

Synthesis of 2,4,5-Trisubstituted 3-Fluorofurans via Sequential Iodocyclization and Cross-Coupling of *gem*-Difluorohomopropargyl Alcohols

Satoru Arimitsu, Jesse M. Jacobsen, and Gerald B. Hammond*

Department of Chemistry, University of Louisville, Louisville, Kentucky 40292

> gb.hammond@louisville.edu Received January 14, 2008

The iodocyclization of gem-difluorohomoallenyl and gem-difluorohomopropargyl alcohols with I_2 and ICl, respectively, produced the corresponding fluorinated iodofuran analogues in good yields. The iodo substituent in fluorinated 4-iodofurans was utilized as a synthetic handle to prepare multisubstituted 3-fluorofurans using a Suzuki cross-coupling reaction. The yields of both iodocyclization of gem-difluorohomopropargyl alcohol and subsequent Suzuki coupling were dramatically enhanced by microwave irradiation.

The furan structure is a ubiquitous unit in a variety of natural products, active pharmaceuticals, agricultural compounds, fragrances, and synthetic precursors. A concise synthetic methodology for multi-substituted furans remains an important task in modern organic chemistry. A particularly underdeveloped area of furan chemistry is the synthesis of its fluorine congeners, despite the fact that the presence of fluorine has often enhanced the pharmacokinetic properties of a parent molecule and that many current pharmaceuticals contain fluorine(s).

Our group has reported the indium-mediated selective synthesis of *gem*-difluorohomoallenyl alcohol **2** and *gem*-difluorohomopropargyl alcohol **4** from difluoropropargyl bromide **1**. Both alcohols have demonstrated their usefulness as building blocks in the synthesis of fluorinated furan analogues under basic

SCHEME 1. Synthetic Access to Fluorinated Furans from Alcohols 2 and 4

conditions (Scheme 1).⁶ However, these methodologies use a proton (H⁺) electrophile, which does not permit installing a synthetic handle to access multi-substituted fluorinated furans. If instead we could use a halide electrophile, we would then be able to install this reactive halide on the furan structure, which could eventually be functionalized by further cross-coupling reactions. We are now pleased to report the synthesis of fluorinated iodofurans and their conversion into 2,4,5-trisubstituted 3-fluorofurans using a Suzuki coupling reaction.

As a point of entry to the ensuing discussions, the iodocyclization of *gem*-difluorohomoallenyl alcohol **2** produced 2,2-difluoro-3-iodo-2,5-dihydrofuran **3** under mild conditions (1 equiv). The expected—and observed—iodocyclization pattern⁷ was driven by the high electrophilicity of the *gem*-difluorovinyl carbon.⁸ In marked contrast, the lesser reactivity of the triple bond in *gem*-difluorohomopropargyl alcohol **4a** hindered its

(6) See refs 3b and 5d.

(7) (a) Yoshida, M.; Hayashi, M.; Shishido, K. *Org. Lett.* **2007**, *9*, 1643–1646. (b) Hyland, C. J. T.; Hegedus, L. S. *J. Org. Chem.* **2006**, *71*, 8658–8660. (c) Schultz-Fademrecht, C.; Zimmermann, M.; Fröhlich, R.; Hoppe, D. *Synlett* **2003**, *13*, 1969–1972.

(8) Ichikawa, J. Pure Appl. Chem. 2000, 72, 1685-1689.

^{(1) (}a) Lipshutz, B. H. *Chem. Rev.* **1986**, *86*, 795–819. (b) Dean, F. M. In *Advances in Heterocyclic Chemistry*; Katritzky A. R., Ed.; Academic Press: New York, 1983; Vol. 31, pp 273–344. (c) Nakanishi, K., Goto, T., Ito, S., Natori, S., Nozoe, S., Eds.; *Natural Products Chemistry*; Kodansha: Tokyo, 1974; Vols. 1–3.

