The Synthesis of the 1,2,4-Thiadiazine-1,1-dioxides¹⁾

Kiyoshi Hasegawa and Syuzi Hirooka

Department of Industrial Chemistry, Faculty of Engineering, Toyama University, Takaoka-shi (Received January 5, 1972)

N-(2-Phenylethene-1-sulfonyl)-N'-monoalkyl S-methylisothioureas, **2**, were ring-closed to yield Michael cycloadducts, 3-methylthio-4-alkyl-5-phenyl-1,1-dioxo-5,6-dihydro-1,2,4-thiadiazines, **3**. Bulky N'-alkyl groups hindered the cycloaddition. The base-catalyzed hydrolysis of **3** and 3-chloro-derivatives **4** gave 4-methyl-5-phenyl-2,3,5,6-tetrahydro-1,1,3-trioxo-1,2,4-thiadiazines, **5**, which in turn underwent N-alkylation to give **6**. The reaction of **4** with amines or with sodium methoxide yielded 3-amino-, **7**, or 3-methoxy-thiadiazine derivatives, **9**.

Recently we have reported^{2,3)} the synthesis of a new heterocyclic system, 5,6-dihydro-1,4,2-dithiazine-1,1-dioxide, by the intramolecular Michael cyclo-addition of N-(2-phenylethene-1-sulfonyl)-N'-alkylthioureas, dithiocarbamates, and O-alkyl thiocarba-

mates. This paper will describe a new route to the little-known 1,2,4-thiadiazine-1,1-dioxide derivatives,⁴⁾ starting from the substituted isothioureas. The process is outlined below.

Results and Discussion

The reaction of N-(2-phenylethene-1-sulfonyl)-N'-monoalkylthioureas (1) with dimethyl sulfate in DMF afforded N-(2-phenylethene-1-sulfonyl)-N'-alkyl S-methylisothioureas (2) (Table 1). They were ring-closed in ethanol containing catalytic amounts of sodium hydroxide to yield intramolecular cyclo-adducts, 3-methylthio-4-alkyl-5-phenyl-1,1-dioxo-1,2,4-thiadiazines (3) (Table 2, Method (A)). The IR spectrum of $\bf 3a$ displayed a strong band at 1530 cm⁻¹ due to the N=C bond, but no absorption due to the NH bond was observed. In the NMR pattern of $\bf 3a$, ring protons, $\bf H_A \bf H_C \bf H_B$, showed an ABX pattern consisting of three quartets of $\bf H_A$ centered at δ 3.36, $\bf H_C$ 3.53, and $\bf H_B$ 5.03 ($\bf J_{AC}$ =13.5 Hz, $\bf J_{AB}$ =10.5 Hz, $\bf J_{BC}$ =6.0 Hz) (Fig. 1). The peak at m/e 118.066 in the mass spectrum was in complete agreement with the fragment ion, $\bf C_6 \bf H_5 \bf CN^+ \bf C \bf H_3$, derived from only the six-membered heterocycle, $\bf 3$. The structures of $\bf 3b$ —

3h were inferred because they were analogous with **3a** in their preparations and spectral data.

Cycloaddition is subject to steric hindrance, and it was unsuccessful here when the alkyl group, R², in 2 was bulky or branched, like the cyclohexyl, isopropyl, s-, and t-butyl groups. The amounts of a base required to complete the cycloaddition of 2's in 6 hr at 25—30°C were determined. Table 2 shows that only from a sixth to a third equivalent of the base was sufficient to effect the cycloaddition of 2 when R² was the methyl group, while more bases were required when R^2 became bulky. The N'-dialkylisothiourea could not be ring-closed, presumably because of the lack of a hydrogen atom at the N'-position. The reaction of 1 with dimethyl sulfate and sodium hydroxide in ethanol afforded 3 directly (Table 2, Method (B)). The C-N bond in 3 could not be cleaved by a strong base at elevated temperatures, but hydrolytic products, 4-methyl-5-phenyl-2,3,5,6tetrahydro-1,1,3-trioxo-1,2,4-thiadiazines (5) resulted (Table 4, Method (C)). They were identified by

¹⁾ Presented in part at the 25th Annual Meeting of the Chemical Society of Japan, Tokyo, October, 1971.

²⁾ K. Hasegawa and S. Hirooka, This Bulletin, **45**, 525 (1972).

³⁾ K. Hasegawa and S. Hirooka, ibid., 45, 1567 (1972).

