Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: B. Fang, J. Hou, J. Tian, W. Yu and J. Chang, *Org. Biomol. Chem.*, 2020, DOI: 10.1039/D0OB00433B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online

View Journal

Synthesis of Phenanthridines by I₂-Mediated *sp*³ C-DH 10.1039/D00B00433B Amination

Benyao Fang, Jiao Hou, Jinyue Tian, Wenquan Yu,* and Junbiao Chang*

College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, China.

Abstract: An I₂-mediated synthesis of phenanthridines *via* intramolecular *sp*³ C–H amination of readily accessible aniline precursors is reported. The present synthetic process is straightforward and applicable to a broad variety of unprotected aniline substrates, and provides facile and efficient access to phenanthridine derivatives. This C–H amination protocol does not use transition metals, is operationally simple, and can be achieved on a gram scale.

Introduction

View Article Online DOI: 10.1039/D00B00433B

Phenanthridine is a privileged scaffold widely distributed in natural products¹ and synthetic compounds with diverse pharmacologically important properties,² including anticancer,³ antibacterial,⁴ antituberculosis,⁵ and topoisomerase inhibitory⁶ activities. Consequently, the synthesis of phenanthridine derivatives has drawn considerable attention from organic chemists. Besides classical methods⁷ such as the Pictet-Hubert reaction, several new synthetic pathways have been developed to access phenanthridines.⁸ These include oxidative cyclization of 2-isocyanobiphenyls⁹ with bromides, hydrazines, anilines, 1,4-dioxane or acyl peroxides, cross-ring (5+1) annulation between 2-aminobiphenyls and alkene derivatives,¹⁰ cascade addition and cyclization of biaryl-2-carbonitriles¹¹ with Grignard or organolithium reagents, and C-H amination reactions involving azide compounds.¹² One of the most straightforward synthetic strategies, intramolecular C-H animation of corresponding aniline precursors was reported for the synthesis of 6-aryl phenanthridines by Alabugin et al.,¹³ who used FeCl₃-DDO and ^tBuOK-O₂-DMF systems (Scheme 1a). Despite these achievements, the search for facile and efficient approaches toward to phenanthridines is still significant for industry and academia.

Direct sp^3 C–H amination is a valuable but challenging transformation in organic synthesis,¹⁴ especially in the construction of nitrogen-containing heterocyclic frameworks. However, most of the current synthetic methods using this strategy involve transition metals, and to date, only a few transition-metal-free protocols,^{13b, 15} such as the Hofmann-Loffler-Freytag reaction¹⁶ have been developed. As a continuation of our studies on oxidative C–N bond construction employing molecular iodine,^{15e-f, 17} we report herein the I₂-mediated intramolecular sp^3 C–H amination reaction of readily accessible aniline substrates, producing phenanthridines under **Organic & Biomolecular Chemistry Accepted Manuscript**

a. Synthesis of phenanthridines by Alabugin et al.¹³

Scheme 1 Synthesis of nitrogen-containing heterocycles by sp³ C–H aminations

Results and Discussion

The required aniline substrates can be readily prepared according to literature procedures.^{13a, 18} Initially, 2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (**1a**) was selected as the model substrate for investigation (Table 1). Solvent screening showed that the I₂-promoted sp^3 C–H amination reaction with **1a** proceeds well at room temperature in hexamethylphosphoramide (HMPA) (entry 10) or pyridine (entry 14) to form the phenanthridine product, 6-(4-methylbenzyl)phenanthridine (**2a**). With HMPA as the solvent, the conversion was incomplete and 15% of **1a** was recovered at room temperature (entry 10). The yield increased with the rising reaction temperature (entries 15–17), and HMPA was therefore selected for further optimization of the reaction conditions. The optimal temperature was found to be 80 °C (entry 16 *vs* entries 15 and 17) and Cs₂CO₃ was found to be the most effective base (entry 16 *vs* entries 18–25) for this transformation. This C–H amination reaction requires at least 2.2 equiv of iodine (entry 16 *vs* entries 26–27) and pre-stirring of iodine and base in

View Article Online

DOI: 10.1039/D0OB00433B

HMPA favors the formation of the product (2a) by diminishing the secondar Wew Article Online iodination reactions.¹⁹ The reaction was not affected when performed under an atmosphere of nitrogen (entry 28). No expected product was observed when 2,6-di-*tert*-butyl-4-methylphenol (BHT), a free radical scavenger, was added to the reaction system (entry 29). This result suggested that the present reaction might undergo a radical pathway.

Table 1 Optimization of reaction conditions^a

I ₂ , base	p-Tol
	2a
	I ₂ , base ▶ vent, temp.

entry	I ₂ (equiv)	base	solvent	temp.	time (h)	yield $(\%)^b$
1	2.2	Cs ₂ CO ₃	toluene	rt	2	23
2	2.2	Cs_2CO_3	CH_2Cl_2	rt	2	12
3	2.2	Cs_2CO_3	DCE	rt	2	25
4	2.2	Cs_2CO_3	THF	rt	4	37
5	2.2	Cs_2CO_3	1,4-dioxane	rt	7	49
6	2.2	Cs_2CO_3	MeCN	rt	2	25
7	2.2	Cs_2CO_3	DMF	rt	7	45
8	2.2	Cs_2CO_3	DMA	rt	8	55
9	2.2	Cs_2CO_3	NMP	rt	8	45
10	2.2	Cs_2CO_3	HMPA	rt	12	65 ^c
11	2.2	Cs_2CO_3	DMSO	rt	7	48
12	2.2	Cs_2CO_3	MeOH	rt	2	21
13	2.2	Cs_2CO_3	EtOH	rt	2	22
14	2.2	Cs_2CO_3	pyridine	rt	10	65
15	2.2	Cs_2CO_3	HMPA	60 °C	2	75
16	2.2	Cs ₂ CO ₃	HMPA	80 °C	2	80
17	2.2	Cs_2CO_3	HMPA	100 °C	1	74
18	2.2	NaHCO ₃	HMPA	80 °C	2	0
19	2.2	Na ₂ CO ₃	HMPA	80 °C	2	28
20	2.2	K_2CO_3	HMPA	80 °C	2	40
21	2.2	K_3PO_4	HMPA	80 °C	2	33
22	2.2	KOH	HMPA	80 °C	2	19
23	2.2	NaOAc	HMPA	80 °C	2	73
24	2.2	Et ₃ N	HMPA	80 °C	2	21
25	2.2	DBU	HMPA	80 °C	5	43

26	2.0	Cs_2CO_3	HMPA	80 °C	5	DOI:510.1039/D00B00433B
27	2.4	Cs_2CO_3	HMPA	80 °C	2	80
28^e	2.2	Cs_2CO_3	HMPA	80 °C	2	80
29 ^f	2.2	Cs_2CO_3	HMPA	80 °C	2	0

^{*a*} Optimal reaction conditions (entry 16): A well-stirred mixture of I₂ (1.1 mmol) and Cs₂CO₃ (2.5 mmol) in HMPA (5 mL) was treated with **1a** (0.5 mmol) and then maintained at 80 °C for 2 h. ^{*b*} Isolated yields. ^{*c*} With 15% of **1a** recovered. ^{*d*} With 6% of **1a** recovered. ^{*e*} Under N₂ atmosphere. ^{*f*} With 2.5 equiv of BHT.

Having established the optimized reaction conditions, we examined the scope and generality of this methodology. As shown in Scheme 2, this synthetic process is compatible with a variety of substrates bearing electron-donating groups (EDG) or electron-withdrawing groups (EWG) at the R¹, R³ or R⁴ positions. The presence of EWGs, especially at the *ortho-* and/or *para-* position of the aniline moiety (**2d–2h & 2j–2k**), favors the formation of the phenanthridine products. The structure of the phenanthridine (**2d**) was confirmed by X-ray crystallography.²⁰ The reaction leading to the product **2f** can be successfully conducted on a gram scale. Replacement of the aromatic R² group with hydrogen or an aliphatic group also led to the corresponding phenanthridines (**2u–2w**) but in decreased yields. The quinoline product (**2ag**) was synthesized from the corresponding precursor in a satisfactory yield as well.

Scheme 2 Substrate scope. Reaction conditions: A well-stirred mixture of I_2 (1.1 mmol) and Cs_2CO_3 (2.5 mmol) in HMPA (5 mL) was treated with 1 (0.5 mmol) and then maintained at 80 °C (Isolated yields are given). ^{*a*} Yield of a gram-scale reaction (5 mmol). ^{*b*} At room temperature.

On the basis of the above experimental results and pioneering works,¹³ a tentative mechanism is proposed for this I₂-mediated sp^3 C–H amination reaction and is shown in Scheme 3. Initially, deprotonation of substrate **1a** by base gives a plausible N-centered anion **A**, which reacts with iodine to produce an *N*-iodo intermediate **B**. Then, homolytic cleavage of the N–I bond in **B** under heating generates an N-centered radical species **C**, which may abstract the benzylic C–H intramolecularly to form a

C-center radical C'. Reaction of C' with iodine radical (I') leads $_{DOIO,10,1035/D00B00433B}$ dihydrophenanthridine **D**. The resulting hydrogen iodie (HI) is neutralized by base. Finally, further deprotonation of compound **D** and subsequent oxidative aromatization by iodine under basic conditions affords the phenanthridine product (**2a**).

Scheme 3 Proposed mechanism

Conclusions

We have developed a new and practical intramolecular sp^3 C–H amination reaction of aniline substrates, employing iodine as the oxidant under transition-metal-free conditions, to synthesize phenanthridines. This straightforward synthetic approach is operationally simple and applicable to a broad range of unprotected aniline derivatives to afford various phenanthridine products in an efficient and scalable fashion.

Experimental Section

1. General Information. ¹H and ¹³C $\{^{1}H\}$ NMR spectra were recorded on a 400 MHz

(100 MHz for ¹³C{¹H} NMR) spectrometer. Chemical shift values are reported in we write Online ppm (parts per million) with tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; dd, doublet of doublets; ddd, doublet of doublet of doublets; td, triplet of doublets. The coupling constants (*J*) are reported in hertz (Hz). Melting points were determined on a micromelting point apparatus without corrections. High-resolution mass spectra (HRMS) were obtained on a Q-TOF Mass Spectrometer equipped with an electrospray ion source (ESI), operated in the positive mode. Flash column chromatography was performed over silica gel 200–300 mesh and the solvents were distilled prior to use. THF was dried over Na/benzophenone and then distilled, and HMPA was dried over 4 Å molecular sieves before use. Toluene and EtOH were analytical reagent grade and used without any pretreatment.

