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Abstract: Conjugate addition to 1,4-dicarbonylbut-
2-enes will generate an a-stereogenic center with
respect to one of the carbonyl groups, which infor-
mally, can be considered as an inversion of normal
reactivity patterns or umpolung protocol. In this
paper, the addition of tert-butyl mercaptan to 1,4-di-
carbonylbut-2-enes including (E)-4-oxo-4-arylbut-ACHTUNGTRENNUNGenamides and (E)-4-oxo-4-arylbutenones has been
developed, to synthesize a series of chiral sulfur-
substituted a-stereogenic amides and ketones in
high regioselectivity and enantioselectivity (up to
98% ee).

Keywords: asymmetric catalysis; 1,4-dicarbonylbut-
2-enes; organocatalysis; a-stereogenic amides and
ketones; sulfa-Michael addition

Molecules with sulfur-containing frameworks are
common key building blocks in pharmaceutical and
natural products.[1] Many chiral sulfur-containing com-
pounds have become useful ligands,[2] organocata-
lysts,[3] and chiral reagents or auxiliaries.[4] The asym-
metric Michael addition of thiols to activated alkenes
enables an efficient construction of valuable optically
active sulfur-containing compounds.[5] Both asymmet-
ric organometallic and organocatalytic approaches for
sulfa-Michael additions have been extensively studied
by several research groups.[6] However, most of them

resulted in the formation of sulfides bearing a stereo-
genic center b to an electron-withdrawing group since
the b-carbon often behaves as an electrophile center.

Enantioselective protonation of an enolate, gener-
ated from the conjugate addition of thiols to activated
terminal alkenes, has been demonstrated to be highly
desirable to construct a-stereogenic sulfides,[6n,p,r] how-
ever, the sulfur atom is not embedded to the stereo-
genic center. Recently, Xiao et al have developed an
asymmetric sulfa-Michael addition of aromatic thiols
to b,b-disubstituted nitroalkenes to access chiral b2,2-
amino acids, which produced the sulfur-substituted a-
stereogenic esters.[6m] By introducing an electron-with-
drawing nitro group at the b-position of acrylate, the
reactivity of its a-carbon is inversed from a nucleo-
phile to an electrophile. Therefore, this could infor-
mally be considered as an inversion of normal reactiv-
ity patterns or umpolung reactivity.[7]

Since both amides and ketones with a-stereogenic
centers are useful building blocks for the synthesis of
biologically active compounds,[8] the asymmetric syn-
thesis of them has been attractive to chemists.[9] We
have developed a highly enantio- and regioselective
protocol to construct carbon-substituted a-stereogenic
amides and ketones[9a] during our investigations of
chiral bicyclic guanidine-catalyzed reactions.[6n,p,9a,10]

The acceptors were designated as 1,4-dicarbonylbut-2-
enes including (E)-4-oxo-4-arylbutenamides and (E)-
4-oxo-4-arylbutenones; using a similar umpolung con-
cept to generate a-stereogenic amides and ketones. It
is noteworthy that sulfur-substituted a-stereogenic ke-
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tones as side products were detected in high regiose-
lectivities but poor enantioselectivities [Eq. (1)].
Thus, we are keen to develop a highly enantio- and
regioselective synthesis of sulfur-substituted a-stereo-
genic amides and ketones via the sulfa-Michael addi-
tion between thiols and 1,4-dicarbonylbut-2-enes [Eq.
(2)].

In our exploratory studies, tert-butyl mercaptan
(TBM) 1a was subjected to Michael conjugation with
(E)-4-oxo-4-arylbutenamide 2a catalyzed using
10 mol% guanidine I (Figure 1) in toluene at 0 8C
(Table 1, entry 1). We found that the reaction pro-
ceeded efficiently to afford the adduct 3aa in excel-
lent yield but moderate enantioselectivity (56% ee).
Further investigation did not improve the enantiose-
lectivity. Therefore, we tested other bifunctional cata-
lysts II–VI (Figure 1) derived from Cinchona alka-
loids (Table 1, entries 2–6).[11] The highest enantiose-
lectivity (78% ee) of 3aa was achieved in the presence
of 10 mol% IV as catalyst (Table 1, entry 4). Unsatis-

factory results were obtained under the same condi-
tions when other thiols 1b–d were used as donors and
(E)-4-oxo-4-arylbutenamides with different amide
moieties 2b–e were employed as acceptors (Table 1,
entries 7–13). In combination with IV as the opti-
mized organocatalyst, 1a and 2a were chosen as
model substrates for further optimization. Lowering
the temperature to �20 8C effected an improvement
of the enantioselectivity (Table 1, entry 14). A screen
of different solvents revealed that dichloromethane
was the best reaction medium (Table 1, entries 15–
17). Finally, 3aa could be obtained in high yield and
in 92% ee in dichloromethane at �50 8C (Table 1, en-
tries 18 and 19). The reaction rate was increased
about twice without compromising the enantio- and
regioselectivity by increasing the amount of 1a from
3.0 to 5.0 equivalents. With the optimized reaction
conditions, 1c and 1d as donors were tested with ac-
ceptor 2a. However, the enantioselectivities were not
improved (Table 1, entries 20 and 21). The reaction