^{(2) (}a) Babudri, F.; Cicco, S. R.; Farinola, G. M.; Lopez, L. C.; Naso, F.; Pinto, V. *Chem. Commun.* **2007**, 3756–3758. (b) Kirsch, S. F. *Org. Biomol. Chem.* **2006**, 4, 2076–2080. (c) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. *Eur. J. Org. Chem.* **2005**, 2, 5277–5288. (d) Stauffer, F.; Neier, R. *Org. Lett.* **2000**, 2, 3535–3537 and references cited therein.

⁽³⁾ For examples of substituted 3-fluorofurans, see: (a) Pomeisl, K.; Cejka, J.; Kvicala, J.; Paleta, O. Eur. J. Org. Chem. 2007, 5917–5923. (b) Arimitsu, S.; Hammond. G. B. J. Org. Chem. 2007, 72, 8559–8561. (c) Xu, W.; Chen, Q.-Y. Org. Biomol. Chem. 2003, 1, 1151–1156. (d) Sham, H. L.; Batebenner, D. A. J. Chem. Soc., Chem. Commun. 1991, 1134–1135.

⁽⁴⁾ For general reviews, see: (a) Uneyama, K. Organofluorine Chemistry; Blackwell: Oxford, 2006. (b) Chambers, R. D. Fluorine in Organic Chemistry; Blackwell: Oxford, 2004 (c) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2004. (d) Koksch, B.; Sewald, N.; Jakubke, H.-D.; Burger, K. Biomedical Frontiers of Fluorine Chemistry; Ojima, I., McCarthy, J. R., Welch, J. T., Eds.; American Chemical Society: Washington, DC, 1996. For examples of 3,3-gem-difluoromethylenated nucleoacids, see: (e) Zhou, W.; Gumina, G.; Chong, Y.; Wang, J.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2004, 47, 3399—3408. (f) Zhang, X.; Xia, H.; Dong, X.; Jin, J.; Meng, W.-D.; Qing, F.-L. J. Org. Chem. 2003, 68, 9026—9033. (g) Patel, V. F.; Hardin, J. N.; Mastro, J. M.; Law, K. L.; Zimmermann, J. L.; Ehlhardt, W. J.; Woodland, J. M.; Starling, J. J. Bioconjugate Chem. 1996, 7, 497—510. (h) Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org. Chem. 1987, 52, 2406—2409.

⁽⁵⁾ For a review of *gem*-difluoroallenes, see: (a) Hammond, G. B. *J. Fluorine Chem.* **2006**, *127*, 476–488. For synthesis of *gem*-difluorohomopropargyl alcohols, see: (b) Arimitsu, S.; Jacobsen, J. M.; Hammond, G. B. *Tetrahedron Lett.* **2007**, *48*, 1625–1627. (c) Arimitsu, S.; Hammond, G. B. *J. Org. Chem.* **2006**, *71*, 8865–8868. (d) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T.; Nemoto, H.; *Tetrahedron* **2000**, *56*, 8275–8280. (e) Wang, Z.-G.; Hammond, G. B. *J. Org. Chem.* **2000**, *65*, 6547–2255

TABLE 1. Screening Conditions for the Iodocyclization of 4a

entry	base (1.2 equiv)	iodine source ^a	solvebt (0.1 M)	temp (°C)	time	yields of 5a/6a (%) ^b
1	NaH	I_2	THF	reflux	12 h	complex mixture
2	NaH	ICI	THF	reflux	12 h	0/36 (6)
3	t-BuOK	ICI	THF	reflux	12 h	0/46 (0)
4	Na_2CO_3	ICI	THF	reflux	12 h	54/0 (37)
5	K_2CO_3	ICI	THF	reflux	12 h	9/0 (76)
6^d	Na_2CO_3	ICI	THF	91	5 min	63/8 (0) [66]
7^d	Na_2CO_3	ICI	DMF	91	5 min	50/trace (30)
8^d	Na_2CO_3	ICI	CH ₃ CN	91	5 min	0/36 (0)
9^d	Na ₂ CO ₃	ICI	CH ₂ Cl ₂	91	5 min	complex mixture ^e
10^d	Na_2CO_3	ICI	toluene	91	5 min	trace/0 (64)
11^d	Na ₂ CO ₃	ICI	ether	91	5 min	16/23 (13)

^a 1.5 equiv was used. ^b Yield was determined by ¹⁹F NMR, and the values in parentheses refer to the amount of recovered starting material **4a**. ^c The value in brackets was the isolated yield of **6a** after silica gel chromatography. ^d The reaction was carried out in a closed vial in a microwave reactor. ^e **6a** isolated in 12% yield.