2. General Procedure for the Preparation of Substrates 1a, 1l–1t, and 1x–1af. The required aryl bromides were prepared according to literature procedures.^{18a, 18b} A mixture of the corresponding bromide (2 mmol), (2-aminophenyl)boronic acid (2.4 mmol), K₂CO₃ (6 mmol) in toluene (15 mL)/EtOH (6 mL)/H₂O (3 mL) was stirred at room temperature under N₂ atmosphere for 0.5 h, and then treated with Pd(PPh₃)₄ (0.1 mmol).^{13a} The reaction was heated to reflux under N₂ atmosphere for 12 h (TLC indicated the total consumption of the aryl bromide). After cooling to room temperature, it was diluted with H₂O (10 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, concentrated, and purified through silica gel column chromatography to give the substrate 1.

Published on 09 April 2020. Downloaded by UNIVERSITE PARIS SUD on 4/9/2020 1:50:57 PM

3. General Procedure for the Preparation of Substrates 1b–1k and 1u–1w. The required aryl boronic acids are commercially available or were prepared according to a literature procedure.^{18c} A mixture of the corresponding boronic acid (2 mmol), the substituted 2-bromo/iodo aniline (2.4 mmol), K₂CO₃ (6 mmol), toluene (15 mL)/EtOH (6 mL)/H₂O (3 mL) was stirred at room temperature under N₂ atmosphere for 0.5 h, and then treated with Pd(PPh₃)₄ (0.1 mmol).^{13a} The reaction was heated to reflux under N₂ atmosphere for 12 h (TLC indicated the total consumption of the boronic acid). After cooling to room temperature, it was diluted with H₂O (10 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, concentrated, and purified through silica gel column chromatography to give the substrate **1**.

4. Preparation of Substrate 1ag. A solution of (2-aminophenyl)(phenyl)methanone (3 mmol) in dry THF (10 mL) was treated with phenethylmagnesium bromide (1 M in THF, 10 mL) under N₂ atmosphere,²¹ and then heated to 50 °C for 12 h (TLC indicated the total consumption of the ketone). After cooling to room temperature, the reaction was quenched with aqueous HCl solution (2 M, 5 mL), stirred for 0.5 h, diluted with brine (15 mL) and extracted with EtOAc (3 x 15 mL). The combined organic layer was washed with brine (2 x 10 mL), dried over anhydrous Na₂SO₄, and concentrated to give the tertiary alcohol intermediate. A reaction mixture of the above

crude tertiary alcohol and *p*-TsOH (0.6 mmol) in toluene (15 mL) was refluxed for 2^{Mev} for 2^{Mev} and p-TsOH (0.6 mmol) in toluene (15 mL) was refluxed for 2^{Mev} and p-TsOH (0.6 mmol) in toluene (15 mL) was refluxed for 2^{Mev} and p-TsOH (0.6 mmol) in toluene (15 mL). After cooling to room temperature, it was washed with H₂O (3 x 15 mL) and brine (2 x 15 mL) in sequence, and then extracted with EtOAc (3 x 15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated, and purified through silica gel column chromatography to afford substrate **1ag**.

2'-(4-Methylbenzyl)-[1,1'-biphenyl]-2-amine (1a).^{13b} EtOAc/petroleum ether (PE) (eluent) 2:98; 388 mg, 71% yield; white solid, mp 66–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.20 (m, 4H, overlapped with the peak of chloroform), 7.18–7.14 (m, 1H), 7.00–6.96 (m, 3H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.77 (td, *J* = 7.6, 1.2 Hz, 1H), 6.74–6.72 (m, 1H), 3.85–3.74 (m, 2H), 3.37 (s, 2H), 2.27 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.0, 140.6, 138.5, 138.1, 135.3, 130.54, 130.53, 130.2, 129.04, 128.99, 128.6, 128.0, 127.2, 126.7, 118.3, 115.3, 38.7, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₂₀N 274.1590, found 274.1589.

5-Methyl-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (1b). EtOAc/PE (eluent) 2:98; 482 mg, 84% yield; white solid, mp 68–69 °C ; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.19 (m, 4H, overlapped with the peak of chloroform), 7.01–6.96 (m, 3H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.75 (s, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 3.85–3.73 (m, 2H), 3.26 (s, 2H), 2.28 (s, 3H), 2.22 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.4, 140.6, 138.8, 138.2, 135.3, 131.1, 130.5, 130.1, 129.10, 129.05, 128.9, 127.9, 127.5, 127.3, 126.6, 115.4, 38.8, 21.1, 20.6; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₂₂N 288.1747, found 288.1748.

20:80; 495 mg, 85% yield; white solid, mp 49–51 °C; ¹H NMR (400 MHz, $CDCI_{3,0}$, Sew Article Online 7.33–7.24 (m, 3H, overlapped with the peak of chloroform), 7.19–7.17 (m, 1H), 7.00 (d, J = 8.0 Hz, 2H), 6.90–6.84 (m, 3H), 6.71–6.64 (m, 2H), 3.85–3.74 (m, 2H), 3.23 (s, 2H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCI₃) δ 156.1 (d, $J_{C-F} = 234.9$ Hz), 140.4, 140.2 (d, $J_{C-F} = 2.1$ Hz), 137.8, 137.6 (d, $J_{C-F} = 1.3$ Hz), 135.5, 130.4, 130.3, 129.04, 128.96, 128.4, 128.3 (d, $J_{C-F} = 7.2$ Hz), 126.8, 116.9 (d, $J_{C-F} = 22.0$ Hz), 116.1 (d, $J_{C-F} = 7.8$ Hz), 115.0 (d, $J_{C-F} = 22.1$ Hz), 38.8, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉FN 292.1496, found 292.1498.

5-Chloro-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (1d). CH₂Cl₂/PE (eluent) 11:89; 480 mg, 78% yield; white solid; mp 98–100 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.25 (m, 3H, overlapped with the peak of chloroform), 7.17–7.15 (m, 1H), 7.10 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.84 (d, *J* = 7.6 Hz, 2H), 6.64 (d, *J* = 8.8 Hz, 1H), 3.84–3.72 (m, 2H), 3.34 (s, 2H), 2.28 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 142.7, 140.5, 137.7, 137.3, 135.5, 130.4, 130.1, 129.1, 129.0, 128.53, 128.46, 128.3, 126.9, 122.8, 116.3, 38.8, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉ClN 308.1201, found 308.1204.

5-Bromo-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (1e). CH₂Cl₂/PE (eluent) 20:80; 610 mg, 87% yield; white solid, mp 73–75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.22 (m, 4H, overlapped with the peak of chloroform), 7.17–7.15 (m, 1H), 7.02–6.99 (m, 3H), 6.84 (d, *J* = 7.6 Hz, 2H), 6.60 (d, *J* = 8.4 Hz, 1H), 3.84–3.72 (m, 2H), 3.36 (s, 2H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.2, 140.5, 137.7, 137.2, 135.5, 133.0, 131.2, 130.38, 130.37, 129.1, 129.03, 128.99, 128.5, 126.9, 116.7, 109.9, 38.9, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉BrN 352.0695, found 352.0696.

2'-(4-Methylbenzyl)-5-(trifluoromethyl)-[1,1'-biphenyl]-2-amine (1f). EtOAc/PE

(eluent) 2:98; 550 mg, 81% yield; white solid, mp 63–66 °C; ¹H NMR (400, MHz²)^{iew} Article ^{Online} CDCl₃) δ 7.40–7.38 (m, 1H), 7.34–7.28 (m, 3H), 7.20–7.18 (m, 1H), 7.13 (s, 1H), 6.98 (d, *J* = 7.6 Hz, 2H), 6.80 (d, *J* = 7.6 Hz, 2H), 6.74 (d, *J* = 8.4 Hz, 1H), 3.83–3.68 (m, 4H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.1, 140.7, 137.6, 137.1, 135.6, 130.6, 130.5, 129.1, 128.9, 128.6, 127.9 (q, *J*_{C-F} = 3.8 Hz), 127.0, 126.5, 125.8 (q, *J*_{C-F} = 3.7 Hz), 124.9 (d, *J*_{C-F} = 269.1 Hz), 120.0 (q, *J*_{C-F} = 32.4 Hz), 114.5, 39.0, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₁₉F₃N 342.1464, found 342.1465.

6-Amino-2'-(4-methylbenzyl)-[1,1'-biphenyl]-3-carbonitrile (1g). EtOAc/PE (eluent) 27:73; 560 mg, 94% yield; white solid, mp 116–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41(dd, J = 8.4, 2.0 Hz, 1H), 7.37–7.28 (m, 3H), 7.15–7.13 (m, 2H), 6.99 (d, J = 7.6 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.69 (d, J = 8.4 Hz, 1H), 3.87 (s, 2H), 3.80–3.68 (m, 2H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.2, 140.5, 137.4, 136.1, 135.7, 134.7, 132.9, 130.7, 130.4, 129.1, 128.9, 128.8, 127.2, 126.9, 120.2, 114.7, 100.1, 39.0, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₁₉N₂ 299.1543, found 299.1547.

2'-(4-Methylbenzyl)-5-nitro-[1,1'-biphenyl]-2-amine (1h). EtOAc/PE (eluent) 8:92; 513 mg, 80% yield; light yellow solid, mp 104–106 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 8.8, 2.4 Hz, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.38–7.29 (m, 3H), 7.19–7.17 (m, 1H), 6.97 (d, J = 7.6 Hz, 2H), 6.78 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 8.8 Hz, 1H), 4.09 (s, 2H), 3.83–3.70 (m, 2H), 2.26 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.5, 140.6, 138.9, 137.3, 135.9, 135.7, 130.8, 130.5, 129.10, 129.07, 128.8, 127.23, 127.18, 125.8, 125.4, 113.6, 39.0, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉N₂O₂ 319.1441, found 319.1442.

