Reaction Process of Titanium Tetrachloride with Ammonia in the Vapor Phase and Properties of the Titanium Nitride Formed

Yuzo Saeki,* Ryoko Matsuzaki, Akimasa Yajima, and Masayo Akiyama Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 227 (Received March 13, 1982)

The reaction products of gaseous TiCl₄ with ammonia were TiCl₄·5NH₃ at 200 °C, TiCl₄·5NH₃, TiClN, and NH₄Cl at 250—400 °C, TiCl₄·5NH₃, TiClN, TiN_x, and NH₄Cl at 450—650 °C, TiN_x and NH₄Cl at 700—1000 °C, and TiN_x, NH₄Cl, and HCl at 1100—1400 °C. The N/Ti atomic ratio, x, of the TiN_x formed was 1.21 at 700 °C, 1.16 at 800 °C, 1.13 at 900 °C, and 1.10 above 1000 °C. The lattice constants of the TiN_x formed are shown. The reaction process can be represented as follows: The reaction of gaseous TiCl₄ with ammonia occurs first to form TiCl₄·5NH₃. Above ca. 220 °C, the TiCl₄·5NH₃ decomposes to TiClN. Above ca. 430 °C, the TiClN reacts with ammonia to form TiN_x. Above ca. 1100 °C, in addition to these reactions, the reaction of TiCl₂, formed by the reduction of TiCl₄ with hydrogen resulting from the thermal dissociation of ammonia, with ammonia occurs to form TiN_x. On heating the TiN_x, formed by the vapor-phase reaction, at temperatures higher than 500 °C in an argon atmosphere, the value of x decreased and became close to that of the stoichiometric nitride, being 1.02 at 900—1100 °C.

The vapor-phase reaction of transition metal chlorides with ammonia has recently become important for the preparation of fine powders of transition metal nitrides; these are acquiring importance as new industrial materials. Concerning the formation of titanium nitride from titanium tetrachloride (TiCl₄) by a vapor-phase reaction, Kato et al.¹⁾ have studied the preparation of fine titanium nitride powders by a vapor-phase reaction of the TiCl₄-NH₃-H₂-N₂ system at 700—1500 °C with emphasis on the effects of reaction conditions on the particle size and chemical composition. However, no information is at present available on the reaction process of TiCl₄ with ammonia in the vapor phase.

In this paper, the reaction products of gaseous $\mathrm{TiCl_4}$ with ammonia at 200—1400 °C were examined in detail. The possible reactions which were considered to occur on the basis of the above experiments were examined. The N/Ti atomic ratios, lattice constants, and thermal stability of the titanium nitrides formed at various temperatures were examined. The titanium nitrides formed were also examined by electron microscopy.

Experimental

Materials. The TiCl₄ was prepared by the reaction of titanium sponge (Ti 99.7%) with chlorine at 500 °C and purified by fractional distillation. The chemical analysis gave Ti, 25.2; Cl, 74.7% (calcd for TiCl₄: Ti, 25.24; Cl, 74.76%). The ammonia was dried by passing it over sodium hydroxide granules.

Experimental Procedures. A transparent quartz or alumina reaction tube (1000 mm length) was used for examining the reaction products of gaseous TiCl₄ with ammonia. Gaseous TiCl₄ was formed by heating liquid TiCl₄ (17 g) at 105 °C and was carried by a stream of argon (50 cm³/min) into the reaction zone (28 mm i.d., 250 mm length) held at specified temperature. The TiCl₄ inlet tube consisted of two concentric tubes. Gaseous TiCl₄ carried by arogn was introduced through the inner tube and the outer tube was utilized for introducing argon (50 cm³/min) as a sheath gas to prevent formation of titanium nitride deposits at the chloride inlet tube. Ammonia was simultaneously introduced at a flow-rate of 100 cm³/min into the reaction zone through a separate

tube. The mean flow-rate of gaseous ${\rm TiCl_4}$ was $6.0~{\rm cm^3/min}$. A quartz or alumina tube was inserted inside the reaction tube to make the removal of the reaction product easier. The reaction was allowed to proceed for $2~{\rm h.}$

The by-product NH₄Cl which deposited outside the reaction zone together with the titanium nitride formed was separated by heating the mixture in an argon stream at 400 °C (the sublimation point of NH₄Cl: 339 °C)²⁾ for 10—15 h.

Analytical. The chemical analysis of the reaction products was performed as follows: The titanium content was gravimetrically determined as TiO₂ using cupferron as a precipitating agent, after dissolving the sample in 3 M-nitric acid. The chlorine content was gravimetrically determined as AgCl from the filtrate. The ammonia content was determined by the Kjeldahl method from the nitric acid solution.