TABLE 2. Microwave-Mediated Iodocyclization of gem-Difluorohomopropargyl Alcohol 4

entry	R	R'	isolated yields of 5 or 6 (%)
1	n-Hex	Ph	66 (6a)
2	n-Hex	$4-MeO-C_6H_4$	62 (6b)
3	n-Hex	$4-CF_3-C_6H_4$	76 (6c)
4	n-Hex	$BnOCH_2$	46 (5d) ^a
5	$BnOCH_2$	Ph	56 (5e) ^a
6	Ph	Ph	49 $(5f)^a$

^a Silica gel was deactivated by Et₃N.

iodocyclization, as demonstrated by the fact that strong bases, such as NaH and t-BuOK, caused the decomposition of product or starting material (entries 1–3, Table 1), and no reaction occurred using K_2CO_3 and a reactive electrophile (ICl) at reflux temperatures for 12 h (entry 5, Table 1). However, the combination of iodomonochloride (ICl) and Na₂CO₃ gave the desired iodocyclization product $\mathbf{5a}$ selectively, in moderate yield and with little decomposition (entry 4, Table 1).

The unreactive nature of **4a** prompted us to investigate whether microwave irradiation would hasten the desired iodocyclization (entries 6–11, Table 1). Gratifyingly, **4a** was quickly consumed to yield **5a** as a major product in satisfactory yield after only 5 min of microwave irradiation. Following silica gel chromatography, the aromatic product **6a** was obtained in 66% yield (entry 6, Table 1).

The scope of this reaction is shown in Table 2. Aryl substrates with electron-donating or -withdrawing groups at the homopropargyl position gave the corresponding 4-iodofuran $\bf 6$ in good isolated yields (entries 1–3, Table 2). Interestingly, use of silica gel deactivated with triethylamine (Et₃N) furnished $\bf 5$ instead of the aromatized derivative $\bf 6$ (entries 4–6, Table 2).

SCHEME 2. Reaction Mechanism for the Iodocyclization of

The published syntheses of 2,5-substituted-3-fluorofurans do not permit functionalization at the 4-position of 3-fluorofurans.³ Thus, a readily apparent useful synthetic transformation of 5 or 6 could be the replacement of iodine with a suitable substituent using a cross-coupling reaction. An obvious approach would be the Suzuki coupling¹⁰ of arylboronic acids. Indeed, phenylboronic acid reacted with 6a to furnish 7aa in excellent yield in only 0.5 h (entry 1, Table 3). Microwave irradiation proved critical for the efficiency of this reaction since the same reaction at reflux not only failed to consume 6a after 12 h but also led to the formation of byproducts. Electron-rich or electrondeficient aryl boronic acids reacted with 6a in satisfactory yields (entries 2-6, Table 3). Furthermore, 3-thienylboronic acid (entry 7, Table 3) and (E)-cinnamylboronic acid (entry 8, Table 3) gave the corresponding sp²-sp² coupling products in good and moderate yields, respectively, with only a slight change in the reaction time. Notably, the Suzuki coupling of 5 spontaneously yielded only 7 (entries 11-13, Table 3), with no trace of the corresponding 4,5-dihydrofuran.

