γ -Pyrone Compounds. II: Synthesis and Antiplatelet Effects of Tetraoxygenated Xanthones

CHUN-NAN LIN**, SHORONG-SHII LIOU*, FENG-NIEN KO[‡], AND CHE-MING TENG[‡]

Received August 6, 1990, from the *Natural Products Research Center, Kaohsiung Medical College, Kaohsiung, Taiwan 807, and the *Pharmacological Institute, College of Medicine, National Taiwan University, Taipel, Taiwan 10018, Republic of China. Accepted for publication March 19, 1992.

Abstract □ Norathyriol and its analogues, 1,3,5,6-, 3,4,5,6-, 3,4,6,7- and 2,3,6,7-tetrahydroxyxanthone, were synthesized from benzophenone precursors by Friedel–Crafts acylation and subsequent base-catalyzed cyclization to eliminate methanol. Both 3,4,6,7- and 2,3,6,7-tetrahydroxyxanthone tetraacetate showed potent anti-platelet aggregation effects on arachidonic acid-induced platelet aggregation 3,4,6,7- Tetrahydroxyxanthone tetraacetate and 1,3,5,6-tetrahydroxyxanthone showed potent and significant anti-platelet aggregation effects on collagen-induced platelet aggregation.

Natural xanthone derivatives inhibit the aggregation and adenosine triphosphate-induced release of rabbit platelets induced by adenosine diphosphate (ADP), arachidonic acid, platelet-activating factor (PAF), collagen, ionophore A23187 (a naturally occurring antibiotic that acts as chelating agent with a high affinity for calcium ion¹), and thrombin. The antiplatelet action is due to both inhibition of thromboxane formation and phosphoinositide breakdown.² In a study of structure-activity relationships, we found that xanthone skeletons with 1,3,7-trioxygenated and 1,3,6,7-tetraoxygenated xanthones were effective and that norathyriol (7) acetate and tripteroside (1) acetate were the most potent inhibitors of platelet aggregation.² As part of ongoing work on the development of drugs with anti-platelet aggregation activity, we synthesized norathyriol (7) and its analogues and evaluated their antiplatelet actions.

Results and Discussion

Two known xanthones [norathyriol (1,3,6,7-tetrahydroxyxanthone; 7) and 1,3,5,6-tetrahydroxyxanthone (12)] and three new xanthones [3,4,5,6- (16), 2,3,6,7- (20), and 3,4,6,7tetrahydroxyxanthone (23)] were synthesized (Scheme I) by Friedel--Crafts acylation of the appropriate trimethoxybenzene³ with another appropriate trimethoxybenzoyl chloride generated in situ. These acylations afforded a mixture of two isomeric benzophenones in high yield. Because the two benzophenones both lead to the same xanthone on cyclization, refluxing with tetramethylammonium hydroxide in pyridine afforded the appropriate tetramethoxyxanthones in good yield.^{3,4} Demethylation of the appropriate tetramethoxyxanthone with HI gave the tetrahydroxyxanthone. The physical,

23 acetate: R=OAc

0022-3549/92/1100-1109\$02.50/0 © 1992, American Pharmaceutical Association

Scheme I

Journal of Pharmaceutical Sciences / 1109 Vol. 81, No. 11, November 1992 spectral, and analytical data for the three new benzophenones, the xanthones, and their derivatives are given in *Experimental Section*.