4-Chloro-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (1i). EtOAc/PE (eluent) 2:98; 345 mg, 56% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.24 (m,

3H, overlapped with the peak of chloroform), 7.18–7.15 (m, 1H), 7.00 (d, $J = 8.0 \text{ Hz}^{\text{Jiew Article Online}}_{\text{DOOB00433B}}$ 2H), 6.86–6.83 (m, 3H), 6.74–6.71 (m, 2H), 3.82–3.71 (m, 2H), 3.43 (s, 2H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3, 140.6, 137.8, 137.4, 135.5, 133.9, 131.6, 130.5, 130.4, 129.0, 128.9, 128.4, 126.8, 125.5, 118.2, 114.8, 38.7, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉ClN 308.1201, found 308.1202.

3-Chloro-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (**1j**). EtOAc/PE (eluent) 1:99; 530 mg, 86% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.24 (m, 4H, overlapped with the peak of chloroform), 7.20–7.18 (m, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.88–6.86 (m, 1H), 6.81 (d, *J* = 8.0 Hz, 2H), 6.69 (t, *J* = 7.6 Hz, 1H), 3.82–3.71 (m, 4H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.0, 140.5, 137.8, 137.7, 135.4, 130.42, 130.38, 129.01, 128.97, 128.9, 128.6, 128.4, 128.1, 126.9, 119.3, 118.2, 38.8, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉ClN 308.1201, found 308.1202.

3,5-Dichloro-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (1k). EtOAc/PE (eluent) 1:99; 534 mg, 78% yield; white solid; mp 104–106 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.25 (m, 4H, overlapped with the peak of chloroform), 7.16–7.14 (m, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.82–6.79 (m, 3H), 3.81–3.68 (m, 4H), 2.28 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.5, 139.9, 137.4, 136.6, 135.6, 130.6, 130.2, 129.1, 128.9, 128.8, 128.7, 128.0, 127.0, 122.1, 119.5, 39.0, 21.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₈Cl₂N 342.0811, found 342.0813.

2'-Benzyl-[1,1'-biphenyl]-2-amine (11).^{13b} EtOAc/PE (eluent) 5:95; 369 mg, 71% yield; white solid, mp 67–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.21 (m, 4H, overlapped with the peak of chloroform), 7.19–7.10 (m, 4H), 6.96–6.94 (m, 3H), 6.77 (td, *J* = 7.6, 1.2 Hz, 1H), 6.72 (dd, *J* = 8.0, 0.8 Hz, 1H), 3.89–3.78 (m, 2H), 3.34 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.0, 141.1, 140.4, 138.6, 130.6, 130.5, 130.3, 129.2, 128.6, 128.3, 128.0, 127.1, 126.8, 125.9, 118.3, 115.3, 39.3; HRMS

Biomolecular Chemistry Accepted Manuscript

Jrganic

(m/z) [M + H]⁺ calcd for C₁₉H₁₈N 260.1434, found 260.1436.

2'-(4-Methoxybenzyl)-[1,1'-biphenyl]-2-amine (1m). EtOAc/PE (eluent) 5:95; 313 mg, 54% yield; white solid, mp 65–66 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.21 (m, 4H, overlapped with the peak of chloroform), 7.19–7.15 (m, 1H), 6.98–6.96 (m, 1H), 6.89–6.87 (m, 2H), 6.80–6.72 (m, 4H), 3.84–3.73 (m, 5H), 3.37 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.8, 144.0, 140.8, 138.5, 133.3, 130.6, 130.5, 130.2, 130.1, 128.6, 128.1, 127.2, 126.7, 118.4, 115.3, 113.7, 55.4, 38.4; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1541.

2'-(4-Fluorobenzyl)-[1,1'-biphenyl]-2-amine (1n).^{13b} EtOAc/PE (eluent) 5:95; 477 mg, 86% yield; white solid, mp 76–78 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.21 (m, 4H, overlapped with the peak of chloroform), 7.15 (t, *J* = 8.0 Hz, 1H), 6.92–6.82 (m, 5H), 6.78–6.71 (m, 2H), 3.86–3.75 (m, 2H), 3.32 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.4 (d, *J*_{C-F} = 242.0 Hz), 144.0, 140.3, 138.7, 136.8 (d, *J*_{C-F} = 3.2 Hz), 130.7, 130.5 (d, *J*_{C-F} = 1.1 Hz), 130.4, 130.2, 128.7, 128.1, 127.00, 126.97, 118.4, 115.3, 115.0 (d, *J*_{C-F} = 21.0 Hz); HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₇FN 278.1340, found 278.1342.

2'-(4-Chlorobenzyl)-[1,1'-biphenyl]-2-amine (1o). CH₂Cl₂/PE (eluent) 25:75; 480 mg, 82% yield; white solid, mp 48–50 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.27 (m, 2H, overlapped with the peak of chloroform), 7.25–7.21 (m, 2H), 7.18–7.12 (m, 3H), 6.91 (dd, J = 7.6, 1.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 2H), 6.78–6.72 (m, 2H), 3.86–3.75 (m, 2H), 3.37 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.9, 139.9, 139.6, 138.7, 131.6, 130.7, 130.5, 130.4, 130.2, 128.7, 128.3, 128.2, 127.1, 126.9, 118.4, 115.3, 38.7; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₇ClN 294.1044, found 294.1045.

2'-(4-(Trifluoromethyl)benzyl)-[1,1'-biphenyl]-2-amine (1p). EtOAc/PE (eluent)

5:95; 342 mg, 52% yield; white solid, mp 60–63 °C; ¹H NMR (400 MHz, CDCl₃), Sew Article Online 7.41 (d, J = 8.0 Hz, 2H), 7.34–7.28 (m, 2H), 7.25–7.23 (m, 2H, overlapped with the peak of chloroform), 7.18–7.14 (m, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.90 (dd, J = 7.2, 1.2 Hz, 1H), 6.77–6.72 (m, 2H), 3.96–3.85 (m, 2H), 3.38 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3, 143.9, 139.4, 138.8, 130.8, 130.5, 130.3, 129.4, 128.8, 128.23, 128.20 (q, $J_{C-F} = 32.0$ Hz), 127.3, 126.8, 125.1 (q, $J_{C-F} = 3.8$ Hz), 124.5 (q, $J_{C-F} =$ 270.1 Hz), 118.4, 115.3, 39.2; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₇F₃N 328.1308, found 328.1311.

4-((2'-Amino-[1,1'-biphenyl]-2-yl)methyl)benzonitrile (1q).^{13b} EtOAc/PE (eluent) 9:91; 551 mg, 97% yield; white solid, mp 69–72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.42 (m, 2H), 7.35–7.31 (m, 2H), 7.26–7.23 (m, 2H, overlapped with the peak of chloroform), 7.16 (td, *J* = 8.0, 1.6 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.85–6.82 (m, 1H), 6.75–6.71 (m, 2H), 3.96–3.86 (m, 2H), 3.37 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.8, 143.8, 138.9, 138.8, 132.0, 130.9, 130.41, 130.38, 129.7, 128.8, 128.3, 127.5, 126.6, 119.3, 118.4, 115.3, 109.6, 39.7; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₇N₂ 285.1386, found 285.1387.

2'-(4-Nitrobenzyl)-[1,1'-biphenyl]-2-amine (1r). CH₂Cl₂/PE (eluent) 50:50; 547 mg, 90% yield; light yellow solid, mp 103–105 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.8 Hz, 2H), 7.36–7.31 (m, 2H), 7.29–7.23 (m, 2H, overlapped with the peak of chloroform), 7.18–7.14 (m, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.84 (dd, J = 8.0, 1.6 Hz, 1H), 6.74–6.71 (m, 2H), 4.01–3.91 (m, 2H), 3.39 (s, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 149.0, 146.3, 143.8, 138.9, 138.8, 130.9, 130.41, 130.40, 129.7, 128.9, 128.3, 127.6, 126.5, 123.4, 118.4, 115.3, 39.5; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₇N₂O₂ 305.1285, found 305.1288.

2'-(3-Methylbenzyl)-[1,1'-biphenyl]-2-amine (1s). EtOAc/PE (eluent) 9:91; 410 mg,

75% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.20 (m, 4H, overlapped^{ew Article Online} with the peak of chloroform), 7.18–7.14 (m, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.97–6.92 (m, 2H), 6.80–6.71 (m, 4H), 3.85–3.74 (m, 2H), 3.34 (s, 2H), 2.23 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.1, 141.0, 140.5, 138.6, 137.8, 130.6, 130.5, 130.3, 130.0, 128.6, 128.1, 128.0, 127.2, 126.7, 126.6, 126.2, 118.3, 115.3, 39.3, 21.5; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₂₀N 274.1590, found 274.1593.

2'-(2-Methylbenzyl)-[1,1'-biphenyl]-2-amine (1t). EtOAc/PE (eluent) 5:95; 350 mg, 64% yield; white solid, mp 102–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.24 (m, 3H, overlapped with the peak of chloroform), 7.16 (t, *J* = 7.6 Hz, 1H), 7.12–7.05 (m, 3H), 7.01–6.96 (m, 3H), 6.80–6.74 (m, 2H), 3.88–3.75 (m, 2H), 3.24 (s, 2H), 2.03 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.9, 139.7, 139.0, 138.7, 136.8, 130.4, 130.3, 130.2, 129.5, 128.6, 128.0, 127.2, 126.6, 126.3, 125.9, 118.5, 115.4, 36.6, 19.7; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₂₀N 274.1590, found 274.1588.

2',5-Dimethyl-[1,1'-biphenyl]-2-amine (1u).^{12a} CH₂Cl₂/PE (eluent) 20:80; 355 mg, 90% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.18 (m, 4H, overlapped with the peak of chloroform), 6.98 (d, *J* = 8.0 Hz, 1H), 6.83 (s, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 3.31 (s, 2H), 2.27 (s, 3H), 2.18 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.2, 138.9, 137.0, 130.7, 130.3, 130.2, 129.0, 127.7, 127.5, 126.2, 115.3, 20.6, 19.9; HRMS (m/z) [M + H]⁺ calcd for C₁₄H₁₆N 198.1277, found 198.1279.

2'-Methyl-5-(trifluoromethyl)-[1,1'-biphenyl]-2-amine (1v).^{12a} EtOAc/PE (eluent) 5:95; 455 mg, 91% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.38 (m, 1H), 7.32–7.24 (m, 4H, overlapped with the peak of chloroform), 7.19–7.17 (m, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 3.79 (s, 2H), 2.16–2.15 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.8, 137.2, 137.1, 130.6, 130.1, 128.4, 127.4 (q, *J*_{C-F} = 3.8 Hz), 126.8,

126.5, 125.7 (q, $J_{C-F} = 3.8 \text{ Hz}$), 125.0 (q, $J_{C-F} = 268.9 \text{ Hz}$), 119.9 (q, $J_{C-F} = 32.3 \text{ Hz}$)^{View Article Online} 114.3, 19.7; HRMS (m/z) [M + H]⁺ calcd for C₁₄H₁₃F₃N 252.0995, found 252.0996.