⁴⁾ A. Lawson and R. B. Tinkler, Chem. Rev., 70, 593 (1970).

Table 1. $R^1C_6H_4CH_B=CH_ASO_2N=C$ NHR² SCH_3

							~ C113						
Commed	R ¹	R²	Yield	Мр		Found	1 (%)		Calcd (%)				
Compd.	K-	K	(%)	(°C)	$(^{\circ}C)$ C H N S					Н	N	S	
2a	Н	CH_3	8 9	80— 81	49.04	5.33	10.30	23.49	48.89	5.22	10.37	23.68	
2b	H	$\mathrm{C_2H_5}$	8 9	107—108	50.66	5.78	9.63	21.04	50.70	5.67	9.86	22.51	
2c	H	n - $\mathrm{C_3H_7}$	84	99100	52.07	5.93	9.41	21.31	52.34	6.08	9.39	21.45	
2d	H	i - $\mathrm{C_3H_7}$	7 9	135—136	52.16	5.78	9.48	21.38	52.34	6.08	9.39	21.45	
2e	H	$n ext{-}\mathrm{C_4H_9}$	90	148—149	53.87	6.19	9.07	21.20	53.84	6.45	8.97	20.51	
2f	H	$i ext{-}\mathrm{C_4H_9}$	87	141142	53.61	5.86	9.07		53.84	6.45	8.97	20.51	
2 g	H	s - C_4H_9	95	112113	53.47	6.26	9.05	20.37	53.84	6.45	8.97	20.51	
2 h	H	$t\text{-}\mathrm{C_4H_9}$	83	139—140	54.02	6.44	9.28	19.92	53.84	6.45	8.97	20.51	
2i	H	$n\text{-}\mathrm{C_6H_{13}}$	67	40— 41	56.37	7.12	8.15		56.46	7.11	8.23		
2 j	Н	$\langle \overline{H} \rangle$	87	152—153	56.36	6.48	8.33	18.65	56.79	6.45	8.28	18.91	
2k	p -Cl	CH_3	84	168—169	43.30	4.25	9.35	21.35	43.34	4.30	9.19	21.04	
21	p-Cl	C_2H_5	91	130—131	45.13	4.67	8.60	20.02	45.21	4.74	8.79	20.11	
2m	p-Br	$\mathrm{CH_3}$	80 ·	167—168	38.05	3.84	7.95	18.06	37.82	3.75	8.02	18.36	
2n	p-Br	C_2H_5	81	138—140	39.86	4.44	7.66	17.28	39.67	4.16	7.71	17.65	
20	p -CH $_3$	$\mathrm{CH_3}$	90	152—153	51.00	5.64	10.12	22.50	50.70	5.67	9.86	22.51	
2 p	$p\text{-CH}_3$	$\mathrm{C_2H}_5$	89	103—104	52.07	6.14	9.43	21.39	52.34	6.08	9.39	21.45	

Table 2.
$$\begin{array}{c} SCH_3 \\ R^2N \stackrel{\wedge}{\nearrow} N \\ H_B \stackrel{\circ}{\longrightarrow} SO_2 \end{array}$$

Compd.	R¹	R²	Moles of base ^{a)}	Yield Met	(%) hod	М р (°С)		d (%)		Calcd (%)				
			mol of 2	(A)	(B)		$\widehat{\mathbf{C}}$	Н	N	s	$\widehat{\mathbf{C}}$	Н	N	S
3a	Н	CH_3	1/6	82	69	140—141	48.53	5.58	10.28	23.50	48.89	5.22	10.37	23.68
3ь	H	C_2H_5	1/2	82	76	196—197	50.33	5.75	9.79	22.11	50.68	5.67	9 .8 5	22.55
3c	H	n - C_3H_7	1.0	83		144—145	52.24	5.98	9.38	21.14	52.34	6.08	9.39	21.45
3 d	H	$n\text{-}\mathrm{C_4H_9}$	2.0	89		93— 95	53.62	6.63	9.20	20.27	53.84	6.45	8.97	20.51
3e	H	i - C_4H_9	2.0	81		141—142	53.48	6.36	9.00	20.16	53.84	6.45	8.97	20.51
3f	H	$n\text{-}\mathrm{C_6H_{13}}$	2.0	71		85— 86	57.14	7.31	8.34		56.46	7.11	8.23	
3g	p -Cl	CH_3	1/3	90		210-211	43.29	4.14	9.24	20.75	43.34	4.30	9.19	21.04
3 h	$p\text{-CH}_3$	$\mathrm{CH_3}$	1/3	78		171—172	50.56	5.75	9.79	22.11	50.68	5.67	9.85	22.55

a) 1 N NaOH solution was used.