The anti-platelet aggregation effects of desmethylbellidifolin (1,3,5,8-tetrahydroxyxanthone), isolated from Swertia randaiensis,⁵ 12, 16, 20, 23, and their acetylated derivatives (see structures) were studied on the aggregation of washed rabbit platelets induced by ADP (20 μ M), arachidonic acid (100 μ M), PAF (2 ng/mL), and collagen (10 μ g/mL). As shown in Table I, desmethylbellidifolin tetraacetate (DMBA; 50 $\mu g/mL$), 16 (100 $\mu g/mL$), and 20 (100 $\mu g/mL$) did not show significant anti-platelet aggregation effects on ADP-, arachidonic acid-, collagen-, or PAF-induced aggregation, although 16 (100 μ g/mL) slightly but significantly enhanced platelet aggregation induced by PAF. Compound 12 (100 μ g/mL) significantly inhibited collagen-induced platelet aggregation, but its acetate (12 acetate) had less anti-platelet aggregation effect. Although 20 and 23 did not inhibit platelet aggregation induced by arachidonic acid at concentrations as high as 100 μ g/mL, the esterification of 20 and 23 very markedly enhanced the anti-platelet aggregation effects. The acetate derivatives of 22 and 23 completely inhibited arachidonic acid-induced platelet aggregation at 25 µg/mL. More experiments were then performed to study the effects of these xanthones and their derivatives on arachidonic acid- or collagen-induced platelet aggregation at various concentrations. Compared with norathyriol (7) acetate,² 23 acetate and 20 acetate had less potent anti-platelet aggregation effects when arachidonic acid (100 μ M) was used as the aggregation agent (Figure 1). In collagen-induced platelet aggregation, 23 acetate was more potent, whereas 12 or 12 acetate was less potent than 7 or 7 acetate (Figure 2). On the basis of these results we suggest that these xanthones and their derivatives may have different mechanisms of inhibiting platelet aggregation and selectivities. Further experiments are required to elucidate the differences in the mechanism of action.

Experimental Section

All melting points were uncorrected. IR spectra were recorded on a Hitachi model 260-30 IR spectrophotometer. UV absorption spectra were measured on a Beckmann model 34 spectrophotometer. ¹H and ¹³C NMR spectra [δ (ppm), J (Hz)] were run on a Bruker 100-MHz FT-NMR spectrometer. Mass spectra were determined on a Jeol JMS-D-100 mass spectrometer. Elemental analyses were within ±0.4% of the theoretical values, unless otherwise noted.

Procedure I: 4,6-Dimethoxy-2-hydroxy-2',4',5'-trimethoxybenzophenone (5a) and 2,4,6-Trimethoxy-2'-hydroxy-4',5'-dimethoxybenzophenone (5b)—2,4,5-Trimethoxybenzoic acid (2; 1.0 g, 4.71 mmol) in dry C_6H_6 (30 mL) was treated with 2.0 mL of oxalyl chloride under an argon atmosphere and thoroughly stirred at room temperature.⁴ After 2 h, the solvent and the excess reagent were removed

Figure 1—Effect of xanthone derivatives on platelet aggregation induced by arachidonic acid. Washed rabbit platelets were incubated with various concentrations of **7** (\bigcirc), **20** (\diamondsuit), and **23** (\square) and their acetate derivatives **7a** (\bullet), **20a** (\blacksquare), **23a** (\blacklozenge), respectively, and then arachidonic acid (100 μ M) was added to trigger aggregation. Percent inhibitions are presented as means \pm standard errors (n = 4–6).

under reduced pressure. The residue (3) was dissolved in anhydrous Et_2 (40 mL), and 1,3,5-trimethoxybenzene (4; 0.7 g, 4.14 mmol) and AlCl₃ (2.0 g) were added.⁴ After being stirred for 8 h at room temperature, the mixture was hydrolyzed with ice water (250 mL) containing concentrated HCl (20 mL) and extracted with CHCl₃. Solvent removal gave a crude product that was purified by column chromatography (silica gel and CHCl₃) to yield, after crystallization from MeOH, yellow needles of 5 (1.2 g, 73%); mp, 152–154 °C; ¹H NMR (CDCl₃): δ 3.63, 3.70, 3.86, and 3.92 (4 singlets, 30 H, 10 OMe); 6.09 (d, J = 2.5 Hz, 2 H, H-3 and H-5 of 5a); 6.14 (d, J = 2.5 Hz, 2 H, H-3 in f 5a and 5b); 6.70 (s, 2 H, H-3' of 5a and 5b); and 12.50 (s, 2 H, 2 OH of 5a and 5b, exchangeable with D₂O).

Procedure II: 1,3,6,7-Tetramethoxyxanthone (6)—Compound 5 (1.2 g, 3.45 mmol) was treated with pyridine (20 mL), H_2O (10 mL), and aqueous 10% tetramethylammonium hydroxide (6.8 mL). The mixture was refluxed for 36 h,⁴ poured into ice, acidified with HCl, and extracted with Et_2O . The reaction yielded an oil, which after purification by column chromatography (silica gel and CHCl₃) and crystallization from CHCl₃ yielded a colorless powder, 6 (0.90 g, 2.85 mmol, 83%); mp, 196–198 °C; UV, IR, ¹H NMR, and mass spectra were identical to those of an authentic sample of 6.