2'-Ethyl-5-methyl-[1,1'-biphenyl]-2-amine (1w).^{12a} CH₂Cl₂/PE (eluent) 17:83; 262 mg, 62% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.29 (m, 2H), 7.26–7.22 (m, 1H, overlapped with the peak of chloroform), 7.18–7.16 (m, 1H), 6.98 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.84 (d, *J* = 2.0 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 3.30 (s, 2H), 2.58–2.42 (m, 2H), 2.27 (s, 3H), 1.08 (t, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.1, 141.3, 138.3, 130.9, 130.3, 128.9, 128.7, 128.0, 127.5, 127.4, 126.2, 115.3, 26.2, 20.6, 15.4; HRMS (m/z) [M + H]⁺ calcd for C₁₅H₁₈N 212.1434, found 212.1437.

2'-Benzyl-4'-methoxy-[1,1'-biphenyl]-2-amine (1x). EtOAc/PE (eluent) 9:91; 470 mg, 81% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.20–7.10 (m, 5H), 6.97–6.94 (m, 3H), 6.84–6.71 (m, 4H), 3.86–3.75 (m, 5H), 3.37 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.3, 144.4, 141.8, 140.9, 131.6, 131.0, 129.1, 128.5, 128.3, 126.8, 125.9, 118.3, 116.0, 115.2, 111.8, 55.3, 39.5; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1540.

2'-Benzyl-4'-fluoro-[1,1'-biphenyl]-2-amine (1y). EtOAc/PE (eluent) 9:91; 380 mg, 69% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.12 (m, 7H, overlapped with the peak of chloroform), 6.95–6.91 (m, 3H), 6.77 (td, J = 7.6, 1.2 Hz, 1H), 6.72 (dd, J = 8.0, 0.4 Hz, 1H), 3.85–3.75 (m, 2H), 3.34 (s, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.5 (d, $J_{C-F} = 244.5$ Hz), 144.2, 143.0 (d, $J_{C-F} = 7.2$ Hz), 140.3, 134.4 (d, $J_{C-F} = 3.2$ Hz), 132.1 (d, $J_{C-F} = 8.1$ Hz), 130.7, 129.2, 128.8, 128.4, 126.2, 126.0, 118.4, 116.9 (d, $J_{C-F} = 21.3$ Hz), 115.3, 113.7 (d, $J_{C-F} = 20.9$ Hz), 39.2 (d, $J_{C-F} = 1.4$ Hz); HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₇FN 278.1340, found 278.1338.

2'-Benzyl-4'-chloro-[1,1'-biphenyl]-2-amine (1z). EtOAc/PE (eluent) 9:91; 420 mg,

Biomolecular Chemistry Accepted Manuscript Jrganic

71% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.27–7.12 (m, 7H, overlapped^{ew Article Online} with the peak of chloroform), 6.95–6.91 (m, 3H), 6.77 (td, J = 7.6, 1.2 Hz, 1H), 6.74–6.71 (m, 1H), 3.86–3.75 (m, 2H), 3.35 (s, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 144.0, 142.5, 140.2, 137.1, 133.8, 131.9, 130.5, 130.2, 129.2, 128.9, 128.4, 127.0, 126.2, 125.8, 118.5, 115.4, 39.1; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₇ClN 294.1044, found 294.1045.

2'-Benzyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-amine (**1aa**). EtOAc/PE (eluent) 9:91; 540 mg, 83% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.55–7.53 (m, 2H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.21–7.12 (m, 4H), 6.93–6.90 (m, 3H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 3.95–3.84 (m, 2H), 3.32 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.7, 142.6, 141.5, 140.0, 131.2, 130.24 (q, *J*_{C-F} = 32.1 Hz), 130.17, 129.2, 129.1, 128.5, 127.0 (q, *J*_{C-F} = 3.7 Hz), 126.3, 125.7, 124.3 (q, *J*_{C-F} = 270.7 Hz), 123.7 (q, *J*_{C-F} = 3.8 Hz), 118.6, 115.6, 39.2; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₇F₃N 328.1308, found 328.1309.

2'-Amino-2-benzyl-[1,1'-biphenyl]-4-carbonitrile (1ab). EtOAc/PE (eluent) 9:91; 307 mg, 54% yield; white solid, mp 101–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.51 (d, *J* = 1.6 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.24–7.15 (m, 4H), 6.94–6.90 (m, 3H), 6.80 (td, *J* = 7.6, 1.2 Hz, 1H), 6.75 (dd, *J* = 8.0, 0.8 Hz, 1H), 3.92–3.81 (m, 2H), 3.35 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.9, 143.5, 142.3, 139.4, 133.7, 131.6, 130.4, 129.9, 129.5, 129.1, 128.6, 126.5, 125.1, 119.0, 118.6, 115.7, 111.9, 38.9; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₇N₂ 285.1386, found 285.1387.

2'-Benzyl-4'-nitro-[1,1'-biphenyl]-2-amine (1ac). CH₂Cl₂/PE (eluent) 33:67; 368 mg, 61% yield; yellow solid, mp 132–133 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.12 (m, 2H), 7.42–7.40 (m, 1H), 7.24–7.15 (m, 4H), 6.95–6.91 (m, 3H),

6.84–6.80 (m, 1H), 6.77–6.75 (m, 1H), 3.99–3.88 (m, 2H), 3.34 (s, 2H); ${}^{13}_{DOC10,1059/D00B00433B}$ NMR (100 MHz, CDCl₃) δ 147.8, 145.8, 143.4, 142.8, 139.4, 131.8, 129.9, 129.6, 129.1, 128.7, 126.6, 125.1, 124.9, 121.9, 118.7, 115.8, 39.2; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₇N₂O₂ 305.1285, found 305.1287.

2'-Amino-2-benzyl-[1,1'-biphenyl]-3-carbonitrile (1ad). EtOAc/PE (eluent) 17:83; 384 mg, 68% yield; white solid, mp 99–101 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.45 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.20–7.15 (m, 1H), 7.13–7.08 (m, 3H), 6.84–6.81 (m, 3H), 6.74 (td, *J* = 7.2, 1.2 Hz, 1H), 6.69 (dd, *J* = 8.0, 0.8 Hz, 1H), 4.20–4.10 (m, 2H), 3.18 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.1, 143.8, 140.7, 138.9, 135.8, 132.9, 130.4, 129.4, 128.8, 128.3, 127.7, 126.3, 125.0, 118.8, 118.6, 115.7, 114.4, 37.8; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₇N₂ 285.1386, found 285.1388.

2'-Amino-6-benzyl-[1,1'-biphenyl]-3-carbonitrile (1ae). EtOAc/PE (eluent) 9:91; 370 mg, 65% yield; white solid, mp 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.53 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.25–7.14 (m, 4H), 6.94–6.90 (m, 3H), 6.82–6.78 (m, 1H), 6.76–6.74 (m, 1H), 3.94–3.83 (m, 2H), 3.35 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 146.5, 143.7, 140.0, 139.5, 134.3, 131.6, 131.0, 130.3, 129.5, 129.2, 128.6, 126.5, 124.6, 118.9, 118.7, 115.7, 110.8, 39.4; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₇N₂ 285.1386, found 285.1389.

2'-Amino-6-benzyl-[1,1'-biphenyl]-2-carbonitrile (1af). EtOAc/PE (eluent) 20:80; 517 mg, 91% yield; white solid, mp 95–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, J = 7.6, 1.2 Hz, 1H), 7.47 (dd, J = 7.6, 1.2 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.26–7.16 (m, 4H), 6.96–6.93 (m, 3H), 6.84 (td, J = 7.2, 1.2 Hz, 1H), 6.78 (dd, J = 8.0, 0.8 Hz, 1H), 3.89–3.79 (m, 2H), 3.33 (s, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.7, 142.6, 142.2, 139.7, 134.5, 131.5, 130.2, 130.1, 129.2, 128.5, 126.4, 122.7,

Biomolecular Chemistry Accepted Manuscript

Jrganic

119.0, 118.1, 116.0, 114.6, 39.1; HRMS (m/z) $[M + H]^+$ calcd for $C_{20}H_{17}N_2 285.1386^{View Article Online}$ found 285.1389.

(*E*)-2-(1,3-Diphenylprop-1-en-1-yl)aniline (1ag).²¹ The *E* configuration was assigned on the basis of NOE correlations between protons of CH₂ and NH₂ groups. EtOAc/PE (eluent) 2:98; 477 mg, 56% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.16 (m, 11H, overlapped with the peak of chloroform), 7.06 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.82 (td, *J* = 7.6, 1.2 Hz, 1H), 6.78–6.76 (m, 1H), 6.45 (t, *J* = 7.6 Hz, 1H), 3.59 (s, 2H), 3.40 (d, *J* = 7.2 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.3, 140.8, 140.4, 138.7, 131.0, 129.9, 128.7, 128.64, 128.61, 128.59, 127.5, 126.5, 126.1, 124.8, 118.5, 115.6, 36.2; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₂₀N 286.1590, found 286.1592.

5. General Procedure for the Synthesis of Products 2. A mixture of I_2 (1.1 mmol) and Cs_2CO_3 (2.5 mmol) in HMPA (5 mL) was stirred at room temperature for 10 min, and then treated with substrate 1 (0.5 mmol). The reaction was heated to 80 °C until TLC indicated the disappearance of the substrate. After cooling to room temperature, it was quenched with 5% Na₂S₂O₃ (5 mL), followed by the addition of brine (10 mL), and extracted with EtOAc (3 x 15 mL). The combined organic layer was washed with H_2O (20 mL) and brine (20 mL) in sequence, dried over anhydrous Na₂SO₄, concentrated, and purified through silica gel column chromatography to give the product 2.

