greatly
decreased thermal affinities towards its DNA/RNA complements. The ob-
served DNA selectivity (Table 1), limited mismatch discrimination, molec-
ular modeling studies and hybridization induced bathocromic shifts of
pyrene absorption maxima (data not shown), suggest that the 2-oxo-5-
azabicyclo[2.2.1]heptane skeleton of these monomers positions the pyrene
moiety suitably for intercalation upon hybridization.
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TABLE 1 Thermal denaturation temperatures of duplexes formed by 5′-d(GCAB AT CAC)a

and DNA/RNA complementsb

[Tm (�Tm/mod)/◦C]

B = Q B = S B = V B = W B = X B = Y B = Z

DNA 31.0 (+2.5) 22.5 (−6.0) 19.0 (−9.5) 44.0 (+15.5) 48.0 (+19.5) 45.0 (+16.5) 35.0 (+6.5)
RNA 29.0 (+4.5) 21.5 (−3.0) 20.5 (−4.0) 32.0 (+7.5) 36.0 (+11.5) 36.5 (+12.0) 31.0 (+6.5)

aTm values of unmodified duplex (where B = T) toward its complementary DNA and RNA are 28.5◦C
and 24.5◦C, respectively.

b Thermal denaturation temperatures recorded in medium salt buffer ([Na+] = 110 mM, [Cl−] = 100
mM, pH 7.0 (adjusted with 10 mM NaH2PO4/5 mM Na2HPO4)), using 1.0 µM concentrations of the
two complementary strands. See synthetic scheme for structure of monomers.
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