Procedure III: 1,3,6,7-Tetrahydroxyxanthone (7)—A mixture of 6 (0.90 g, 2.85 mmol), phenol (18 mL), and HI (15 mL) was refluxed at 160 °C for 8 h, and the reaction mixture was poured into an aqueous NaHSO₃ solution. The resulting yellow precipitate was collected, purified by silica gel column chromatography (CHCl₃:MeOH, 4:1), and crystallized from MeOH to give yellow needles (0.70 g, 2.69 mmol,

Table I—Effects of Various Xanthone Derivatives on the Platelet Aggregation Induced by ADP, Arac	nidonic Acid, Collagen, and PA	٩F"
--	--------------------------------	-----

Aggregation Inducer	Aggregation (%) in the Presence of:								
	Me ₂ SO (Control)	DMBA	12	12 Acetate	16	20	20 Acetate	23	23 Acetate
ADP	84.5 ± 2.4 (11)	72.8 (2)	59.8 ± 5.1 (3) ^b	55.0 ± 8.8 (3) ^b	86.3 ± 4.8 (3)	77.6 ± 5.1 (3)	53.8 ± 8.3	54.5 ± 10.7	19.5 ± 14.2
AA	88.1 ± 1.7 (11)	63.7 (1)	79.8 ± 7.3	77.1 ± 11.7	83.6 ± 3.6	87.4 ± 1.8 (3)	0 ± 0 (7) ^b	87.8 ± 1.7	0 ± 0 (7)
Collagen	89.7 ± 1.5 (9)	87.9 (2)	23.6 ± 4.4 (5) ^b	77.1 ± 4.0 (5)°	92.1 ± 0.6	85.8 ± 3.0 (3)	79.0 ± 3.7	80.5 ± 4.0	14.1 ± 3.2
PAF	90.9 ± 0.9 (9)	71.4 (1)	92.6 ± 1.5 (3)	91.1 [`] ± 1.0 (3)	95.9 ± 1.0 (3) ^c	87.6 ± 1.3 (3)	86.3 ± 1.4 (3) ^d	84.7 ± 4.6 (3) ^d	82.6 ± 4.3 (3) ^b

^a Platelets were preincubated with DMBA (50 μ g/mL), **12** (100 μ g/mL), **12** acetate (100 μ g/mL), **16** (100 μ g/mL), **20** (100 μ g/mL), **20** acetate (25 μ g/mL), **23** (100 μ g/mL), **23** acetate (25 μ g/mL), or DMSO (0.5%, control) at 37 °C for 3 min; then, ADP (20 μ M), arachidonic acid (AA; 100 μ M), collagen (10 μ g/mL), or PAF (2 ng/mL) was added. Percentages of aggregation are presented as means ± standard errors of the mean (n). ^b Significantly different from control value at p < 0.001. ^c Significantly different from control value at p < 0.05.

Figure 2-Effect of xanthone derivatives on platelet aggregation induced by collagen. Washed rabbit platelets were incubated with various concentrations of 7 (O), 12 (∇), 20 (\triangle), and 23 (\Box) and their acetate derivatives 7a (●), 12a (▼), 20a (▲), and 23a (■), and (■) 23a, respectively, and then collagen (10 μ g/mL) was added to trigger aggregation. Percent inhibitions were are as means ± standard errors (n = 4-6).

94%); mp, >300 °C; UV, IR, ¹H NMR, and mass spectra were identical to those of an authentic sample of 7.

4,6-Dimethoxy-2-hydroxy-2',3',4'-trimethoxybenzophenone (10a) and 2,4,6-Trimethoxy-2'-hydroxy-3,4-dimethoxybenzophenone (10b)—Treatment of 2,3,4-trimethoxybenzoic acid (8; 1.0 g, 4.71 mmol) by procedure I and reaction of the residue with 4 (0.7 g, 4.14 mmol) gave yellow needles (recrystallized from MeOH; 1.30 g, 79%); mp, 126-128 °C; ¹H NMR (CDCl₃): δ 3.65, 3.82, and 3.85 (3 singlets, 30 H, 10 OMe); 6.18 (d, J = 2.5 Hz, 4 H, H-3 and H-5 of 10a and 10b); 6.38 (d, J = 8.5 Hz, 2 H, H-5' of 10a and 10b); 7.11 (d, J = 8.5 Hz, 2 H, H-6' of 10a and 10b); and 12.47 (s, 2 H, 2 OH of 10a and 10b, exchangeable with D_2O).