Figure 1. Structures of various bifunctional organocatalysts I–VI.
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between the aromatic thiol 1e and 2a was fast but
gave only moderate enantioselectivity (Table 1,
entry 22).

Various (E)-4-oxo-4-arylbutenamides 2e–p contain-
ing 2-oxazolidinone as amide moiety were examined,
and the results are summarized in Table 2. Excellent
ee values (up to 97% ee) were obtained under the es-
tablished reaction conditions. The results revealed
that the enantioselectivity of the reaction was not sen-
sitive to the electronic effects of substituted groups on
the aromatic rings. Reaction rates were determinately
affected by tuning the electronic effects of the sub-

strates. Thus, substrates 2i, 2j–l, 2n and 2o and the
electron-rich heteroaromatic 2p required 10 equiva-
lents of 1a for completion in reasonable reaction
times (Table 2, entries 5–8 and 10–12). The reigo-
chemistry of the adducts was confirmed by NOE anal-
ysis of 3ao.[12] (E)-4-Oxo-4-methylbutenamide 2q, con-
taining an aliphatic ketone moiety, was tested in the
reaction with 1a (Table 2, entry 13). We found that
the reaction was very slow even at higher temperature
(�20 8C) with moderate enantioselectivity.

Other than (E)-4-oxo-4-arylbutenamides, (E)-4-
oxo-4-arylbutenones 4 were also used as acceptors in

Table 1. Asymmetric addition of thiols 1a–d to (E)-4-oxo-4-arylbutenamides 2a–d catalyzed by different bifunctional organo-
catalysts I–VI.[a]

Entry 1 2 Catalyst Solvent T [oC] t [h] 3 Yield [%][b] ee [%][c]

1 1a [tert-butyl] 2a I toluene 0 0.5 3aa 99 56[d]

2 1a [tert-butyl] 2a II toluene 0 48 3aa 78 -33
3 1a [tert-butyl] 2a III toluene 0 48 3aa 64 72
4 1a [tert-butyl] 2a IV toluene 0 48 3aa 63 78
5 1a [tert-butyl] 2a V toluene 0 48 3aa 80 -32
6 1a [tert-butyl] 2a VI toluene 0 48 3aa Trace -15
7 1b [n-propyl] 2a IV toluene 0 9 3ba 90 60
8 1c [isopropyl] 2a IV toluene 0 9 3ca 79 18
9 1d [Bn] 2a IV toluene 0 22 3da 70 44
10 1a [tert-butyl] 2b IV toluene 0 24 3ab 48 48
11 1a [tert-butyl] 2c IV toluene 0 24 3ac 54 64
12 1a [tert-butyl] 2d IV toluene 0 24 3ad 48 77
13 1a [tert-butyl] 2e IV toluene 0 96 3ae 56 16
14[e] 1a [tert-butyl] 2a IV toluene �20 72 3aa 78 84
15[e] 1a [tert-butyl] 2a IV CH2Cl2 �20 24 3aa 89 88
16[e] 1a [tert-butyl] 2a IV CHCl3 �20 48 3aa 58 86
17[e] 1a [tert-butyl] 2a IV DCE �20 64 3aa 80 88
18[e] 1a [tert-butyl] 2a IV CH2Cl2 �50 96 3aa 57 92
19[f] 1a [tert-butyl] 2a IV CH2Cl2 �50 48 3aa 90 92 g]

20[f] 1c [isopropyl] 2a IV CH2Cl2 �50 36 3ca 95 24
21[f] 1d [Bn] 2a IV CH2Cl2 �50 24 3da 90 45
22[f] 1e [Ph] 2a IV CH2Cl2 �50 12 3ea 87 55

[a] Unless otherwise noted, reactions were performed with 0.03 mmol of 1a–d, 0.02 mmol of 2a–d, and 0.002 mmol of catalyst
in 0.2 mL solvent.