X-Ray analysis of the solid product was performed with an X-ray powder diffractometer equipped with a proporitonal counter using Ni filtered Cu radiation. The sample chamber of the diffractometer was maintained under a dry nitrogen atmosphere, if necessary, to prevent contamination of the sample by atmospheric moisture during the irradiation.

The sensitivity of the quartz helix used for thermogravimetry (TG) was approximately 94 mm/g. The sample (0.2 g) was heated at a rate of 2.5 $^{\circ}$ C/min and the flow-rate of ammonia was maintained at 50 cm³/min.

The N/Ti atomic ratio of the titanium nitride formed was evaluated as follows: The sample titanium nitride was oxidized to TiO_2 by heating in an oxygen atmosphere to 700 °C, using a Shimazu high-sensitive thermal balance Model TGA31. The titanium content of the sample was calculated from the amount of TiO_2 formed. The amount of nitrogen was determined as the difference between the amount of the initial sample and that of the titanium. The value of the N/Ti atomic ratio was evaluated with an accuracy within ± 0.01 .

The lattice constant of the titanium nitride was calculated based on the X-ray diffraction data obtained by using silicon powders as an internal standard and under the scanning speed of $1/2-1/4^{\circ}/\text{min}$.

Throughout this work, the TiCl₄ and the reaction products were handled in an argon atmosphere to prevent contamination by atmospheric moisture.

Results and Discussion

Reaction Products of Gaseous Titanium Tetrachloride with Ammonia. The products formed by heating gaseous

Table 1. Reaction products of Gaseous TiCl₄ with ammonia at various temperatures

Temp/°C	Products	
	In the reaction zone	Outside the reaction zone
200	TiCl₄·5NH₃	TiCl ₄ ·5NH ₃
250	TiCl₄·5NH₃≫TiClN	TiCl ₄ ·5NH ₃ ; NH ₄ Cl
300	TiCl₄·5NH₃≫TiClN	TiCl ₄ ·5NH ₃ ; NH ₄ Cl
350	TiCl ₄ ·5NH ₃ >TiClN	TiCl ₄ ·5NH ₃ ; NH ₄ Cl
400	TiCIN	TiCl ₄ ·5NH ₃ ; NH ₄ Cl
450	$\text{TiClN}{>}\text{TiN}_x$	TiCl ₄ ·5NH ₃ ; NH ₄ Cl
500	$TiClN, TiN_x$	TiCl ₄ ·5NH ₃ ; NH ₄ Cl
550	$TiN_x > TiClN$	$TiCl_4 \cdot 5NH_3$, TiN_x ; NH_4Cl
600	$TiN_x > TiClN$	$TiN_x \gg TiCl_4 \cdot 5NH_3$; NH_4Cl
650	$TiN_x > TiClN$	$TiN_x\gg TiCl_4\cdot 5NH_3$; NH_4Cl
700—900	TiN_x	TiN_x ; NH_4Cl
1000		TiN_x ; NH_4Cl
1100—1400	_	TiN_x ; NH_4Cl , HCl

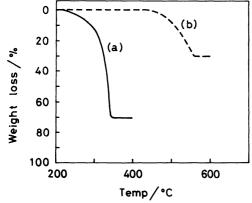


Fig. 1. TG curves of TiCl₄·5NH₃ and TiClN in an ammonia stream.
(a): TiCl₄·5NH₃, (b): TiClN.

TiCl₄ in an ammonia stream at various temperatures above 200 °C were examined both by X-ray analysis³⁻⁵⁾ and chemical analysis. The product formed at 200 °C showed a hitherto unknown X-ray diffraction pattern which was clearly different from those of known titanium compounds. The chemical analysis of the product gave Ti, 17.4; Cl, 51.6; NH₃, 30.8%. The ratio of Ti : Cl : NH₃ was calculated to be 1 : 4.00 : 4.98. This was considered to indicate that the product formed at 200 °C had a composition of TiCl₄·5NH₃ (calcd for TiCl₄·5NH₃ : Ti, 17.42; Cl, 51.60; NH₃, 30.98%). The reaction products at various temperatures are shown in Table 1. Unreacted TiCl₄ was not observed throughout the temperature range of this work.

Reaction Process of Gaseous Titanium Tetrachloride with Ammonia. To elucidate the reaction process of gaseous TiCl₄ with ammonia, the behavior of the TiCl₄. 5NH₃ and the TiClN, which had been formed during the reaction process, on heating in an ammonia stream were examined. The thermal dissociation of ammonia⁶ and the thermal decomposition of NH₄Cl⁷ under the experimental conditions in this work were also examined.