1,3,5,6-Tetramethoxyxanthone (11)-Treatment of compound 10 (1.30 g, 3.74 mmol) by procedure II yielded a colorless powder (recrystallized from CHCl₃; 1.0 g, 3.16 mmol, 84%); mp, 78-80 °C; UV: λ_{max} (MeOH) 244, 287, 306, and 330 (sh) nm; IR (KBr): 1630 and 1610 cm⁻¹; ¹H NMR (CDCl₃): δ 3.90 (s, 3 H, OMe), 3.96 (s, 6 H, 2 OMe), 4.00 (s, 3 H, OMe), 6.30 (d, J = 2.5 Hz, 1 H, H-2), 6.53 (d, J = 2.5 Hz, 1 H, H-4), 6.90 (d, J = 8.5 Hz, 1 H, H-7), and 7.97 (d, J = 8.5 Hz, 1 H, H-8).

1,3,5,6-Tetrahydroxyxanthone (12) and 12 Acetate-Treatment of compound 11 (1.0 g, 3.16 mmol) by procedure III yielded yellow needles (0.80 g, 3.10 mmol, 98%); mp, >300 °C; MS: m/z 260 (M⁺); UV: here the solution of the sol 6.28 (d, J = 2.5 Hz, 1 H, H-2), 6.54 (d, J = 2.5 Hz, 1 H, H-4), 6.99 (d, J)J = 8.5 Hz, 1 H, H-7), 7.96 (d, J = 8.5 Hz, 1 H, H-8), and 12.80 (s, 1 OH, C-1). A solution of 12 (0.10 g, 0.38 mmol) in 5 mL of anhydrous pyridine was treated with 5 mL of acetic anhydride in a water bath for 4 h. The reaction mixture was concentrated under reduced pressure to remove excess solvent, and water was added to destroy excess acetic anhydride. The residue was concentrated under reduced pressure to give crude 12 acetate. Purification by column chroma-tography and crystallization from MeOH gave a colorless powder (12 acetate; 0.15 g, 0.35 mmol, 92%); mp, 221-223 °C; IR (KBr): 1780, 1660, and 1620 cm⁻¹; ¹H NMR (CDCl₃): δ 2.27, 2.28, 2.37, and 2.41 (4 singlets, 12 H, 4 OAc); 6.79 (d, J = 2.5 Hz, 1 H, H-2); 7.15 (d, J = 2.5 8.5 Hz, 1 H, H-7); 7.21 (d, J = 2.5 Hz, 1 H, H-4); and 8.07 (d, J = 8.5Hz, 1 H, H-8).

3,4-Dimethoxy-2-hydroxy-2',3',4'-trimethoxybenzophenone (14a) and 2,3,4-Trimethoxy-2'-hydroxy-3',4'-dimethoxybenzophenone (14b)-Treatment of compound 8 (1.0 g, 4.71 mmol) by procedure I and reaction of the residue with 1,2,3-trimethoxybenzene (13; 0.7 g, 4.14 mmol) yielded a pale yellow oil (1.20 g, 73%); ¹H NMR (CDCl₃): \$ 3.77, 3.80, and 3.90 (4 singlets, 30 H, 10 OMe); 6.37 (d, J = 8.5 Hz, 2 H, H-5 of 14a and H-5' of 14b); 6.53 (d, J = 8.5 Hz, 2 H, H-5' of 14a and H-5 of 14b); 6.66 (d, J = 8.5 Hz, 2 H, H-6 of 14a and H-6' of 14b); 6.97 (d, J = 8.5 Hz, 2 H, H-6' of 14a and H-6 of 14b); and 12.50 (s, 2 H, 2 OH of 14a and 14b, exchangeable with D_2O .

Anal.-Calcd for C₁₈H₂₀O₇: C, H.