[b] Isolated yield.
[c] Chiral HPLC.
[d] At �50 8C, reaction was finished in 2 h but the ee was the same.
[e] 0.06 mmol of 1a, 0.02 mmol of 2a, and 0.002 mmol of IV in 0.2 mL solvent.
[f] 0.25 mmol of 1a, 0.05 mmol of 2a, and 0.005 mmol of IV in 0.5 mL solvent.
[g] 0.5 mmol scale, t=43 h, yield =99% (166.7 mg), ee =92%.
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the asymmetric sulfa-Michael additions. The reaction
between 1a and 4a with a 5:1 ratio was catalyzed by
10 mol% IV in dichloromethane at �50 8C (Table 3,
entry 1). After 96 h, the adduct 5aa was obtained with
98% yield and 80% ee. The reaction rate can be im-
proved by increasing the amount of 1a (Table 3, en-
tries 2 and 3). It is well known that highly concentrat-
ed reaction conditions can enhance the reaction rate
in organic synthesis. Thus, 1a which has a high melting
point (�1.1 8C) was tested as co-solvent with DCM to
improve the reaction rate (Table 3, entries 4–7). We
found that the reaction rate was accelerated at higher
concentrations without compromising the enantiose-
lectivity when the ratio of 1a :DCM was increased
from 1:3 to 1:1. The best ratio was found to be 2:1,
and 86% ee of 5aa in excellent yield was achieved
after 9 h at �60 8C (Table 3, entry 7). Under the high
concentration conditions, less than 5% of the regioiso-
mer of 5aa was detected from crude 1H NMR. How-
ever, the surplus of 1a and the regioisomer of 5aa
could be easily removed by flash column chromatog-
raphy.

Using the optimized conditions, (E)-4-oxo-4-aryl-ACHTUNGTRENNUNGbutenones 4b–j (Table 4) were subjected to sulfa-Mi-
chael addition with TBM 1a. Most of reactions were
completed within 20 h. The adducts 5ab–aj were ob-
tained in high yields and good to excellent ees. The
regioisomers for some reactions were detected in

Table 2. Asymmetric addition of TBM 1a to (E)-4-oxo-4-arylbutenamides 2e–q catalyzed by IV.[a]

Entry 2 [R] t [h] 3 Yield [%][b] ee [%][c]

1 2e [p-CF3-C6H4] 60 3ae 80 94
2 2f [p-F-C6H4] 56 3af 84 92
3 2g [p-Cl-C6H4] 42 3ag 97 94
4 2h [p-Br-C6H4] 29 3ah 90 97
5[d] 2i [p-Ph-C6H4] 60 3ai 84 95
6[d] 2j [m-CN-C6H4] 60 3aj 80 90
7[d] 2k [m-Br-C6H4] 60 3ak 92 94
8[d] 2l [m-MeO-C6H4] 48 3al 80 92[e]

9 2m [o-NO2-C6H4] 29 3am 75 86
10[d] 2n [o-F-C6H4] 60 3an 85 91[e]

11[d] 2o [2-naphthyl] 50 3ao 91 98
12[d] 2p [2-thienyl] 90 3ap 81 92
13[e] 2q [Me] 72 3aq 45 62

[a] Unless otherwise noted, reactions were performed with 0.25 mmol of 1a, 0.05 mmol of 2, and 0.005 mmol of catalyst in
0.5 mL solvent.

[b] Isolated yield.
[c] Chiral HPLC.
[d] Reactions were performed with 0.50 mmol of 1a, 0.05 mmol of 2, and 0.005 mmol of catalyst in 0.5 mL solvent.
[e] The reaction was conducted at �20 8C.

Table 3. Investigation of conditions for the asymmetric addi-
tion of TBM 1a to (E)-4-oxo-4-arylbutenones 4a catalyzed
by IV.[a]

Entry 1a :4a 1a :DCM T [oC] t [h] Yield [%][b] ee [%][c]

1 5:1 – �50 96 98 80
2 10:1 – �50 42 56 80
3 20:1 – �50 42 90 81
4[d] – 1:3 �50 29 80 80
5[d] – 1:1 �50 9 99 82
6[d] – 1:1 �60 17 99 86
7[e] – 2:1 �60 9 93 86[f]

[a] Unless otherwise noted, reactions were performed with
0.02 mmol scale in 0.2 mL dichloromethane.

[b] Isolated yield.
[c] Chiral HPLC.
[d] Reactions were performed with 0.02 mmol scale in

0.2 mL mixed solvent of BSM 1a and dichloromethane
with different ratios.

[e] Reactions were performed with 0.05 mmol scale in
0.5 mL solvent (1a :DCM= 2:1).

[f] 0.5 mmol scale, t= 12 h, yield= 80% (106.4 mg), ee=
86%.