Fig. 1. NMR spectrum of 3a in CDCl₃.

means of the IR (1650 cm⁻¹ for C=O, 2960 cm⁻¹ for NH), NMR (δ 3.30 for NH) and mass spectra, and also by means of the results of elemental analyses. The methylthio group in 3 was replaced by a chlorine atom to give 3-chloro-derivatives (4) (Table 3). The base-catalyzed hydrolysis of 4 gave 5 (Table 4, Method (D)), and 5 was readily methylated to afford 2,4-dimethyl-5-phenyl-2,3,5,6-tetrahydro-1,1,3trioxo-1,2,4-thiadiazine (6) (Table 4, Method (E)). The reaction of 4 with various amines or with sodium methoxide yielded 3-alkylamino- or -hydrazino- (7), or 3-methoxy-derivatives (9) (Table 3). When the R⁴ in **7** is a hydrogen atom, the tautomerism between **7** and **8** can be expected. The possibility that the solid product is an alternative isomer, 8, was discounted by its insolubility in alkali, thereby demonstrating the absence of the SO₂NH group. The IR

Compd.	\mathbb{R}^1	\mathbb{R}^2	X	Yield	Mp		d (%)		Calcd (%)				
		K-	Λ	(%)	$(^{\circ}\hat{\mathbf{C}})$	C H N S	$\widetilde{\mathbf{s}}$	$\widehat{\mathbf{C}}$	Н	N	$\widehat{\mathbf{s}}$		
4a	Н	CH_3	Cl	92	156—157	46.65	4.22	11.06	12.35	46.80	4.25	10.83	12.39
4b	H	C_2H_5	Cl	86	155—156	48.37	4.79	10.46	11.73	48.44	4.80	10.27	11.76
4c	<i>p</i> -Cl	CH_3	Cl	81	196—197	40.78	3.38	9.36	10.95	40.97	3.44	9.56	10.94
4d	$p\text{-CH}_3$	CH_3	\mathbf{Cl}	83	148—149	48.22	4.87	10.00	12.38	48.44	4.80	10.27	11.76
7a	H	CH_3	$NHCH_3$	81	202-203	51.90	5.91	16.40	12.62	52.17	5.97	16.59	12.64
7b	H	CH_3	$\mathrm{NHC_2H_5}$	95	168—169	53.86	6.45	15.79	12.01	53.92	6.41	15.72	11.97
7c	H	CH_3	$N(CH_3)_2$	99	228-229	53.72	6.40	15.66	12.16	53.92	6.41	15.72	11.97
7d	H	CH_3	$N(C_2H_5)_2$	87	170—171	56.93	7.18	14.09	10.98	56.93	7.17	14.23	10.84
7e	H	$\mathrm{CH_3}$	$NHNH_2$	61	212—213	46.98	5.54	21.77	12.26	47.24	5.55	22.04	12.59
7 f	Н	C_2H_5	$NH-\overline{H}$	98	160—161	57. 53	7.56	11.92	9.12	57.77	7.70	11.89	9.06
7g	<i>p</i> -Cl	CH_3	$NHCH_3$	98	280—282	45.66	4.83	14.33	11.28	45.91	4.90	14.60	11.14
7h	p-Cl	CH_3	$NHNH_2$	91	218-220	41.84	4.52	19.26	11.03	41.59	4.54	19.40	11.10
7i	$p\text{-CH}_3$	CH_3	NHCH_3	87	218-219	54.17	6.51	15.86	12.08	53.92	6.41	15.72	11.97
7j	$p\text{-CH}_3$	CH_3	$N(CH_3)_2$	90	196—197	55.78	6.71	15.19	11.63	55.50	6.81	14.94	11.38
9a	Н	CH_3	OCH_3	37	155—156	51.96	5.46	10.84	12.51	51.96	5.55	11.02	12.59