3,4,5,6-Tetramethoxyxanthone (15)-Treatment of compound 14 (1.20 g, 3.45 mmol) by procedure II yielded a colorless powder (recrystallized from CHCl₃; 0.7 g, 2.22 mmol, 64%), mp, 184-185 °C; IR (KBr): 1660 cm⁻¹; ¹H NMR (CDCl₃): δ 3.93 (s, 6 H, 2 OMe), 4.03 (s, 6 H, 2 OMe), 6.97 (d, J = 8.5 Hz, 2 H, H-2 and H-7), and 8.05 (d, J = 8.5 Hz, H-1 and H-8).

Anal.-Calcd for C₁₇H₁₆O₆: C, H.

3,4,5,6-Tetrahydroxyxanthone (16)-Treatment of compound 15 (0.7 g, 2.22 mmol) by procedure III yielded pale green needles (recrystallized from MeOH; 0.55 g, 2.12 mmol, 95%); mp, >300 °C; MS: m/z (%) 260 (46) (M⁺); UV: λ_{max} in MeOH (log ϵ) 250 (4.25), 283 (3.67), and 325 (3.87) nm; λ_{max} (MeOH + NaOAc) 250, 293, 337, and 285 (sh) nm; λ_{max} (MeOH + NaOAc + H₃BO₃) 255, 293, and 345 nm; B: (KBr): 2200 and 1625 arc⁻¹; ¹H NIME (Me SO d): 5.6 90 (d. L = 100) (d. L IR: (KBr): 3300 and 1625 cm⁻¹; ¹H NMR (Me₂SO-d₆): δ 6.99 (d, J = 9.0 Hz, 2 H, H-2 and H-7) and 7.50 (d, J = 9.0 Hz, 2 H, H-1 and H-8); ¹³C NMR (Me₂SO-d₆): δ116.5 (C-1 and C-8), 114.3 (C-2 and C-7), 150.5 (C-3 and C-6), 132.8 (C-4 and C-5), 145.5 (C-4a and C-4b), 113.3 (C-8a and C-8b), and 175.0 (C-9).

Anal.-Calcd for C₁₃H₈O₆: C, H.

3,4,5,6-Tetrahydroxyxanthone (16) Acetate-As described for 12, conversion of 16 (0.1 g, 0.38 mmol) to its tetraacetate yielded colorless needles (0.15 g, 0.35 mmol, 92%); mp, 235-238 °C; IR (KBr): 1790, 1750, and 1680 cm⁻¹; ¹H NMR (CDCl₃): δ 2.33 (s, 6 H, 2 OAc), 2.37 (s, 6 H, 2 OAc), 7.27 (d, J = 8.5 Hz, 2 H, H-2 and H-7), and 8.23 (d, J = 8.5 Hz, 2 H, H-1 and H-8).

Anal.-Calcd for C21H16O10: C, H.

4,5-Dimethoxy-2-hydroxy-2',4',5'-trimethoxybenzophenone (18a) and 2,4,5-Trimethoxy-2'-hydroxy-4',5'-dimethoxybenzophenone (18b)-Treatment of compound 2 (1.0 g, 4.71 mmol) by procedure I and reaction of the residue with 1,2,4-trimethoxybenzene (17; 0.7 g, 4.14 mmol) yielded an orange-red oil (1.2 g, 73%); ¹H NMR (CDCl₃): \$ 3.62, 3.68, 3.80, 3.87, and 3.91 (5 singlets, 30 H, 10 OMe); 6.47 (s, 2 H, H-3 of 18a and H-3' of 18b); 6.53 (s, 2 H, H-3 of 18b and H-3' of 18a); 6.73 (s, 2 H, H-6 of 18a and H-6' of 18b); 6.80 (s, 2 H, H-6 of 18b and H-6' of 18a); and 12.50 (s, 2 H, 2 OH of 18a and 18b, exchangeable with D_2O).

Anal.-Calcd for C₁₈H₂₀O₇: C, H.

2,3,6,7-Tetramethoxyxanthone (19)-Treatment of compound 18 (1.20 g, 3.45 mmol) by procedure II yielded a colorless powder (recrystallized from CHCl₃; 0.85 g, 2.69 mmol, 78%); mp, 227-229 °C; IR (KBr): 1620 cm⁻¹; ¹H NMR (CDCl₃): δ 4.01 (s, 12 H, 4 OMe), 6.87 (s, 2 H, H-4 and H-5), and 7.66 (s, 2 H, H-1 and H-8).

