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Marine organisms have delivered a fascinating variety of
structurally novel and biologically important secondary
metabolites in recent years, many of which are now beginning
to provide leads for the development of new chemothera-
peutic agents. Phorboxazole A (1) and B (2) are unique
oxane–oxazole-based macrolide structures isolated from the
Indian Ocean sponge Phorbas sp,[1] which exhibit extraordi-
nary cytostatic activity (GI50< 8 , 10�10m) against the entire
panel of human tumor cell lines in the NCI database. Not
surprisingly, therefore, these compounds have aroused con-
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siderable interest within the medicinal and synthetic chemis-
try communities. Already three total syntheses of the
phorboxazoles have been reported,[2–4] and the results of
several structure–activity studies are beginning to emerge.[5]

In previous publications we described synthetic routes to the
key fragments 3,[6] 4,[7] and 5a[8] in phorboxazole A.[9] We now
show how we have brought these fragments together, leading
to a new and convergent total synthesis of the natural product
itself.

With two disubstituted double bonds (C2¼C3 and
C19¼C20), and one trisubstituted double bond (C27¼C28),
separating the structural units 3, 4, and 5, it was clear from the
outset of our studies that the ordered, stereocontrolled
synthesis of these three double bonds would play a crucial
role in any successful synthesis of phorboxazole A. After
some initial disappointing forays,[10] we ultimately decided on
a strategy to phorboxazole A whereby the C28�C46 side
chain was first attached to the oxane 4, then the bisoxane 5
was added, and finally the macrolide C2�C3 double bond was
elaborated in a final key step (see Schemes 1 and 2). To this

end, we envisaged coupling the oxane 4 to the phorboxazole
side chain via the corresponding oxane–oxazole 11 and the
lactone 8 by using the metalated oxazole chemistry developed
by Evans et al.[3b]

Thus, the lactone 8 was first elaborated from the known
aldehyde 6[6] and the sulfone 7[11] in four relatively straightfor-
ward steps, and the oxane–oxazole 11 was prepared through
an E-selective Wadsworth–Emmons olefination between the
oxane methyl ketone 9, derived from 4,[7] and the oxazole
phosphonate ester 10,[12] as highlighted in Scheme 1. To our
satisfaction, when the oxane-substituted 2-methyloxazole 11
was deprotonated with lithium diethylamide generated in situ
at �78 8C, and treated with the lactone 8, the desired cyclic
hemiketal 12a was obtained in high yield and was immedi-
ately protected as its corresponding triethylsilyl ketal 12b in
66% overall yield (Scheme 1). After selective cleavage of the
dimethylacetal unit in 12b with dimethylboron bromide[13] at
�78 8C, an E-selective Wittig reaction between the resulting
aldehyde 13 and the phosphonium salt obtained from the
substituted bisoxane 5b,[8] in the presence of DBU,[14] then led
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Scheme 1. Synthesis of the side chain 8 and oxazole–pyran 11 and coupling. a) NaHMDS, THF, �78 8C!RT, 93% pure all-E isomer; b) Me2BBr,
Et2O, �78 8C, 98%; c) DDQ, CH2Cl2/H2O (10:1), 0 8C, 85%; d) TPAP, NMO, powdered 4-E molecular sieves, CH2Cl2, 82%; e) Ts–imidazole, NaH,
Et2O, �78 8C!0 8C; f) LiAlH4, Et2O; g) TBSOTf, 2,6-lutidine, CH2Cl2, �78 8C!RT; h) OsO4, NMO, acetone/water; i) NaIO4 on silica, CH2Cl2;
j) CSA, MeOH/CH2Cl2; k) DMP, 2,6-lutidine, CH2Cl2, 43% overall yield from 4 ; l) LDA, �78 8C, 30 min, then 9, 89% (49% conversion); m) Et2NH,
nBuLi, THF, �78 8C, then 8 ; n) TESOTf, pyridine, MeCN/Et2O (10:1), �47 8C, 36 h, 74% (66% conversion, two steps); HMDS=hexamethyldisila-
zide, DDQ=2,3-dichloro-5,6-dicyano-1,4-benzoquinone, TPAP= tetrapropylammonium perruthenate, NMO=4-methylmorpholine N-oxide,
Ts=p-toluenesulfonyl, Tf=Trifluoromethanesulfonyl, CSA= camphorsulfonic acid, DMP=Dess–Martin periodinane, TBS= tert-butyldimethylsilyl,
LDA= lithium diisopropylamide, TES= triethylsilyl, PMB=p-methoxybenzyl
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to the advanced bisoxazole–trisoxane intermediate 14, as a
single stereoisomer in excellent overall yield (Scheme 2).

The stage was now set to complete our synthesis of
phorboxazole A through an intramolecular Wadsworth–
Emmons reaction of 17 as the penultimate step. Thus,
selective cleavage of the primary TBS ether in 14 with

HF·pyr[3] at 0 8C proceeded smoothly and the resulting alcohol
was then oxidized to the corresponding aldehyde 15 under
Dess–Martin conditions[15] (Scheme 2). Removal of the PMB
protecting group in 15 with DDQ next led to the secondary
alcohol 16, which was converted into the corresponding
fluorophosphonate ester 17.[2] Intramolecular cyclization of
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Scheme 2. Completion of the synthesis of 1. a) Me2BBr, Et2O, �78 8C, 85%; b) 5b, Bu3P, DMF, then 13 and DBU, room temperature or 0 8C, 85–
87%; c) HF·pyr, pyridine, THF, 0 8C!RT, 65–70%; d) DMP, pyridine, CH2Cl2, 94%; e) DDQ, CH2Cl2–pH 7 buffer, 85%; f) EDCl·MeI, HOBT,
HO2CCH2PO(OCH2CF3)2, CH2Cl2, >80%; g) K2CO3, [18]crown-6, toluene, room temperature, 82% (3:1 Z/E); h) TBAF, THF, 0 8C!RT, 75%;
reversed-phase HPLC purification; DMF=N,N-dimethylformamide, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene, pyr=pyridine, DMP=Dess–Martin
periodinane, EDCl=1-ethyl-3-(3-dimethylaminopropyl)carbodiimide chloride, HOBT=1-hydroxybenzotriazole, TBAF= tetrabutylammonium fluo-
ride, TIPS= triisopropylsilyl.
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the aldehyde–phosphonate 17 under the conditions of Still
and Gennari[16] gave the Z-a,b-unsaturated macrolide 18,
containing approximately 25% of the corresponding E
isomer.[17] Removal of the three silyl protecting groups in 18
with tetrabutylammonium fluoride in THF at 0 8C, followed
by chromatography, finally produced (þ)-phorboxazole A
(1), contaminated with its C2�C3 E isomer. Further purifi-
cation by reversed-phase HPLC provided pure (þ)-phorbox-
azole A, whose 1H and 13C NMR spectra, together with high-
resolution mass spectrometric data (calcd for
C53H71N2O13

79BrNa [MþNa, 79Br]+: 1045.4037; found:
1045.4053 (100%) (ESI)) and optical rotation data ([a]20D =

+ 43.3, c= 0.12, CHCl3) corresponded to those reported for
the natural product.[1a, 18]
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