Behavior of TiCl₄·5NH₃ and TiClN on Heating in an Ammonia Stream: The TG curve of TiCl₄·5NH₃ in an ammonia stream is shown in Fig. 1(a).

TiCl₄·5NH₃ lost weight above 220 °C. The weight loss was accompanied by the vaporization of NH₄Cl and a small amount of TiCl₄·5NH₃. The sample after heating to 400 °C was found to be TiClN by X-ray analysis.

In order to obtain more detailed information on the behavior of TiCl₄·5NH₃ on heating in an ammonia stream, TiCl₄·5NH₃ (1.0 g) in a quartz boat (70 mm length, 15 mm width, 7 mm depth) was placed in a straight reaction tube (28 mm i.d., 1000 mm length). Ammonia was introduced into the reaction tube at a flow-rate of 100 cm³/min. The sample part was then placed in the centre of an electric furnace (300 mm heating length) maintained at a specified temperature for 1 h. The products obtained inside and outside the boat were examined by X-ray analysis and chemical analysis. The results are shown in Table 2.

From the results, it was found that TiCl₄·5NH₃ decomposed to TiClN above about 220 °C and a part of TiCl₄·5NH₃ vaporized above about 300 °C in an ammonia stream.

The TG curve of TiClN in an ammonia stream is shown in Fig. 1(b). The TiClN used was prepared by the reaction of gaseous TiCl₄ with ammonia at 400 °C. The chemical analysis gave Ti, 49.1; Cl, 36.4% (calcd for TiClN: Ti, 49.19; Cl, 36.42%). TiClN lost weight above 430 °C. The weight loss was accompanied by the vaporization of NH₄Cl alone. The sample after heating to 600 °C was found to be TiN_x. From these results, it was found that TiClN reacted with ammonia above about 430 °C to form TiN_x.

Table 2. Experimental results for $\rm TiCl_4 \cdot 5NH_3$ on heating in an ammonia stream

Heating temp/°C	In the boa	Products .t Outside the boat	Unreacted TiCl ₄ ·5NH ₃ (%)
250	TiClN(4)	NH ₄ Cl	96
300	TiClN(41)	$TiCl_4 \cdot 5NH_3(15)$, NH_4Cl	44
350	TiClN(71)	$TiCl_4 \cdot 5NH_3(29)$, NH_4Cl	

Note: the value in() is mole percentage of TiCl₄·5NH₃ converted to the product.

Thermal Dissociation of Ammonia and Thermal Decomposition of NH_4Cl : Ammonia alone was introduced at a flow-rate of $100 \text{ cm}^3/\text{min}$ into the reaction zone held at a specified temperature and the total volume of nitrogen and hydrogen, formed by the dissociation of ammonia, was measured. From the results, the percentage of the dissociated ammonia was found to be <1% at $800 \,^{\circ}\text{C}$, 1% at $900 \,^{\circ}\text{C}$, 2% at $1000 \,^{\circ}\text{C}$, 6% at $1100 \,^{\circ}\text{C}$, 23% at $1200 \,^{\circ}\text{C}$, 88% at $1300 \,^{\circ}\text{C}$, and 98% at $1400 \,^{\circ}\text{C}$.

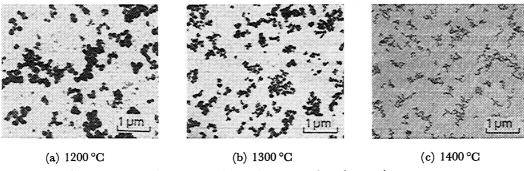
Gaseous NH₄Cl was formed by heating solid NH₄Cl and was carried by a stream of argon at a flow-rate of $100~\rm cm^3/min$ into the reaction zone held at a specified temperature for 2 h. The amount of NH₄Cl introduced, 6.5 g, was the same as that formed during the reaction of gaseous TiCl₄ with ammonia for 2 h at $700-1000~\rm ^{\circ}C$ (Table 1). The percentages of the decomposed NH₄Cl at various temperatures were evaluated from the amount of HCl formed by the decomposition. From the results, the percentage of the decomposed NH₄Cl was found to be <1% at $1100~\rm ^{\circ}C$, 8% at $1200~\rm ^{\circ}C$, 29% at $1300~\rm ^{\circ}C$, and 65% at $1400~\rm ^{\circ}C$.