Table 4.
$$R^1C_6H_4 \setminus SO_2$$
 H_1
 H_2

Compd.	R1	\mathbb{R}^2	R³	Yield (%) Method (C) (D)		Mp (°C)		Four	nd (%)		Calcd (%)				
				(\mathbf{E})	(2)	(4)	\mathbf{C}	H	N	Ŝ	C	H	N	s	
5a	Н	CH_3	Н	82	96	227—229	49.96	5.00	11.78	13.37	50.00	5.04	11.66	13.32	
5 b	p-Cl	CH_3	H	72	78	236—238	43.55	3.95	10.28	11.65	43.72	4.04	10.20	11.67	
5 c	p-CH ₃	CH_3	H	77	81	247—249	51.79	5.61	10.81	12.67	51.95	5.55	11.02	12.60	
6a	H	CH_3	CH_3	52		123—124	51.68	5.50	11.06	12.63	51.95	5.55	11.02	12.60	
6 b	<i>p</i> -Cl	CH_3	CH_3	58		142—143	45.61	4.36	9.54		45.75	4.54	9.70		

spectra of 7a and 7b in KBr tablets displayed absorption peaks in the same region as the N=C group in 7c and 7d. However, NMR studies of 7a, 7g, and **7i** dissolved in DMSO- d_6 offered evidence for the presence of the 8 isomer in a tautomeric mixture in the solution. In the NHCH₃ group in 7a, methyl protons showed a doublet at δ 2.71 (J=4.0 Hz), and a NH proton, a broad quartet at δ 6.94 (J=4.0 Hz), with a peak area of 0.52H. In addition, there was a sharp singlet at δ 2.70, assignable to the =NCH₃ protons in 8 between a doublet methyl signal. However, a sulfonamide NH proton of 8 could not be observed because of overlapping with a signal of water contained in DMSO-d₆ at 3.34. After the treatment with D₂O, the NH proton signal (δ 6.94) was eliminated and only a sharp singlet due to the =NCH₃ protons appeared. The relative peak areas of the methyl and NH peaks assignable to the structures of 7 and 8 indicated that 7a consisted of about a 50:50 mixture of 7 and 8 in DMSO- d_6 .

Experimental

The melting points were determined on a Yanagimoto micro-melting-point measuring apparatus, MP-S2, and are uncorrected. The IR spectra were recored on a JASCO IRA-1 spectrometer. The NMR spectra were determined with a Varian HA-100 spectrometer, with TMS as the internal standard, and the mass spectra, with a JMS-OISG spectrometer.

N-(2-Phenylethene-1-sulfonyl)-N'-methyl S-Methylisothiourea (2a). To a stirred solution of N-(2-phenylethene-1-sulfonyl)-N'-methylthiourea (1.20 g, 0.0040 mol) in DMF (10 ml), we added a 1 n NaOH solution (9.6 ml, 0.0096 mol) and dimethyl sulfate (0.61 g, 0.0048 mol), drop by drop, at 0—10°C. After being stirred for 3 hr at room temperature, the reaction mixture was poured into ice water (100 ml) and kept overnight. The precipitated white solid was filtered to give 0.96 g (89%) of 2a. Recrystallization from benzene-petroleum ether gave colorless crystals. IR (KBr): 3330 (NH), 3040 (=CH), 1610 (C=C), 1560 (N=C),

1335, and 1115 (SO₂) cm⁻¹. NMR (CDCl₃): δ 2.44 (s, 1H, SCH₃), 2.99 (d, $J_{\rm NHCH_3}$ =5.0 Hz, 3H, NHCH₃), 6.93 (d, $J_{\rm AB}$ =15.5 Hz, 1H, H_A), 7.54 (d, $J_{\rm AB}$ =15.5 Hz, 1H, H_B), 7.45±0.02 (m, 5H, phenyl), 8.10 (broad, 1H, NH). Mass spectrum m/e: 270 (M⁺).

3-Methylthio-4-methyl-5-phenyl-1,1-dioxo-5,6-dihydro-1,2,4-thiadiazine (3a). Method (A): To a solution of 2a (0.54 g, 0.0020 mol) in ethanol (20 ml), we added a 1 N NaOH solution (0.34 ml, 0.00033 mol), after which the mixture was stirred for 6 hr at 25-30°C. An ethanol solution containing white precipitates was concentrated in vacuo, water (5 ml) was added, and the precipitates were collected to obtain 0.44 g (82%) of 3a. Recrystallization from ethanol gave colorless crystals. IR (KBr): 1530 (N=C), 1300, and 1140 (SO₂) cm⁻¹. NMR (CDCl₃): δ 2.47 (s, 3H, SCH₃), 2.86 (s, 3H, NCH₃), 3.36 (q, J_{AC} =13.5 Hz, J_{AB} =10.5 Hz, 1H, H_A), 3.53 (q, J_{AC} =13.5 Hz, J_{BC} =6.0 Hz, 1H, H_C), 5.03 (q, $J_{AB} = 10.5 \text{ Hz}$, $J_{BC} = 6.0 \text{ Hz}$, 1H, H_B), 7.34 ± 0.12 (m, 5H, phenyl). Mass spectrum (75 eV) m/e (rel intensity): 77 (17), 78 (13), 91 (10), 104 (100), 105 (10), 118.066 (12), 119 (6), 132 (6), 159 (6), 173 (3), 191 (4), 206 (5), 207 (10), 270.105 (calculated molecular weight, 270.106, 10).