Anal.-Calcd for C17H16O6: C, H.

2,3,6,7-Tetrahydroxyxanthone (20)-Treatment of compound 19 (0.85 g, 2.69 mmol) by procedure III yielded a yellow powder (crecrystallized from CHCl₃-MeOH; 0.67 g, 2.57 mmol, 96%); mp, >300 °C; MS; m/z (%) 260 (48) (M⁺); UV: λ_{max} in MeOH (log ϵ) 242 (4.20), 274 (3.60), and 330 (4.00) nm; λ_{max} (MeOH + NaOAc) 235 and 363 nm; λ_{max} (MeOH + NaOAc + H₃BO₃) 250, 315 (sh), and 355 nm; IR (KBr): 1620 and 3250 cm⁻¹; ¹H NMR (Me₂SO-d₆): δ 6.84 (s, 2 H, H-4 and H-5) and 7.39 (s, 2 H, H-1 and H-8); ¹³C NMR (Me₂SO-d₆): δ 109.4 (C-1 and C-8), 143.8 (C-2 and C-7), 153.4 (C-3 and C-6), 103.3 (C-4 and C-5), 151.7 (C-4a and C-4b), 113.9 (C-8a and C-8b), and 175.0 (C-9).

Anal.-Calcd for C13H8O6: C, H.

2,3,6,7-Tetrahydroxyxanthone (20) Acetate-As described for 12, conversion of 20 (0.1 g, 0.38 mmol) to its tetraacetate yielded a colorless powder (recrystallized from MeOH; 0.14 g, 0.33 mmol, 87%); mp, 263–265 °C; IR (KBr): 1680 and 1780 cm⁻¹; ¹H NMR (CDCl₃): δ 2.35 (s, 12 H, 4 OAc), 7.45 (s, 2 H, H-4 and H-5), and 8.10 (s, 2 H, H-1 and H-8).

Anal.—Calcd for C₂₁H₁₆O₁₀: C, H. 3,4-Dimethoxy-2-hydroxy-2',4',5'-trimethoxybenzophenone (21a) and 2,3,4-Trimethoxy-2'-hydroxy-4',5'-dimethoxybenzophenone (21b)-Treatment of compound 2 (1.0 g, 4.71 mmol) by procedure I and reaction of the residue with 13 (0.7 g, 4.14 mmol) yielded a pale yellow powder (recrystallized from MeOH; 1.10 g, 67%); mp, 122-123 °C; ¹H NMR (CDCl₃): 83.70, 3.78, 3.81, 3.82, 3.85, 3.86, and 3.90 (7 singlets, 30 H, 10 OMe); 6.36 (d, J = 9.0 Hz, 2 H, H-5 of 21a and H-5' of 21b); 6.53 (s, 2 H, H-3 of 21a and H-3' of 21b); 6.80 (s, 2 H, H-6 of 21a and H-6' of 21b); 7.13 (d, J = 9.0 Hz, 2 H, H-6 of 21a and H-6' of 21b); and 12.47 (s, 2 H, 2 OH of 21a and 21b, exchangeable with D_2O).

Anal.-Calcd for C18H20O7: C, H.

3.4.6.7-Tetramethoxyxanthone (22)-Treatment of compound 21 (1.10 g, 3.16 mmol) by procedure II yielded a colorless powder, 22 (recrystallized from CHCl₃; 0.70 g, 2.22 mmol, 70%); mp, 210-212 °C; IR (KBr): 1645 cm⁻¹; ¹H NMR (CDCl₃): δ 4.01 (s, 6 H, 2 OMe), 4.02 (s, 6 H, 2 OMe), 7.02 (d, J = 9.0 Hz, 1 H, H-2), 7.03 (s, 1 H, H-5), 7.66(s, 1 H, H-8), and 8.09 (d, J = 9.0 Hz, 1 H, H-1).

Anal.-Calcd for C₁₇H₁₆O₆: C, H.