Based on the above experimental results, the reaction process of gaseous TiCl₄ with ammonia was discussed. As shown in Table 1, TiCl₄·5NH₃ alone was formed at 200 °C. This fact indicates that the reaction of gaseous TiCl₄ with ammonia to form TiCl₄·5NH₃ occurs first. The TiClN formed at 250—650 °C (Table 1) is considered to be due to the decomposition of TiCl₄·5NH₃, because the TiCl₄·5NH₃ decomposes above about 220 °C to TiClN, as described above. The TiN_x formed above 450 °C is considered to be due to the reaction of TiClN with ammonia, because the TiClN reacts with ammonia above about 430 °C to form TiN_x.

Above 1100 °C, HCl was formed in addition to TiN_x and NH₄Cl (Table 1). The percentage of HCl formed to the total amount of chlorine introduced as TiCl₄ was 36% at 1100 °C, 75% at 1200 °C, 92% at 1300 °C, and 93% at 1400 °C. This amount of HCl is considerably larger than the amount of HCl formed by the thermal decomposition of NH₄Cl at each temperature, as described above. Also, it has been reported that gaseous TiCl₄ reacts with hydrogen above about 800 °C to form gaseous titanium dichloride (TiCl₂) and HCl.⁸⁾ From these facts, it was considered that the reduction of gaseous TiCl₄ with hydrogen, formed by the thermal dissociation of ammonia, to TiCl₂ also occurred above 1100 °C and that the TiCl₂ reacted with ammonia to form TiN_x. Therefore, the reaction of gaseous TiCl₂

Table 3. N/Ti atomic ratio and lattice constant of the TiN_x formed

Formation temp/°C	x in TiN _x	$a_0/\mathrm{\AA}$	
700	1.21	4.224	
800	1.16	4.228	
900	1.13	4.230	
1000—1400	1.10	4.233	


with ammonia was examined.

The TiCl₂ used was prepared by the disproportionation of commercial titanium trichloride (TiCl₃) in vacuo at 475 °C.⁹ The chemical analysis gave Ti, 40.2; Cl, 59.7% (calcd for TiCl₂: Ti, 40.31; Cl, 59.69%). Gaseous TiCl₂ was formed by heating TiCl₂ at 800 °C and was carried by a stream of argon (50 cm³/min) into the reaction zone held at a specified temperature. Ammonia was simultaneously introduced at a flow-rate of 100 cm³/min through a separate tube into the reaction zone.

The products formed were TiN_x and NH_4Cl at 1000 °C and TiN_x , NH_4Cl , and a small amount of HCl at 1100 °C. The HCl formed at 1100 °C was considered to be formed by the reduction of $TiCl_4$, formed by the disproportionation of $TiCl_2$, $^{8,10)}$ with hydrogen resulting from the thermal dissociation of ammonia. The results indicate that gaseous $TiCl_2$, formed by the reduction of gaseous $TiCl_4$ with hydrogen, reacts with ammonia to form TiN_x .

From these results, the reaction process of TiCl₄ with ammonia in the vapor phase can be represented as follows: The reaction of gaseous TiCl₄ with ammonia occurs first to form TiCl₄·5NH₃. Above about 220 °C, the TiCl₄·5NH₃ decomposes to TiClN. Above about 430 °C, the TiClN reacts with ammonia to form TiN_x. Above about 1100 °C, in addition to these reactions, the reaction of TiCl₂, formed by the reduction of TiCl₄ with hydrogen resulting from the thermal dissociation of ammonia, with ammonia occurs to form TiN_x.

Properties of the TiN_x Formed. The N/Ti atomic ratios of TiN_x formed at 700—1400 °C are shown in Table 3. Prior to this examination, the presence of residual NH₄Cl in the TiN_x , obtained after the removal of NH₄Cl at 400 °C in an argon stream, was checked by chemical analysis, ¹¹⁾ after the fusion of the TiN_x sample with sodium carbonate. From the results, the NH₄Cl content in the TiN_x was 6.9% for the TiN_x formed at 700 °C, 5.9% at 800 °C, 3.6% at 900 °C, 1.5% at

Flg. 2. Electoron micrographs of the $TiN_{x(x=1,10)}$ formd at various temperatures.

1000 °C, 1.0% at 1100 °C, 0.5% at 1200 °C, 0.2% at 1300 °C, and trace at 1400 °C. Further separation of the NH₄Cl at higher temperatures could not be carried out, by considering the thermal stability of the TiN_x formed, as described later. For the evaluation of the N/Ti atomic ratio of the TiN_x formed, the initial weight of the sample was corrected by subtracting the amount of NH₄Cl contained, because the NH₄Cl was vaporized during the oxidation.