The two proposed mechanisms for the iodocyclization of **4** are depicted in Scheme 2. Initial deprotonation of **4** by a base gives rise to an oxyanion, which can then attack either on the CF₂ carbon in a 3-exo-tet fashion (Path a, Scheme 2)¹¹ or on the triple bond in a 5-endo-dig fashion (Path b, Scheme 2).^{12,13} The conversion of acetylenic epoxide intermediates into furans via their cumulene intermediates, in the presence of bases, has been reported.¹⁴ However, for this transformation to occur, alkyl substrates are required on R. Fortunately, we were able to recrystallize **5f** and obtain an X-ray analysis (Figure 1), which, in turn, allowed us to use the ¹⁹F NMR spectral data of crude **5** (prior to aromatization) to confirm that, in all cases, 3,3-difluoro-4-iodo-4,5-dihydrofuran **5** was produced, regardless of the substrates R and R'. This experimental fact shored up support for Path b as the most likely mechanism for our reaction. The

⁽⁹⁾ The use of normal silica gel for isolation resulted in the decomposition of the benzyl ether group (entries 4 and 5, Table 2) and a difficult separation from byproducts (entry 6, Table 2).

⁽¹⁰⁾ For reviews of the Suzuki—Miyaura cross-coupling, see: (a) Bellina, F.; Carpita, A.; Rossi, R. *Synthesis* **2004**, 2419—2440. (b) Kotha, S.; Lahiri, K.; Kaschinath, D. *Tetrahedron* **2002**, *58*, 9633—9695. (a) Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, *95*, 2457—2483.

⁽¹¹⁾ A similar base-mediated cyclization of *gem*-difluorohomopropargyl alcohol was reported. This report claimed that 3-fluoro-2,5-substituted furans were obtained via a 3-exo-tet cyclization. See ref 3d.

⁽¹²⁾ El-Taeb, G. M. M.; Evans, A. B.; Jones, S.; Knight, D. W. Tetrahedron Lett. 2001, 42, 5945-5948.

⁽¹³⁾ A cyclic iodonium ion intermediate has been proposed. See: Barluenga, J.; Rodríguez, M. A.; Campos, P. J. *J. Org. Chem.* **1990**, *55*, 3104–3106 and references cited therein.

^{(14) (}a) Marshall, J. A.; Dubay, W. J. J. Am. Chem. Soc. **1992**, 114, 1450–1456. (b) Marshall, J. A.; DuBay, W. J. J. Org. Chem. **1991**, 56, 1685–1687.

TABLE 3. Microwave-Mediated Suzuki Coupling of 5 or 6

entry	R	R'	R_1	time ^a (h)	isolated yield of 7 (%)
1	n-Hex	Ph (6a)	Ph	0.5	98 (7aa)
2	n-Hex	Ph (6a)	$3,4-(OCH_2O)-C_6H_3$	0.5	78 (7ab)
3	n-Hex	Ph (6a)	$4\text{-CHO}-C_6H_4$	1.5	72 (7ac)
4	n-Hex	Ph (6a)	$4-CN-C_6H_4$	1.0	63 (7ad)
5	n-Hex	Ph (6a)	$4-F-C_6H_4$	0.5	66 (7ae)
6	n-Hex	Ph (6a)	$4-CF_3-C_6H_4$	0.5	63 (7af)
7	n-Hex	Ph (6a)	3-thienyl	1.0	71 (7ag)
8	n-Hex	Ph (6a)	(E)-PhCHCH ₂	1.5	58 (7ah)
9	n-Hex	$4-MeO-C_6H_4$ (6b)	Ph	2.0	85 (7ba)
10	n-Hex	$4-CF_3-C_6H_4$ (6c)	Ph	1.0	75 (7ca)
11	<i>n</i> -Hex	BnOCH ₂ (5d)	Ph	1.5	50 (7da)
12	$BnOCH_2$	Ph (5e)	Ph	1.0	51 (7ea)
13	Ph	Ph (5f)	Ph	1.5	77 (7fa)

^a Reaction progress was monitored by TLC or GC-MS.