Method (B): Into a solution of N-(2-phenylethene-1-sulfonyl)-N'-methylthiourea (10.25 g, 0.0400 mol) in a 1 N NaOH solution (80 ml, 0.0800 mol) and ethanol (80 ml), we stirred, drop by drop, dimethyl sulfate (6.40 g, 0.050 mol) at 0—10°C. Stirring was continued for a further 4 hr at room temperature. An ethanol solution containing white precipitates was concentrated in vacuo, and the precipitates were collected to afford 7.50 g (69%) of **3a**. The aqueous filtrate was acidified with concentrated hydrochloric acid to give 2.20 g of **5a**.

3-Chloro-4-methyl-5-phenyl-1,1-dioxo-5,6-dihydro-1,2,4-thiadiazine (4a). Into a solution of 3a (2.70 g, 0.0100 mol) in chloroform (20 ml) we bubbled excess chlorine at 30—40°C until the colorless solution turned orange. The evaporation of the chloroform left white precipitates, which were recrystallized from methanol to obtain 2.40 g (92%) of colorless crystals. IR (KBr): 1590 and 1575 (N=C), 1330 and 1150 (SO₂) cm⁻¹. NMR (CDCl₃): δ 3.04 (s, 3H, CH₃), 3.48 (q, J_{AC} =14.0 Hz, J_{AB} =9.5 Hz, 1H, H_A), 3.63 (q, J_{AC} =14.0 Hz, J_{BC} =7.0 Hz, 1H, H_C), 5.18 (q, J_{AB} =9.5 Hz, J_{BC} =7.0 Hz, 1H, H_B), 7.44 (s, 5H, phenyl). Mass spectrum m/e: 258.088 (calculated molecular weight, 258.082).

4-Methyl-5-phenyl-2,3,5,6-tetrahydro-1,1,3-trioxo-1,2,4-thiadiazine (5α). Method (C): To a solution of **3a** (0.54 g, 0.0020 mol) in acetone (10 ml), we added a 1 N NaOH solution (4.0 ml, 0.0040 mol), after which the reaction mixture was refluxed for 2 hr. The acetone was evaporated in vacuo, and the solution was acidified with concentrated hydrochloric acid to afford 0.44 g (82%) of **5a**. Recrystalization from ethanol gave colorless crystals. IR (KBr): 2960 (NH), 1650 (C=O), 1340, 1320, and 1140 (SO₂) cm⁻¹. NMR (DMSO-d₆): δ 2.59 (s, 3H, NCH₃), 3.30 (broad, 1H, NH), 3.73 (q, J_{AC} =13.7 Hz, J_{AB} =9.8 Hz, 1H, H_A), 3.94 (q, J_{AC} =13.7 Hz, J_{BC} =5.6 Hz, 1H, H_C), 4.89 (q, J_{AB} =9.8 Hz, J_{BC} =5.6 Hz, 1H, H_B), 7.38 (s, 5H, phenyl). Mass

spectrum m/e: 240.083 (calculated molecular weight, 240.085).

Method (D): To a solution of **4a** (0.52 g, 0.0020 mol) in acetone (20 ml), we added a 1 N NaOH solution (4.0 ml), 0.0040 mol), after which the reaction mixture was stirred for 1 hr at room temperature. The acetone was evaporated in vacuo, and water (10 ml) was added to the residue. The solution was then acidified with concentrated hydrochloric acid to afford 0.46 g (96%) of **5a**.