6-(*p***-Tolyl)phenanthridine (2a).** 2 h; CH₂Cl₂/PE (eluent) 33:67; 108 mg, 80% yield; white solid, mp 80–82 °C (lit^{11d} 80–82 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.4 Hz, 1H), 8.61–8.58 (m, 1H), 8.24 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.14–8.12 (m, 1H), 7.83 (ddd, *J* = 8.4, 6.8, 1.2 Hz, 1H), 7.74 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.69–7.63 (m, 3H), 7.60 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.38–7.35 (m, 2H), 2.47 (s, 3H); ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 161.4, 144.0, 138.7, 137.0, 133.5, 130.6, 130.4_{DOI} 129.8_{Jit01089/D00B00433B} 129.2, 129.1, 128.9, 127.2, 126.9, 125.4, 123.8, 122.3, 122.0, 21.5; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₆N 270.1277, found 270.1279.

2-Methyl-6-(*p*-tolyl)phenanthridine (2b). 2 h; EtOAc/PE (eluent) 4:96; 121 mg, 85% yield; white solid, mp 144–146 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 8.0 Hz, 1H), 8.38–8.37 (m, 1H), 8.13–8.10 (m, 2H), 7.81 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.64–7.61 (m, 2H), 7.60–7.55 (m, 2H), 7.37–7.35 (m, 2H), 2.64 (s, 3H), 2.47 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.5, 142.3, 138.5, 137.1, 136.8, 133.3, 130.6, 130.4, 130.1, 129.8, 129.2, 129.0, 127.0, 125.5, 123.6, 122.2, 121.6, 22.2, 21.5; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₁₈N 284.1434, found 284.1437.

2-Fluoro-6-(*p*-tolyl)phenanthridine (2c). 1 h; EtOAc/PE (eluent) 4:96; 115 mg, 81% yield; white solid, mp 134–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.4 Hz, 1H), 8.22–8.13 (m, 3H), 7.85–7.81 (m, 1H), 7.65–7.61 (m, 3H), 7.47 (td, *J* = 8.8, 2.8 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 2.47 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.3 (d, *J*_{C-F} = 245.1 Hz), 160.7 (d, *J*_{C-F} = 2.7 Hz), 140.8 (d, *J*_{C-F} = 1.4 Hz), 138.8, 136.7, 133.0 (d, *J*_{C-F} = 4.2 Hz), 132.6 (d, *J*_{C-F} = 9.0 Hz), 130.6, 129.8, 129.3, 129.1, 127.8, 125.4, 125.1 (d, *J*_{C-F} = 9.0 Hz), 122.4, 117.8 (d, *J*_{C-F} = 24.0 Hz), 107.0 (d, *J*_{C-F} = 23.0 Hz), 21.5; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₅FN 288.1183, found 288.1186.

2-Chloro-6-(*p*-tolyl)phenanthridine (2d). 3 h; EtOAc/PE (eluent) 4:96; 137 mg, 90% yield; white solid, mp 171–173 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, *J* = 8.0 Hz, 1H), 8.55 (s, 1H), 8.15 (d, *J* = 8.8 Hz, 2H), 7.86 (t, *J* = 8.0 Hz, 1H), 7.69–7.62 (m, 4H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.7, 142.4, 139.0, 136.7, 132.8, 132.6, 131.9, 130.9, 129.8, 129.4, 129.3, 129.2, 127.9,

Biomolecular Chemistry Accepted Manuscript

Jrganic

125.6, 124.9, 122.3, 121.7, 21.6; HRMS (m/z) $[M + H]^+$ calcd for $C_{20}H_{15}C_{$

2-Bromo-6-(*p*-tolyl)phenanthridine (2e). 4 h; EtOAc/PE (eluent) 10:90; 151 mg, 87% yield; white solid, mp 185–187 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 8.8 Hz, 1H), 7.86 (t, *J* = 8.0 Hz, 1H), 7.81 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.66–7.62 (m, 3H), 7.37 (d, *J* = 7.6 Hz, 2H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.8, 142.7, 139.0, 136.7, 132.5, 132.12, 132.09, 130.9, 129.8, 129.3, 129.2, 127.9, 125.5, 125.3, 124.9, 122.3, 120.9, 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₅BrN 348.0382, found 348.0383.

6-(*p*-Tolyl)-2-(trifluoromethyl)phenanthridine (2f). 3 h; EtOAc/PE (eluent) 5:95; 161 mg, 95% yield (0.5 mmol scale); 1.58 g, 93% (5 mmol scale); white solid, mp 255–257 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.71 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.95–7.89 (m, 2H), 7.70–7.64 (m, 3H), 7.39 (d, *J* = 8.0 Hz, 2H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 145.5, 139.3, 136.5, 133.3, 131.31, 131.27, 129.8, 129.4, 129.3, 128.5, (q, *J*_{C-F} = 32.2 Hz), 128.1, 125.7, 124.9 (q, *J*_{C-F} = 3.3 Hz), 124.5 (q, *J*_{C-F} = 270.6 Hz), 123.4, 122.4, 119.9 (q, *J*_{C-F} = 4.3 Hz), 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₁₅F₃N 338.1151, found 338.1153.

6-(*p***-Tolyl)phenanthridine-2-carbonitrile (2g).** 2 h; EtOAc/PE (eluent) 5:95; 138 mg, 94% yield; white solid, mp 235–236 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, *J* = 1.2 Hz, 1H), 8.65 (d, *J* = 8.4 Hz, 1H), 8.28 (d, *J* = 8.8 Hz, 1H), 8.21 (d, *J* = 8.0 Hz, 1H), 7.96–7.90 (m, 2H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 2.49 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.5, 145.7, 139.6, 136.2, 132.6, 131.7, 131.5, 130.5, 129.8, 129.5, 129.4, 128.5, 127.9, 125.7, 123.9,

122.3, 119.3, 110.1, 21.6; HRMS (m/z) $[M + H]^+$ calcd for $C_{21}H_{15}N_2$ 295.1230 for $M_{10}H_{$

2-Nitro-6-(*p*-tolyl)phenanthridine (2h). 3 h; EtOAc/CH₂Cl₂/PE (eluent) 1:1:98; 144 mg, 92% yield; Light yellow solid, mp 255–256 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.49 (d, *J* = 2.4 Hz, 1H), 8.74 (d, *J* = 8.4 Hz, 1H), 8.50 (dd, *J* = 9.2, 2.4 Hz, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.96 (t, *J* = 8.0 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 2.50 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.1, 147.0, 145.8, 139.7, 136.2, 133.5, 131.8, 131.7, 129.9, 129.7, 129.4, 128.7, 125.7, 123.6, 122.8, 122.6, 118.9, 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₅N₂O₂ 315.1128, found 315.1131.

3-Chloro-6-(*p*-tolyl)phenanthridine (2i). 2 h; EtOAc/PE (eluent) 1:99; 122 mg, 80% yield; white solid, mp 126–127 °C (lit^{11d} 128–129 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 8.0 Hz, 1H), 8.52 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 2.0 Hz, 1H), 8.16–8.14 (m, 1H), 7.86 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.65–7.61 (m, 4H), 7.38 (d, *J* = 7.6 Hz, 2H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 144.7, 139.0, 136.7, 134.5, 133.2, 131.0, 129.8, 129.6, 129.3, 127.5, 127.4, 125.4, 123.5, 122.3, 122.2, 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₅ClN 304.0888, found 304.0889.

4-Chloro-6-(*p*-tolyl)phenanthridine (2j). 2 h; EtOAc/PE (eluent) 0.5:99.5; 132 mg, 87% yield; white solid, mp 159–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 8.4 Hz, 1H), 8.51 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.24 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.88–7.83 (m, 2H), 7.75–7.73 (m, 2H), 7.65 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.56 (t, *J* = 8.4 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 2H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.6, 140.3, 139.1, 136.7, 134.7, 133.5, 130.8, 130.4, 129.3, 129.21, 129.18, 127.7, 126.6, 125.4, 125.3, 122.6, 120.9, 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₅ClN 304.0888, found 304.0889.

2,4-Dichloro-6-(*p*-tolyl)phenanthridine (2k). 4 h; CH₂Cl₂/PE (eluent) 1:99; $_{D}b_{2}^{-1}$, $_{D}mg_{PDOB00433B}^{-1}$ 90% yield; white solid, mp 246–247 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 8.0 Hz, 1H), 8.47 (d, *J* = 2.0 Hz, 1H), 8.27–8.24 (m, 1H), 7.88 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H), 7.83 (d, *J* = 2.4 Hz, 1H), 7.74–7.67 (m, 3H), 7.39–7.37 (m, 2H), 2.48 (s, 3H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.8, 139.4, 139.0, 136.5, 135.8, 132.6, 132.0, 131.1, 130.4, 129.4, 129.32, 129.26, 128.4, 125.9, 125.5, 122.7, 120.7, 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₄Cl₂N 338.0498, found 338.0501.

6-Phenylphenanthridine (21). 2 h; CH₂Cl₂/PE (eluent) 20:80; 104 mg, 81% yield; white solid, mp 100–102 °C (lit^{11d} 99–101 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, J = 8.4 Hz, 1H), 8.62 (dd, J = 8.4, 1.2 Hz, 1H), 8.25 (dd, J = 8.0, 1.2 Hz, 1H), 8.10 (dd, J = 8.4, 0.8 Hz, 1H), 7.85 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.78–7.73 (m, 3H), 7.69 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.63–7.52 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.4, 143.9, 139.9, 133.5, 130.7, 130.5, 129.8, 129.04, 128.97, 128.8, 128.6, 127.2, 127.1, 125.4, 123.9, 122.3, 122.1; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₄N 256.1121, found 256.1123.

6-(4-Methoxyphenyl)phenanthridine (2m). 2 h; CH₂Cl₂/PE (eluent) 67:33; 119 mg, 83% yield; white solid, mp 147–148 °C (lit^{11d} 144–146 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, *J* = 8.4 Hz, 1H), 8.60 (d, *J* = 8.0 Hz, 1H), 8.23 (dd, *J* = 8.0, 0.8 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.87–7.83 (m, 1H), 7.77–7.60 (m, 5H), 7.10–7.08 (m, 2H), 3.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.0, 160.2, 143.9, 133.6, 132.3, 131.3, 130.6, 130.3, 129.1, 128.9, 127.2, 126.9, 125.4, 123.7, 122.3, 122.0, 114.0, 55.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₆NO 286.1226, found 286.1228.