FIGURE 1. Single-crystal X-ray structure of 5f.

electronically deficient nature of the alkyne moiety in **4** had been verified through DFT calculations.^{3b}

In summary, whereas the iodocyclization of *gem*-difluoro-homoallenyl alcohol **2** produced 2,2-difluoro-3-iodo-2,5-dihydrofuran **3** at low temperature, the iodocyclization of *gem*-difluorohomopropargyl alcohol **4** required use of microwave irradiation to yield 3,3-difluoro-4-iodo-4,5-dihydrofurans **5** or 3-fluoro-4-iodofurans **6** in satisfactory yields. This investigation clearly demonstrated that the iodocyclization proceeds via a 5-*endo-dig* mode on the electronically deficient triple bond. Finally, fluorinated 4-iodofuran analogues **5** and **6** were successfully used in the synthesis of fully substituted 3-fluorofurans **7** by microwave-mediated Suzuki coupling.

Experimental Section

2,2-Difluoro-3-iodo-4-triisopropylsilyl-2,5-dihydrofuran (3). To a solution of I₂ (0.55 mmol, 1.1 equiv) and K₂CO₃ (1.1 mmol, 2.2 equiv) in THF (4.0 mL) was added a solution of difluorohomoallenyl alcohol 2 (0.5 mmol, 1.0 equiv) in THF (1.0 mL) at 0 °C. The resulting mixture was stirred for 0.5 h at 0 °C, then the reaction mixture was quenched by H2O (20 mL) and extracted by Et₂O (10 mL × 3). The combined organic layer was washed by 5% aqueous solution of saturated sodium bisulfite (10 mL \times 1) and then dried over MgSO₄. The desired product was isolated by flash silica gel chromatography with hexane as an eluent, after which 3 (116 mg, 60%) was obtained as a white crystal: ¹H NMR (CDCl₃) δ 1.15 (s, 18H), 1.45 (m, 3H), 4.84 (t, J = 11.3 Hz, 2H); ¹⁹F NMR (CDCl₃) δ -61.18 (s); ¹³C NMR (CDCl₃) δ 11.3, 18.6, 81.9, 92.2 (t, J = 38.0 Hz), 132.2 (t, J = 249.5 Hz), 151.7; IR (CCl_4) 2949, 2870, 1577, 1461, 1348, 1257, 1174 cm⁻¹; mp = 33-34 °C; MS m/z (%) 371 (100), 195 (5), 158 (5). Anal. Calcd for C₁₃H₂₃F₂IOSi: C, 40.21; H, 5.97. Found: C, 40.49; H, 5.95.

3-Fluoro-5-n-hexyl-4-iodo-2-phenylfuran (6a). An oven-dried microwave vial (10 mL size) fitted with a stir bar, under argon atmosphere, was charged with sodium carbonate (0.6 mmol, 1.2 equiv) into which gem-difluorohomopropargyl alcohol 4a (0.5 mmol) in THF (2.0 mL) was added via syringe. The mixture was stirred vigorously for 10 min before being cooled in an ice bath for 5 min followed by slow addition of iodine monochloride (0.75 mmol, 1.5 equiv) in THF (3.0 mL). The vial was then placed in a CEM Discover microwave synthesizer at 91 °C for 5 min (at 150 W, 250 psi max), and the temperature was monitored by the microwave-attached computer during the reaction. After cooling to room temperature, the reaction was quenched with aqueous sodium bisulfite (12.0 mL, 3/1 = water/saturated sodium bisulfite). The mixture was extracted with ether, and the combined organic extracts were washed with brine and dried over anhydrous MgSO₄. The organic solvent was carefully removed in vacuo treating with ca. 1.0 g of silica gel to induce aromatization. The resulting powder was placed on top of a silica gel column chromatograph and eluted with hexane to furnish **6a** (122 mg, 66%) as a pale yellow oil: ¹H NMR (CDCl₃) δ 0.92-0.94 (m, 3H), 1.36-1.40 (m, 6H), 1.69-1.74 (m, 2H), 2.72 (dt, J = 2.0, 8.0 Hz, 2H), 7.27 (dt, J = 1.5, 6.5 Hz, 1H), 7.43 (dt, J = 2.0, 8.5 Hz, 2H), 7.67 (dd, J = 1.5, 7.0 Hz, 2H); 19 F NMR (CDCl₃) δ -159.21 (s, 1F); 13 C NMR (CDCl₃) δ 14.1, 22.5, 27.8, 28.0, 28.6, 31.4, 57.6 (d, J = 24.1 Hz), 123.2 (d, J = 4.3 Hz), 127.0, 128.6, 128.7, 135.1 (d, J = 20.1 Hz), 149.7 (d, J = 253.8 Hz), 154.1 (d, J = 4.8 Hz); IR (neat) 3057, 2927, 2857, 1943, 1872, 1634, 1495, 1417, 1147, 1017, 759 cm⁻¹; MS m/z (%) $373 (100, M^+ + H), 372 (14), 302 (44), 246 (3), 176 (6), 106 (9);$ HRMS (EI) calcd for C₁₆H₁₈FIO (M⁺) 372.0386, found 372.0375.