Kato et al.¹⁾ reported that the N/Ti atomic ratio of the TiN_x formed by a vapor-phase reaction of the $TiCl_4$ – NH_3 – H_2 – N_2 system at 700—1500 °C was 1.1—1.4. Vorob'ev et al.¹²⁾ reported that the stoichiometric TiN was identified as a main component of the reaction products of gaseous $TiCl_4$ with ammonia at 800—1100 °C. But, the details of this study are not available.

It has been known that the TiN_x phase has a NaCl structure.^{1,3)} The lattice constant of TiN_x formed at each temperature is also shown in Table 3.

The TiN_x formed by the reaction of gaseous $TiCl_4$ with ammonia above 1000 °C were examined by electron microscopy. The typical micrographs of the TiN_x are shown in Fig. 2.

As seen from Fig. 2, the TiN_x formed at 1400 °C is uniform, ultrafine powders with the particle diameters of the order of 1/100 μ m. The range of the particle sizes of the TiN_x formed at lower temperatures was found to be wide.

Finally, to obtain knowledge of the thermal stability of the TiN_x formed, the N/Ti atomic ratios of the samples obtained by heating $\mathrm{TiN}_{1.21}$ at various temperatures in an argon atmosphere for 1 h were examined. The results are shown in Fig. 3. In addition, it was found that the residual NH₄Cl in the TiN_x was compeletely removed by the heating at 1100 °C.

The results indicated that when the TiN_x formed was heated in an argon atmosphere at temperatures higher than 500 °C, the N/Ti atomic ratio decreased and became close to that of the stoichiometric nitride; The value of x was 1.02 at the heating temperatures of 900—1100 °C.

The lattice constants of the TiN_x with various x values, obtained in this work, are shown in Fig. 4.

The N/Ti atomic ratio of TiN_x obtained after heating $\mathrm{TiN}_{1.21}$ in an argon atmosphere at each temperature was found to be lower than that of the TiN_x formed by the vapor-phase reaction at the same temperature (Table 3). The facts are considered to be due to the presence of nitrogen during the reaction. This consideration was supported by the fact that no change in the N/Ti atomic ratio of the $\mathrm{TiN}_{1.10}$ formed at 1000 °C by the vapor-phase reaction was observed after the heating at 1000 °C in an ammonia stream for 1 h.

The present work was partially supported by a Grantin-Aid for Scientific Research No. 56470058 from the Ministry of Education, Science and Culture.

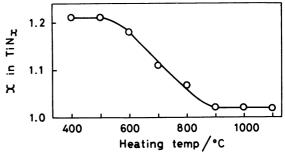


Fig. 3. N/Ti atomic ratios of TiN_x obtained after heating $TiN_{1.21}$ at various temperatures in an argon atmosphere.

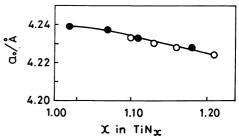


Fig. 4. Lattice constants of the TiN_x with various x values. \bigcirc : From TiN_x formed by the reaction of gaseous. $TiCl_4$ with ammonia, \bigcirc : from TiN_x obtained after the heating of $TiN_{1.21}$.

References

- 1) A. Kato, M. Iwata, J. Hojo, and M. Nagano, Yogyo Kyokai Shi, 83, 453 (1975).
- 2) I. Barin and O. Knacke, "Thermochemical Properties of Inorganic Substances," Springer, Berlin, Heidelberg, New York (1973), p. 499.
 - 3) ASTM, Powder Diffraction File 6-642.
 - 4) JCPDS, Powder Diffraction File 18-1399.
 - 5) ASTM, Powder Diffraction File 7-7.
- 6) "Gmelins Handbuch der Anorganischen Chemie, System Nummer 4, Stickstoff," Verlag Chemie, Weinheim (1955), p. 323.
- 7) "Gmelins Hanbuch der Anorganischen Chemie, System Nummer 23, Ammonium," Verlag Chemie, Weinheim (1955), p. 160.
- 8) K. Funaki and K. Uchimura, Kogyo Kagaku Zasshi, 59, 14 (1956).
- 9) M. Nakahara and M. Shibata, "Mukikagōbutsu No Gōsei [II], Shin-Zikkenkagaku-Kōza 8," ed by the Chemical Society of Japan, Maruzen, Tokyo (1977), p. 780.
- 10) K. Funaki and K. Uchimura, Kogyo Kagaku Zasshi, 57, 538 (1954).
- 11) JIS H 1615 (1973), p. 2.
- 12) N. I. Vorob'ev, D. I. Medvedev, N. V. Galitskii, Yu. M. Dmitriev, and L. G. Terekhova, *Deposited Doc.*, **VINITI** 335-77 (1977); *Chem. Abstr.*, **90**, 139671w (1979).