6-(4-Fluorophenyl)phenanthridine (2n).^{13b} 1 h; CH₂Cl₂/PE (eluent) 33:67; 97 mg, 71% yield; white solid, mp 130–131 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.4 Hz, 1H), 8.61 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.23 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.07 (dd, *J*

= 8.4, 0.4 Hz, 1H), 7.86 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.78–7.67 (m, 4H), 7.63 (ddd^{f/ew Article Online} J = 8.4, 7.2, 1.2 Hz, 1H), 7.29–7.23 (m, 2H, overlapped with the peak of chloroform); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.3 (d, $J_{C-F} = 246.5$ Hz), 160.3, 143.8, 135.9 (d, $J_{C-F} = 3.3$ Hz), 133.6, 131.7 (d, $J_{C-F} = 8.3$ Hz), 130.8, 130.4, 129.1, 128.7, 127.4, 127.2, 125.2, 123.8, 122.4, 122.1, 115.6 (d, $J_{C-F} = 21.5$ Hz); HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₃FN 274.1027, found 274.1028.

6-(4-Chlorophenyl)phenanthridine (20).^{11d} 2 h; EtOAc/PE (eluent) 5:95; 119 mg, 82% yield; white solid, mp 159–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.0 Hz, 1H), 8.61 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.86 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.71–7.68 (m, 3H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1, 143.9, 138.3, 135.0, 133.6, 131.3, 130.8, 130.5, 129.1, 128.8, 128.6, 127.4, 127.3, 125.1, 123.9, 122.5, 122.1; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₃ClN 290.0731, found 290.0730.

6-(4-(Trifluoromethyl)phenyl)phenanthridine (2p). 2 h; EtOAc/PE (eluent) 1:99; 133 mg, 82% yield; white solid, mp 173–175 °C (lit^{8d} 171–173 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 8.0 Hz, 1H), 8.62 (d, *J* = 8.4 Hz, 1H), 8.23 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.01 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.89–7.82 (m, 5H), 7.77 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.73–7.69 (m, 1H), 7.63 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.8, 143.8, 143.5, 133.6, 131.0, 130.9 (q, *J*_{C-F} = 32.3 Hz), 130.5, 130.3, 129.2, 128.4, 127.5, 125.6 (q, *J*_{C-F} = 3.8 Hz), 124.9, 124.3 (q, *J*_{C-F} = 270.5 Hz), 124.0, 122.5, 122.1; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₃F₃N 324.0995, found 324.0996.

4-(Phenanthridin-6-yl)benzonitrile (2q). 2 h; EtOAc/PE (eluent) 9:91; 120 mg, 86% yield; white solid, mp 176–177 °C (lit^{8d} 179–181 °C); ¹H NMR (400 MHz, CDCl₃) δ

8.74 (d, J = 8.4 Hz, 1H), 8.64 (dd, J = 8.0, 0.8 Hz, 1H), 8.23 (dd, J = 8.0, 1.2 Hz, 1H)^{View Article Online} 7.98 (d, J = 8.4 Hz, 1H), 7.92–7.87 (m, 5H), 7.81–7.77 (m, 1H), 7.75–7.71 (m, 1H), 7.65 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 159.2, 144.4, 143.7, 133.7, 132.4, 131.1, 130.7, 130.5, 129.3, 128.1, 127.7, 127.6, 124.7, 124.0, 122.7, 122.2, 118.8, 112.7; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₃N₂ 281.1073, found 281.1074.

6-(4-Nitrophenyl)phenanthridine (2r). 2 h; EtOAc/PE (eluent) 17:83; 129 mg, 86% yield; light yellow solid, mp 192–193 °C (lit²² 192–193 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, *J* = 8.4 Hz, 1H), 8.65 (d, *J* = 8.0 Hz, 1H), 8.43 (d, *J* = 8.8 Hz, 2H), 8.25–8.23(m, 1H), 8.00–7.89 (m, 4H), 7.82–7.73 (m, 2H), 7.66 (t, *J* = 8.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.8, 148.1, 146.2, 143.7, 133.6, 131.2, 131.0, 130.5, 129.3, 128.0, 127.8, 127.7, 124.7, 124.0, 123.8, 122.7, 122.2; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₃N₂O₂ 301.0972, found 301.0973.

6-(*m***-Tolyl)phenanthridine (2s).^{9e} 2 h**; CH₂Cl₂/PE (eluent) 33:67; 107 mg, 79% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.4 Hz, 1H), 8.62 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.26–8.24 (m, 1H), 8.12–8.10 (m, 1H), 7.85 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H), 7.76 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H), 7.69 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.61 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.56 (m, 1H), 7.52–7.50 (m, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.35–7.33 (m, 1H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.6, 143.9, 139.8, 138.4, 133.5, 130.6, 130.5, 130.4, 129.6, 129.1, 128.9, 128.3, 127.2, 126.99, 126.96, 125.4, 123.8, 122.3, 122.1, 21.7; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₆N 270.1277, found 270.1279.

6-(*o***-Tolyl)phenanthridine (2t).**^{11a} 2 h; EtOAc/PE (eluent) 5:95; 101 mg, 75% yield; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.71 (d, *J* = 8.4 Hz, 1H), 8.65 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.25 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.86 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H),

7.80–7.76 (m, 1H), 7.74–7.70 (m, 2H), 7.58 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7 $_{\text{DOI}+10,\text{res9/D00B00433B}}$ (m, 4H), 2.12 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.1, 144.0, 139.3, 136.6, 133.2, 130.8, 130.51, 130.47, 129.4, 129.0, 128.8, 128.7, 127.5, 127.1, 126.0, 124.0, 122.3, 122.1, 20.0; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₆N 270.1277, found 270.1279.

2-Methylphenanthridine (2u). 2 h; EtOAc/PE (eluent) 17:83; 34 mg, 35% yield; white solid, mp 89–90 °C (lit²³ 90.1–91.1 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.22 (s, 1H), 8.58 (d, *J* = 8.4 Hz, 1H), 8.34 (s, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 8.02 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.83 (ddd, *J* = 8.4, 7.2, 1.6 Hz, 1H), 7.68 (ddd, *J* = 8.0, 7.2, 1.2 Hz, 1H), 7.58–7.55 (m, 1H), 2.63 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.8, 142.9, 137.1, 132.4, 130.9, 130.5, 129.9, 128.8, 127.4, 126.6, 124.0, 121.9, 22.1; HRMS (m/z) [M + H]⁺ calcd for C₁₄H₁₂N 194.0964, found 194.0965.

2-(Trifluoromethyl)phenanthridine (2v). 2 h; EtOAc/PE (eluent) 9:91; 47 mg, 38% yield; white solid, mp 100–102 °C (lit^{11c} 98–100 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 8.86 (s, 1H), 8.65 (d, *J* = 8.4 Hz, 1H), 8.30 (d, *J* = 8.8 Hz, 1H), 8.11 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.97–7.93 (m, 2H), 7.80 (ddd, *J* = 8.0, 7.2, 0.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.8, 146.0, 132.3, 131.9, 131.2, 129.2, 128.9 (d, *J*_{C-F} = 32.2 Hz), 128.6, 126.7, 124.8 (q, *J*_{C-F} = 3.3 Hz), 124.4 (d, *J*_{C-F} = 270.6 Hz), 123.9, 122.1, 120.2 (q, *J*_{C-F} = 4.2 Hz); HRMS (m/z) [M + H]⁺ calcd for C₁₄H₉F₃N 248.0682, found 248.0683.

2,6-Dimethylphenanthridine (2w). 2 h; CH₂Cl₂/PE (eluent) 33:67; 38 mg, 37% yield; light yellow solid, mp 65–67 °C (lit²⁴ 69–71 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 8.4 Hz, 1H), 8.31 (s, 1H), 8.20 (dd, *J* = 8.4, 0.4 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.82 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.68 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.53 (dd, *J* = 8.0, 1.6 Hz, 1H), 3.03 (s, 3H), 2.61 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

158.0, 142.1, 136.2, 132.5, 130.44, 130.39, 129.2, 127.3, 126.6, 126.1, 123.7 $_{\odot 1}$ 122.4 ^{*fiew Article Online* 121.7, 23.5, 22.1; HRMS (m/z) [M + H]⁺ calcd for C₁₅H₁₄N 208.1121, found 208.1120. **8-Methoxy-6-phenylphenanthridine (2x).** 2 h; CH₂Cl₂/PE (eluent) 33:67; 116 mg, 81% yield; light yellow solid, mp 128–129 °C (lit²⁵ 127–129 °C); ¹H NMR (400 MHz,}

Published on 09 April 2020. Downloaded by UNIVERSITE PARIS SUD on 4/9/2020 1:50:57 PM

CDCl₃) δ 8.59 (d, *J* = 9.2 Hz, 1H), 8.51 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.21 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.76–7.74 (m, 2H), 7.71–7.62 (m, 2H), 7.58–7.46 (m, 5H), 3.81 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.5, 158.5, 143.1, 140.0, 130.4, 129.6, 128.8, 128.6, 127.95, 127.91, 127.1, 126.6, 124.01, 123.95, 121.6, 121.1, 109.1, 55.5; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₆NO 286.1226, found 286.1227.

8-Fluoro-6-phenylphenanthridine (2y).²⁵ 1 h; CH₂Cl₂/PE (eluent) 34:66; 96 mg, 70% yield; white solid, mp 134–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.71–8.68 (m, 1H), 8.55 (d, *J* = 8.0 Hz, 1H), 8.26–8.24 (m, 1H), 7.78–7.68 (m, 5H), 7.63–7.54 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.3 (d, *J*_{C-F} = 246.4 Hz), 160.5 (d, *J*_{C-F} = 3.8 Hz), 143.6 (d, *J*_{C-F} = 1.3 Hz), 139.4, 130.6, 130.3 (d, *J*_{C-F} = 1.9 Hz), 129.7, 129.1, 128.9, 128.8, 127.5, 126.7 (d, *J*_{C-F} = 7.9 Hz), 124.9 (d, *J*_{C-F} = 8.3 Hz), 123.4 (d, *J*_{C-F} = 0.8 Hz), 121.9, 119.9 (d, *J*_{C-F} = 23.8 Hz), 113.4 (d, *J*_{C-F} = 22.0 Hz); HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₃FN 274.1027, found 274.1026.