3-Fluoro-5-n-hexyl-2,4-diphenylfuran (7aa). An oven-dried microwave vial (10 mL size) fitted with a stir bar under argon atmosphere was charged with Pd(PPh₃)₄ (0.035 mmol, 10 mol %) and phenylboronic acid (1.4 mmol, 4.0 equiv), into which 3-fluoro-4-iodofuran 6a (0.35 mmol) was added along with EtOH (0.5 M relative to 6a), 0.35 mL of aqueous Na₂CO₃ (0.2 g/mL), and toluene (0.05 M). The vial was then capped under argon and placed in a CEM Discover microwave synthesizer at 115 °C for 30 min (at 150 W, 250 psi max), and the temperature was monitored by the microwave-attached computer during the reaction. After cooling to room temperature, the reaction mixture was quenched with saturated NH₄Cl followed by extraction with ether. The combined organic layer was washed with brine and dried over anhydrous MgSO₄. After evaporation of the solvent, the residue was purified on a silica gel column chromatograph eluted with hexane affording product 7aa as a colorless oil (111 mg, 98% yield): ¹H NMR (CDCl₃) δ 0.92 (t, J = 7.0 Hz, 3H), 1.31–1.44 (m, 6H), 1.77

(quintet, J = 7.5 Hz, 2H), 2.79 (t, J = 8.0 Hz, 2H), 7.28 (t, J =7.0 Hz, 1H), 7.37–7.40 (m, 1H), 7.44–7.48 (m, 6H), 7.76 (d, J =8.0 Hz, 2H); 19 F NMR (CDCl₃) δ -166.21 (s, 1F); 13 C NMR (CDCl₃) δ 4.0 (d, J = 11.6 Hz), 22.5, 27.2 (t, J = 11.5 Hz), 28.2, 28.9, 31.5, 114.8 (d, J = 15.3 Hz), 123.2 (d, J = 16.3 Hz), 126.6 (d, J = 16.4 Hz), 127.2 (d, J = 22.1 Hz), 128.5, 128.7, 129.3 (d, J = 4.8 Hz), 130.2, 134.3 (d, J = 20.3 Hz), 141.2, 147.8 (d, J =256.0 Hz), 150.1 (d, J = 4.8 Hz); IR (neat) 3058, 2954, 2927, 2856, 1945, 1872, 1802, 1749, 1645, 1499, 1421 cm⁻¹; MS m/z (%) 322 $(2, M^+)$, 254 (71), 233 (3), 205 (2), 106 (6). Anal. Calcd for $C_{22}H_{23}$ -FO: C, 81.95; H, 7.19. Found: C, 81.91; H, 7.31.

Acknowledgment. The authors are grateful to the National Science Foundation (CHE-0513483) for its financial support, and to Professor T. Ishihara and Dr. T. Konno (Kyoto Institute of Technology) for their help in obtaining HRMS data.

Supporting Information Available: Analytical and spectroscopic data for 6b,6c, 5d-5f, 7ab-7ah, and 7ba-7fa and CIF information for 5f. This material is available free charge via the Internet at http://pubs.acs.org.

JO800088Y