2,4-Dimethyl-5-phenyl-2,3,5,6-tetrahydro-1,1,3-trioxo-1,2,4-thiadiazine (6a). Into a solution of 5a (0.64 g, 0.0027 mol) in a 1 N NaOH solution (5.5 ml, 0.0054 mol) and ethanol (5.5 ml), we stirred, drop by drop, dimethyl sulfate (0.40 g, 0.0032 mol) over a 4-hr period at room temperature. The alkaline solution containing white precipitates was concentrated and collected to obtain 0.35 g (52%) of 6a. Recrystallization from aqueous methanol gave colorless crystals. IR (KBr): 1650 (C=O), 1350, 1340, and 1145 (SO₂) cm⁻¹. NMR (CDCl₃): δ 2.77 (s, 3H, C_6H_5 CHN(CH₃)-), 3.24 (s, 3H, -N(CH₃)SO₂-), 3.43 (q, J_{AC} =13.2 Hz, J_{AB} =12.0 Hz, 1H, H_A), 3.65 (q, J_{AC} =13.2 Hz, J_{BC} =6.0 Hz, 1H, J_{BC} +1, 4.81 (q, J_{AB} =12.0 Hz, J_{BC} =6.0 Hz, 1H, J_{BC} +1, 4.81 (q, J_{AB} =12.0 Hz, J_{BC} =6.0 Hz, 1H, J_{BC} +1, 4.81 (q, J_{AB} +12.0 Hz, J_{BC} +1.01 (m, 5H, phenyl). Mass spectrum m/e: 254.075 (calculated molecular weight, 254.073).

3-Methylamino-4-methyl-5-phenyl-1,1-dioxo-5,6-dihydro-1,2,4thiadiazine (7α) . To a stirred solution of 4a (1.03 g, 0.0040 mol) in chloroform (10 ml), we added a 30% aqueous methylamine solution (0.83 g, 0.0080 mol) at room temperature, and then the mixture was stirred for 1 hr. The chloroform was evaporated in vacuo, and water (10 ml) was added to the residue. The cooled precipitates were collected to obtain 0.82 g (81%) of 7a. Recrystallization from chloroform-petroleum ether gave colorless crystals. IR (KBr): 3350 (NH), 1560—1530 (N=C), 1340 and 1115 (SO₂) cm⁻¹. NMR (DMSO- d_6): δ 2.65 (s, 3H, NCH₃), 2.71 (d, $J_{\text{NHCH}} = 4.0 \text{ Hz}$, NHCH₃), 2.70 (s, =NCH₃), 3.20 (q, $J_{\text{AC}} = 13.5 \text{ Hz}$, $J_{\text{AB}} = 10.0 \text{ Hz}$, 1H, H_A), 3.45 (q, $J_{\text{AC}} = 10.0 \text{ Hz}$ 13.5 Hz, $J_{BC} = 6.0$ Hz, 1H, H_{C}), 4.89 (q, $J_{AB} = 10.0$ Hz, $J_{\text{BC}} = 6.0 \text{ Hz}, 1\text{H}, H_{\text{B}}), 6.94 \text{ (q, } J_{\text{NHCH}} = 4.0 \text{ Hz}, 0.52\text{H,NH}),$ 3.34 (SO₂NH), 7.34 (s, 5H, phenyl). Mass spectrum m/e: 253.116 (calculated molecular weight, 253.118).

3-Methoxy-4-methyl-5-phenyl-1,1-dioxo-5,6-dihydro-1,2,4-thiadiazine (9a). To a solution containing sodium metal (0.3 g) dissolved in methanol (4 ml), we added **4a** (0.78 ml)g, 0.0030 mol) in portions over a 30-min period at room The mixture was then allowed to stand for temperature. 2 hr, water (10 ml) was added, and the precipitates (0.27 g (37%) of **9a**) were collected. The filtrate was acidified with concentrated hydrochloric acid to afford 0.28 g of a hydrolytic product of 4a. Recrystallization of 9a from methanol gave colorless crystals. IR (KBr): 1570 (N=C), 1300, and 1130 (SO₂) cm⁻¹. NMR (CDCl₃): δ 2.73 (s, 3H, NCH₃), 3.90 (s, 3H, OCH₃), 3.25 (q, J_{AC} =15.0 Hz, J_{AB} =10.4 Hz, 1H, H_A), 3.54 (q, J_{AC} =15.0 Hz, J_{BC} =6.0 Hz, 1H, H_C), 4.97 (q, $J_{AB} = 10.4$ Hz, $J_{BC} = 6.0$ Hz, 1H, H_B), 7.38 ± 0.05 (m, 5H, phenyl). Mass spectrum m/e: 254 (\mathbf{M}^+) .