8-Chloro-6-phenylphenanthridine (2z). 2 h; CH₂Cl₂/PE (eluent) 33:67; 122 mg, 83% yield; white solid, mp 123–125 °C (lit^{8d} 120–122 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.62 (dd, *J* = 8.8, 2.0 Hz, 1H), 8.55 (d, *J* = 8.0 Hz, 1H), 8.24 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.07 (d, *J* = 2.0 Hz, 1H), 7.81–7.75 (m, 2H), 7.73–7.67 (m, 3H), 7.61–7.53 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.3, 143.8, 139.2, 133.2, 132.0, 131.3, 130.6, 129.7, 129.3, 129.1, 128.8, 128.0, 127.5, 126.3, 124.2, 123.3, 122.0; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₃ClN 290.0731, found 290.0733.

6-Phenyl-8-(trifluoromethyl)phenanthridine (2aa).^{9b} 2 h; CH₂Cl₂/PE (eluent) 33:67 w Article Online 137 mg, 85% yield; white solid, mp 182–184 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 8.8 Hz, 1H), 8.63 (d, *J* = 8.0 Hz, 1H), 8.41 (s, 1H), 8.28 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.05 (dd, *J* = 8.8, 1.2 Hz, 1H), 7.86–7.82 (m, 1H), 7.76–7.73 (m, 3H), 7.63–7.55 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.2, 144.6, 139.0, 135.8, 130.7, 130.2, 129.8, 129.4, 129.1 (q, *J*_{C-F} = 32.8 Hz), 128.9, 127.7, 126.5 (q, *J*_{C-F} = 3.2 Hz), 126.4 (q, *J*_{C-F} = 4.3 Hz), 124.6, 124.1 (q, *J*_{C-F} = 270.7 Hz), 123.5, 122.9, 122.4; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₃F₃N 324.0995, found 324.0994.

6-Phenylphenanthridine-8-carbonitrile (2ab). 2 h; CH₂Cl₂/PE (eluent) 33:67; 116 mg, 83% yield; white solid, mp 193–195 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 8.4 Hz, 1H), 8.59 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.46 (d, *J* = 1.6 Hz, 1H), 8.28 (dd, *J* = 8.4, 0.8 Hz, 1H), 8.01 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.86 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.75 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.72–7.69 (m, 2H), 7.64–7.58 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.5, 144.8, 138.5, 136.1, 134.4, 131.8, 130.8, 129.8, 129.5, 128.9, 127.9, 124.8, 123.7, 122.6, 122.5, 118.7, 110.7; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₃N₂ 281.1073, found 281.1074.

8-Nitro-6-phenylphenanthridine (2ac). 3 h; CH₂Cl₂/PE (eluent) 50:50; 126 mg, 84% yield; yellow solid, mp 234–236 °C (lit^{8d} 230–232 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.03 (d, J = 2.4 Hz, 1H), 8.83 (d, J = 9.2 Hz, 1H), 8.65–8.62 (m, 2H), 8.30 (dd, J = 8.4, 0.8 Hz, 1H), 7.91–7.87 (m, 1H), 7.80–7.74 (m, 3H), 7.65–7.58 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.4, 146.2, 145.1, 138.5, 137.6, 131.1, 130.9, 129.9, 129.7, 129.0, 128.1, 125.1, 124.7, 124.3, 124.2, 122.9, 122.5; HRMS (m/z) [M + H]⁺ calcd for C₁₉H₁₃N₂O₂ 301.0972, found 301.0973.

6-Phenylphenanthridine-7-carbonitrile (2ad). 2 h; EtOAc/CH₂Cl₂/PE (eluent) 4:8:88; 116 mg, 83% yield; yellow solid, mp 196–198 °C; ¹H NMR (400 MHz,

Biomolecular Chemistry Accepted Manuscript

Jrganic

CDCl₃) δ 8.98 (dd, J = 8.4, 1.2 Hz, 1H), 8.64–8.61 (m, 1H), 8.28 (dd, $J = 8.4_{\text{DCl}, 20}$ Hz/iew Article Online 1H), 8.06 (dd, J = 7.2, 1.2 Hz, 1H), 7.95–7.91 (m, 1H), 7.85 (ddd, J = 8.4, 7.2, 1.2 Hz, 1H), 7.77 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.65–7.57 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.1, 143.7, 140.0, 136.4, 134.7, 130.7, 130.2, 130.0, 129.9, 129.7, 128.8, 128.0, 127.2, 124.5, 122.7, 122.1, 116.9, 112.0; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₃N₂ 281.1073, found 281.1077.

6-Phenylphenanthridine-9-carbonitrile (2ae). 2 h; EtOAc/PE (eluent) 4:96; 119 mg, 85% yield; white solid, mp 203–208 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.02 (s, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 8.29–8.27 (m, 1H), 8.23–8.21 (m, 1H), 7.87–7.83 (m, 1H), 7.81–7.75 (m, 2H), 7.73–7.69 (m, 2H), 7.62–7.54 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.6, 144.3, 138.8, 133.4, 130.8, 130.3, 130.1, 129.8, 129.4, 128.8, 128.6, 128.1, 127.8, 126.6, 122.3, 122.0, 118.6, 114.1; HRMS (m/z) [M + H]+ calcd for C₂₀H₁₃N₂ 281.1073, found 281.1077.

6-Phenylphenanthridine-10-carbonitrile (2af). 2 h; EtOAc/PE (eluent) 5:95; 119 mg, 85% yield; white solid, mp 195–196 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.74 (dd, J = 8.4, 0.8 Hz, 1H), 8.39 (dd, J = 8.4, 1.6 Hz, 1H), 8.31–8.26 (m, 2H), 7.91–7.87 (m, 1H), 7.80 (ddd, J = 8.8, 7.2, 1.6 Hz, 1H), 7.71–7.67 (m, 3H), 7.61–7.55 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.0, 144.8, 139.5, 139.2, 134.5, 133.3, 131.0, 130.7, 129.8, 129.3, 128.8, 127.8, 126.5, 126.1, 124.0, 122.0, 120.8, 107.4; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₃N₂ 281.1073, found 281.1075.

2,4-diphenylquinoline (**2ag**).²⁶ 2 h; EtOAc/PE (eluent) 2:98; 99 mg, 70% yield; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (dd, *J* = 8.4, 0.4 Hz, 1H), 8.20–8.18 (m, 2H), 7.91 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.82 (s, 1H), 7.73 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H), 7.57–7.44 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 157.0, 149.3, 148.9,

139.8, 138.5, 130.2, 129.7, 129.6, 129.5, 129.0, 128.7, 128.5, 127.7, 126.5 $_{DOI}$ 125.9 $_{125.039/D00B00433B}$ 125.8, 119.5; HRMS (m/z) [M + H]⁺ calcd for C₂₁H₁₆N 282.1277, found 282.1278.

5-Iodo-2'-(4-methylbenzyl)-[1,1'-biphenyl]-2-amine (1a'). EtOAc /PE (eluent) 2:98; colorless oil; ¹H NMR (400 MHz, CDCl₃), δ 7.40 (dd, J = 8.4, 2.0 Hz, 1H), 7.32–7.24 (m, 3H, overlapped with the peak of chloroform), 7.17–7.14 (m, 2H), 7.00 (d, J = 7.6 Hz, 2H), 6.83 (d, J = 8.0 Hz, 2H), 6.50 (d, J = 8.0 Hz, 1H), 3.83–3.71 (m, 2H), 3.40 (s, 2H), 2.29 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.8, 140.5, 138.7, 137.7, 137.08, 137.06, 135.5, 130.4, 129.6, 129.1, 129.0, 128.5, 126.9, 117.2, 79.1, 38.9, 21.2; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₉IN 400.0557, found 400.0559.

2-Iodo-6-(*p*-tolyl)phenanthridine (2a'). EtOAc /PE (eluent) 2:98; white solid; mp 201–203 °C; ¹H NMR (400 MHz, CDCl₃), δ 8.93 (d, *J* = 1.6 Hz, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 8.14 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.99 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.85 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H), 7.65–7.61 (m, 3H), 7.37 (d, *J* = 8.0 Hz, 2H), 2.48 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.0, 143.1, 139.0, 137.7, 136.7, 132.2, 132.1, 131.3, 130.9, 129.8, 129.3, 129.2, 127.8, 125.7, 125.5, 122.3, 92.6, 21.6; HRMS (m/z) [M + H]⁺ calcd for C₂₀H₁₅IN 396.0244, found 396.0247.

•Electronic Supplementary Information (ESI) available: Copies of ¹H and ¹³C NMR spectra of isolated compounds. See DOI: 10.1039/x0xx00000x

Corresponding Authors

*E-mail: wenquan_yu@zzu.edu.cn

*E-mail: changjunbiao@zzu.edu.cn

Conflicts of interest

Organic & Biomolecular Chemistry Accepted Manuscript

There are no conflicts to declare.

View Article Online DOI: 10.1039/D00B00433B

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 81773570 and U1804283) and the Young Backbone Teachers Fund of Zhengzhou University (No. 2017ZDGGJS020) for financial support.

Notes and References

- (a) B. D. Krane, M. O. Fagbule and M. Shamma, *J. Nat. Prod.*, 1984, 47, 1; (b) M. H. Zenk, *Pure Appl. Chem.*, 1994, 66, 2023; (c) T. Nakanishi and M. Suzuki, *J. Nat. Prod.*, 1998, 61, 1263; (d) T. Watanabe, Y. Ohashi, R. Yoshino, N. Komano, M. Eguchi, S. Maruyama and T. Ishikawa, *Org. Biomol. Chem.*, 2003, 1, 3024; (e) T. N. Le and W.-J. Cho, *Chem. Pharm. Bull.*, 2006, 54, 476; (f) P. Lv, K. Huang, L. Xie and X. Xu, *Org. Biomol. Chem.*, 2011, 9, 3133.
- (a) P. H. Bernardo, K.-F. Wan, T. Sivaraman, J. Xu, F. K. Moore, A. W. Hung, H. Y. K. Mok, V. C. Yu and C. L. L. Chai, *J. Med. Chem.*, 2008, **51**, 6699; (b) D. Chen, H. Zhang, C. Jing, X. He, B. Yang, J. Cai, Y. Zhou, X. Song, L. Li and X. Hao, *Eur. J. Med. Chem.*, 2018, **157**, 1491; (c) E. Dubost, N. Dumas, C. Fossey, R. Magnelli, S. Butt-Gueulle, C. Ballandonne, D. H. Caignard, F. Dulin, J. S. de-Oliveira Santos, P. Millet, Y. Charnay, S. Rault, T. Cailly and F. Fabis, *J. Med. Chem.*, 2012, **55**, 9693.
- (a) Mark Cushman, Prem Mohan and E. C. R. Smith, *J. Med. Chem.*, 1983, 66, 544;
 (b) T. Nakanishi and M. Suzuki, *Org. Lett.*, 1999, 1, 985;
 (c) D. Li, B. Zhao,

View Article Online

S.-P. Sim, T.-K. Li, A. Liu, L. F. Liub and E. J. LaVoie, *Bioorg. Med*. Chem.,
2003, 11, 521; (d) I. Kock, D. Heber, M. Weide, U. Wolschendorf and B.
Clement, *J. Med. Chem.*, 2005, 48, 2772; (e) D. Lamoral-Theys, A. Andolfi, G. V.
Goietsenoven, A. Cimmino, B. L. Calve, N. Wauthoz, V. Megalizzi, T. Gras, C.
Bruyere, J. Dubois, V. Mathieu, A. Kornienko, R. Kiss and A. Evidente, *J. Med. Chem.*, 2009, 52, 6244; (f) J. Iribarra, D. Vásquez, C. Theoduloz, J. Benites, D.
Ríos and J. A. Valderrama, *Molecules*, 2012, 17, 11616; (g) P. Lasák, K. Motyka,
V. Kryštof and J. Stýskala, *Molecules*, 2018, 23, 2155.