Adv. Synth. Catal. 2011, 353, 2624 – 2630 � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim asc.wiley-vch.de 2627

Synthesis of Sulfur-Substituted a-Stereogenic Amides and Ketones

http://asc.wiley-vch.de


small amount (less than 10%). The absolute configu-
rations of the sulfa-Michael addition products were
assigned as S based on an X-ray crystallographic anal-
ysis of single crystal 5ad.[13] Furthermore, we demon-
strated that the a-stereogenic ester 6 could be
smoothly achieved from the corresponding a-stereo-
genic amide 3ag without compromising the ee value
[Eq. (3)].[7j]

In summary, we have developed a highly enantiose-
lective and regioselective organocatalytic sulfa-Mi-
chael addition of tert-butyl mercaptan to (E)-4-oxo-4-
arylbutenamides and (E)-4-oxo-4-arylbutenones,
which provides a new avenue to the construction of
the chiral sulfur-containing centers a to the amide
and ketone groups. To the best of our knowledge, this
is the first example of the organocatalyzed enantiose-
lective synthesis of sulfur-substituted a-stereogenic
amides and ketones. Further studies on the synthesis
of other useful chiral a-stereogenic amides and ke-
tones using different donors are undergoing in our
laboratories.

Experimental Section

General Procedure for the Addition of tert-Butyl
Mercaptan 1a to (E)-4-Oxo-4-arylbutenamides 2a and
2e–p Catalyzed by IV

(E)-4-Oxo-4-arylbutenamides 2a, 2e–p (0.05 mmol, 1 equiv.)
and IV (2.8 mg, 0.005 mmol, 0.1 equiv.) were dissolved in di-
chloromethane (500 mL) in 4-mL sample vials and stirred at
the required temperature (�50 to �20 8C) for 30 min. Then
tert-butyl mercaptan 1a (0.25 mmol/28 mL or 0.50 mmol/
56 mL) was added. The reacting mixtures were stirred and
maintained at the desired temperature and the reaction
progress was monitored by TLC. Upon complete consump-
tion of the (E)-4-oxo-4-arylbutenamides 2a and 2e–p, the re-
action mixtures were loaded onto a short silica gel column,
followed by separation with flash chromatography using gra-
dient elution with PE (petroleum ether)/EA mixtures (10:1
to 2:1). After the removal of solvent under vacuum, prod-
ucts 3aa and 3ae–ap were obtained.

General Procedure for the Addition of tert-Butyl
Mercaptan 1a to (E)-4-Oxo-4-arylbutenones 4a–j
Catalyzed by IV

Catalyst IV (2.8 mg, 0.005 mmol, 0.1 equiv.) and tert-butyl
mercaptan 1a (333 mL) were dissolved in dichloromethane
(167 mL) in 4-mL sample vials. After stirring at �60 8C for
30 min, (E)-4-oxo-4-arylbutenones 4a–j (0.05 mmol,
1 equiv.) was added. The reaction mixtures were stirred at
�60 8C and monitored by TLC. Upon complete consump-
tion of the (E)-4-oxo-4-arylbutenones 4a–j, the reaction
mixtures were loaded onto a short silica gel column, fol-
lowed by flash chromatography using gradient elution with
PE (petroleum ether)/EA mixtures (20:1 to 10:1). Remov-
ing the solvent under vacuum, afforded products 5aa and
5ae–aj.

Supporting Information

Experimental procedures, characterization and spectroscopic
data (PDF) are available in the Supporting Information.
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Table 4. Asymmetric addition of TBM 1a to (E)-4-oxo-4-ar-
ylbutenones 4b–j catalyzed by IV.[a]

Entry 4 [Ar] n t
[h]

5 Yield
[%][b]

ee
[%][c]

1 4b [p-CF3-C6H4] 0 15 5ab 78 87
2 4c [p-F-C6H4] 0 6 5ac 87 90
3 4d [p-Cl-C6H4] 0 6 5ad 91 86
4 4e [p-Br-C6H4] 0 6 5ae 80 86
5 4f [p-MeO-C6H4] 0 33 5af 86 90
6 4g [m-NO2-C6H4] 0 20 5ag 87 90
7 4h [m-MeO-

C6H4]
0 6 5ah 90 90

8 4i [2-thienyl] 0 30 5ai 91 88
9 4j [m-MeO-

C6H4]
2 15 5aj 75 87

[a] Unless otherwise noted, reactions were performed with
0.05 mmol scale in 0.5 mL solvent (1a :DCM= 2:1).

[b] Isolated yield.
[c] Chiral HPLC.
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