3,4,6,7-Tetrahydroxyxanthone (23)-Treatment of compound 22) (0.70 g, 2.22 mmol) by procedure III yielded a pale yellow powder, 23 (recrystallized from MeOH–CHCl₃; 0.55 g, 2.12 mmol, 95%); mp, >300 °C; MS: m/z (%) 260 (14) (M⁺); UV: λ_{max} in MeOH (log ϵ) 240 (sh) (4.06), 255 (4.21), 275 (sh) (3.81), 318 (3.80), and 358 (3.70) nm; λ_{max} (MeOH + NaOAc) 257 and 373 nm; λ_{max} (MeOH + NaOAc + H₃BO₃) 265, 280 (sh), 310, and 380 nm; IR (KBr): 1625 and 3400 cm⁻¹; ¹H NMR (Me_2SO-d_6) : $\delta 6.86 (d, J = 8.5 Hz, 1 H, H-2)$, 6.87 (s, 1 H, H-5), and 7.38 (s, 1 H, H-8), 7.48 (d, J = 8.5 Hz, 1 H, H-1); ¹³C NMR (Me_2SO-d_6) : δ 116.2 (C-1), 114.3 (C-2), 150.7 (C-3), 132.7 (C-4), 146.5 (C-4a), 151.2 (C-4b), 102.8 (C-5), 154.1 (C-6), 144.0 (C-7), 108.5 (C-8), 112.8 (C-8a and C-8b), and 174.8 (C-9).

Anal.-Calcd for C₁₃H₈O₆: C, H.

3,4,6,7-Tetrahydroxyxanthone (23) Acetate—As described for 12, conversion of 23 (0.1 g, 0.38 mmol) to its tetraacetate yielded colorless needles (recrystallized from MeOH; 0.14 g, 0.33 mmol, 87%); mp, 234-236 °C; IR (KBr): 1665, 1760, and 1780 cm⁻¹; ¹H NMR (CDCl₃): δ 2.35, 2.45 (2s, 12 H, 4 OAc), 7.25 (d, J = 8.5 Hz, 1 H, H-2), 7.46 (s, 1 H, H-5), 8.13 (s, 1 H, H-8), and 8.22 (d, J = 8.5 Hz, 1 H, H-1).

Anal.--Calcd for $C_{21}H_{16}O_{10}$: C, H. Platelet Aggregation--Washed rabbit platelets were obtained from EDTA-anticoagulated platelet-rich plasma according to washing procedures described previously.6 Platelet numbers were counted (Coulter Counter, model ZM) and adjusted to 4.5×10^8 platelets/mL. The platelet pellets were finally suspended in Tyrode's solution containing (mM) NaCl (136.8), KCl (2.8), NaHCO₃ (11.9), MgCl₂ (2.1), NaH₂PO₄ (0.33), CaCl₂ (1.0), and glucose (11.2) with bovine serum albumin (0.35%). Aggregation was measured by the turbidimetric method⁷; the absorbance of platelet suspension was designated as 0% aggregation, and the absorbance of platelet-free Tyrode's solution was designated as 100% aggregation. The aggregation was measured by a Lumi aggregometer (Chrono-Log Co.) connected to dual-channel recorders. The platelet suspension was stirred at 1200 rpm. To eliminate the effect of the solvent on aggregation, the final concentration of Me_2SO was fixed at 0.5%.

References and Notes

- 1. Hansch, C.; Sammes, P. G.; Taylor, J. B. Comprehensive Medicinal Chemistry; Pergamon: New York, 1990; pp 188-189.
- Teng, C. M.; Lin, C. N.; Ko, F. N.; Cheng, K. L. Biochem. Phar-macol. 1989, 38, 3791.
- 3. Gil, S.; Parra, M.; Sanz, V.; Tortajada, A. J. Nat. Prod. 1988, 51, 339.
- Quillinan, A. J.; Scheinmann, F. J. Chem. Soc., Perkin Trans. 1 4. 1973, 1329
- 5. Tomimori, T.; Komatsu, M. Yakugaku Zasshi 1965, 89, 1276.
- Teng, C. M.; Chen, W. Y.; Ko, W. C.; Ouyang, C. Biochim. Biophys. Acta 1987, 924, 375.
- 7. O'Brin, J. R. J. Clin. Pathol. (London) 1962, 15, 452.

Acknowledgments

We are grateful for financial support from the National Sciences Council of the Republic of China (NSC 78-0420-B037-01).