- (a) A. Seaman and M. Woodbine, *Brit. J. Pharmacol.*, 1954, 9, 265; (b) K. K.
 Schrader, F. Avolio, A. Andolfi, A. Cimmino and A. Evidente, *J. Agric. Food. Chem.*, 2013, 61, 1179.
- 5. T. Ishikawa, Med. Res. Rev., 2001, 21, 61.
- 6. (a) S. A. Baechler, M. Fehr, M. Habermeyer, A. Hofmann, K.-H. Merz, H.-H. Fiebig, D. Marko and G. Eisenbrand, *Bioorg. Med. Chem.*, 2013, 21, 814; (b) S. D. Fang, L. K. Wang and S. M. Hecht, *J. Org. Chem.*, 1993, 58, 5025.
- (a) A. Pictet and A. Hubert, *Ber.*, 1896, 29, 1182; (b) R. S. Theobald and K. Schofield, *Chem. Rev.*, 1950, 46, 171.
- (a) H. Jiang, X. An, K. Tong, T. Zheng, Y. Zhang and S. Yu, *Angew. Chem. Int. Ed.*, 2015, **54**, 4055; (b) M. Ghosh, A. Ahmed, R. Singha and J. K. Ray, *Tetrahedron Lett.*, 2015, **56**, 353; (c) P. Natarajan, N. Kumar and M. Sharma, *Org. Chem. Front.*, 2016, **3**, 1265; (d) J. Ge, X. Wang, T. Liu, Z. Shi, Q. Xiao and D. Yin, *RSC Adv.*, 2016, **6**, 19571; (e) S.-Y. Yang, W.-Y. Han, D.-L. Zhang,

View Article Online

Organic & Biomolecular Chemistry Accepted Manuscript

X.-J. Zhou, M. Bai, B.-D. Cui, N.-W. Wan, W.-C. Yuan and Y.-Z. Chen, *Eur. J.* Org. Chem., 2017, 996; (f) D. Maiti, A. Halder and S. De Sarkar, *Adv. Synth. Catal.*, 2019, **361**, 4941.

- (a) H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu, *Angew. Chem. Int. Ed.*, 2013, **52**, 13289; (b) T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang, Z.-W. Mao and L. Zhou, *Green Chem.*, 2014, **16**, 2418; (c) Z. Xia, J. Huang, Y. He, J. Zhao, J. Lei and Q. Zhu, *Org. Lett.*, 2014, **16**, 2546; (d) J. J. Cao, T. H. Zhu, S. Y. Wang, Z. Y. Gu, X. Wang and S. J. Ji, *Chem. Commun.*, 2014, **50**, 6439; (e) C. Pan, H. Zhang, J. Han, Y. Cheng and C. Zhu, *Chem. Commun.*, 2015, **51**, 3786.
- 10. (a) Y.-Y. Liu, R.-J. Song, C.-Y. Wu, L.-B. Gong, M. Hu, Z.-Q. Wang, Y.-X. Xie and J.-H. Li, *Adv. Synth. Catal.*, 2012, **354**, 347; (b) D. Chowdhury, S. Dana, A. Mandal and M. Baidya, *Chem. Commun.*, 2019, **55**, 11908; (c) Z. Liang, L. Ju, Y. Xie, L. Huang and Y. Zhang, *Chem.-Eur. J.*, 2012, **18**, 15816.
- 11. (a) Z. Line, Y. A. Gim and C. Shunsuke, Org. Lett., 2010, 12, 3682; (b) Y. F. Chen and J. C. Hsieh, Org. Lett., 2014, 16, 4642; (c) W. L. Chen, C. Y. Chen, Y. F. Chen and J. C. Hsieh, Org. Lett., 2015, 17, 1613; (d) A. Kishi, K. Moriyama and H. Togo, J. Org. Chem., 2018, 83, 11080.
- (a) D. Intrieri, M. Mariani, A. Caselli, F. Ragaini and E. Gallo, *Chem.-Eur. J.*, 2012, **18**, 10487; (b) J. Tummatorn, S. Krajangsri, K. Norseeda, C. Thongsornkleeb and S. Ruchirawat, *Org. Biomol. Chem.*, 2014, **12**, 5077; (c) C. Tang, Y. Yuan and N. Jiao, *Org. Lett.*, 2015, **17**, 2206.
- 13. (a) Christopher J. Evoniuk, Sean P. Hill, Kenneth Hanson and I. V. Alabugin,

Chem. Commun., 2016, **52**, 7138; (b) C. J. Evoniuk, G. D. P. Gomes, S. P. Hill, S. Fujita, K. Hanson and I. V. Alabugin, *J. Am. Chem. Soc.*, 2017, **139**, 16210.

- 14. (a) F. Collet, R. H. Dodd and P. Dauban, *Chem. Commun.*, 2009, 34, 5061; (b) P. Thansandote and M. Lautens, *Chem.-Eur. J.*, 2009, 15, 5874; (c) F. Collet, C. Lescot and P. Dauban, *Chem. Soc. Rev.*, 2011, 40, 1926; (d) J. L. Roizen, M. E. Harvey and J. D. Bois, *Acc. Chem. Res.*, 2012, 45, 911; (e) T. A. Ramirez, B. Zhao and Y. Shi, *Chem. Soc. Rev.*, 2012, 41, 931; (f) R. T. III. Gephart and T. H. Warren, *Organometallics*, 2012, 31, 7728; (g) J. L. Jeffrey and R. Sarpong, *Chem. Sci.*, 2013, 4, 4092; (h) M.-L. Louillat and F. W. Patureau, *Chem. Soc. Rev.*, 2014, 43, 901; (i) Y. Park, Y. Kim and S. Chang, *Chem. Rev.*, 2017, 117, 9247.
- (a) R. Fan, W. Li, D. Pu and L. Zhang, Org. Lett., 2009, 11, 1425; (b) Y. Yan, Y. Zhang, Z. Zha and Z. Wang, Org. Lett., 2013, 15, 2274; (c) D. Zhao, T. Wang and J.-X. Li, Chem. Commun., 2014, 50, 6471; (d) S. K. Lee and J. K. Park, J. Org. Chem., 2015, 80, 3723; (e) W. Wei, Z. Wang, X. Yang, W. Yu and J. Chang, Adv. Synth. Catal., 2017, 359, 3378; (f) Z. Hu, J. Hou, J. Liu, W. Yu and J. Chang, Org. Biomol. Chem., 2018, 16, 5653.
- 16. (a) A. W. Hofmann, *Ber.*, 1883, 16, 558; (b) K. Löffler and C. Freytag, *Ber.*, 1909, 42, 3427.
- 17. (a) X. Zhang, J. Kang, P. Niu, J. Wu, W. Yu and J. Chang, J. Org. Chem., 2014,
 79, 10170; (b) E. Li, Z. Hu, L. Song, W. Yu and J. Chang, Chem.-Eur. J., 2016,
 22, 11022; (c) J. Liu, W. Wei, T. Zhao, X. Liu, J. Wu, W. Yu and J. Chang, J.
 Org. Chem., 2016, 81, 9326; (d) X. Tian, L. Song, M. Wang, Z. Lv, J. Wu, W.

Drganic & Biomolecular Chemistry Accepted Manuscript

Yu and J. Chang, *Chem.-Eur. J.*, 2016, **22**, 7617; (e) M. Wang, J. Hou, W. Yu

and J. Chang, J. Org. Chem., 2018, 83, 14954.

- (a) J. Song, Y. Li, W. Sun, C. Yi, H. Wu, H. Wang, K. Ding, K. Xiao and C. Liu, *New J. Chem.*, 2016, **40**, 9030; (b) S. Langle, M. Abarbri and A. Duchêne, *Tetrahedron. Lett.*, 2003, **44**, 9255; (c) T. Mohy El Dine, W. Erb, Y. Berhault, J. Rouden and J. Blanchet, *J. Org. Chem.*, 2015, **80**, 4532.
- Without pre-stirring of iodine and base in HMPA, iodinated substrate (1a') and product (2a') were formed. For their characterization data and NMR spectra, see the Experimental section and Electronic Supplementary Information (ESI).
- CCDC 1980383 (2d) contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
- 21. J. C. E. Simpson, J. Chem. Soc., 1943, 447.
- 22. W. R. Bowman, J. E. Lyon and G. J. Pritchard, ARKIVOC, 2012, 210.
- 23. W. Han, X. Zhou, S. Yang, G. Xiang, B. Cui and Y. Chen, *J. Org. Chem.*, 2015, 80, 11580.
- 24. R. Zhang, X. Shi, Q. Yan, Z. Li, Z. Wang, H. Yu, X. Wang, J. Qi and M. Jiang, *RSC Adv.*, 2017, 7, 38830.
- 25. M. Ramanathan and S. T. Liu, J. Org. Chem., 2015, 80, 5329.
- W. Zheng, W. Yang, D. Luo, L. Min, X. Wang and Y. Hu, Adv. Synth. Catal., 2019, 361, 1995.