## Highly Enantioselective Intermolecular Hydroamination of Allylic Amines with Chiral Aldehydes as Tethering Catalysts

### Melissa J. MacDonald,<sup>[a]</sup> Colin R. Hesp,<sup>[a]</sup> Derek J. Schipper,<sup>[a]</sup> Marc Pesant,<sup>[b]</sup> and André M. Beauchemin<sup>\*[a]</sup>

Asymmetric catalysis is of enormous academic and industrial importance as a highly efficient approach to enantioenriched organic molecules. Enzymes and bifunctional catalysts are among the most efficient systems available to perform difficult intermolecular reactions with nearly perfect stereocontrol. This efficiency stems from their ability to perform substrate activation while favoring substrate preassociation and preorganization. However, highly efficient asymmetric catalysis does not require both activation methods. Many asymmetric catalysts achieve high enantioselectivities by performing substrate activation in a chiral environment alone. In contrast, and despite the possibility of accelerating intermolecular reactions by a factor of  $10^4$  to  $10^8$  through substrate preassociation,<sup>[1]</sup> catalytic reactions relying exclusively on temporary intramolecularity are rare, and highly efficient examples of such asymmetric catalysis have not been reported.<sup>[2]</sup> Herein, we show that chiral aldehydes are capable tethering asymmetric catalysts, leading to highly enantioenriched vicinal diamine motifs through temporary intramolecularity alone.

Recently, we reported that aldehydes catalyze intermolecular Cope-type hydroaminations of allylic amines via the formation of a temporary tether [(Eq. (1)].<sup>[3,4]</sup> In contrast to common tethering strategies,<sup>[5]</sup> which rely on the stepwise assembly and cleavage of a tether, this approach uses aldehydes as catalysts to access a transient mixed aminal in situ and thus allow a facile "intramolecular" hydroamination. Although encouraging enantioselectivities suggested that transfer of stereochemical information from chiral aldehydes was possible (4 examples, 47-87% ee), initial efforts were thwarted by catalyst epimerization and reproducibility issues. Seeking to develop an enantioselective hydroamination<sup>[6,7]</sup> approach to synthetically useful vicinal diamines<sup>[8]</sup> and to establish that highly efficient stereoinduction is possi-

[a] M. J. MacDonald, C. R. Hesp, D. J. Schipper, Prof. A. M. Beauchemin Centre for Catalysis Research and Innovation Department of Chemistry, University of Ottawa 10 Marie-Curie, Ottawa, ON K1N 6N5 (Canada) E-mail: andre.beauchemin@uottawa.ca [b] M. Pesant

Boehringer Ingelheim (Canada) Ltd 2100 Cunard Street, Laval, QC, H7S 2G5 (Canada)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201203462.

ble by means of tethering catalysis, we embarked on a systematic survey of chiral aldehyde catalysts and reaction conditions (selected data shown in Table 1).

In a previous communication, we had shown that commercially available (R)-glyceraldehyde acetonide (1a) led to



| Table 1. | Representative | results of chiral | aldehyde | screening <sup>[a]</sup> |
|----------|----------------|-------------------|----------|--------------------------|
|----------|----------------|-------------------|----------|--------------------------|

|       | $ \begin{array}{c}                                     $ | $ \begin{array}{c}                                     $ |               | $\begin{array}{c} & \underset{N}{\overset{\text{Boc } 0}{\overset{\text{O}}{\underset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}}}}}}}} \\ \text{1d} \\ & \underset{NeO \underbrace{O}{\overset{O}{\underset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}}}}}}}{1h} \\ & \underset{O}{\overset{O}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset$ |                       |
|-------|----------------------------------------------------------|----------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|       | POH + H                                                  | 1 (20 n<br>RT, 2                                         | nol%)<br>24 h | N <sup>O</sup>                                                                                                                                                                                                                                                                                                                                                                                                | H<br>N                |
| Entry | Catalyst                                                 | Solvent                                                  | Yiel          | d [%] <sup>[b]</sup>                                                                                                                                                                                                                                                                                                                                                                                          | ee [%] <sup>[c]</sup> |
| 1     | 1a                                                       | C <sub>6</sub> H <sub>6</sub>                            | 93            |                                                                                                                                                                                                                                                                                                                                                                                                               | 75                    |
| 2     | 1b                                                       | $C_6H_6$                                                 | 91            |                                                                                                                                                                                                                                                                                                                                                                                                               | 88                    |
| 3     | 1c                                                       | $C_6H_6$                                                 | 16            |                                                                                                                                                                                                                                                                                                                                                                                                               | 37                    |
| 4     | 1d                                                       | $C_6H_6$                                                 | 12            |                                                                                                                                                                                                                                                                                                                                                                                                               | 9                     |
| 5     | 1e                                                       | $C_6H_6$                                                 | 5             |                                                                                                                                                                                                                                                                                                                                                                                                               | 3                     |
| 6     | 1f                                                       | $C_6H_6$                                                 | 16            |                                                                                                                                                                                                                                                                                                                                                                                                               | 9                     |
| 7     | 1g                                                       | $C_6H_6$                                                 | 51            |                                                                                                                                                                                                                                                                                                                                                                                                               | -85                   |
| 8     | 1h                                                       | $C_6H_6$                                                 | 41            |                                                                                                                                                                                                                                                                                                                                                                                                               | -94                   |
| 9     | 1f                                                       | $C_6H_6$                                                 | 34            |                                                                                                                                                                                                                                                                                                                                                                                                               | 8 <sup>[d]</sup>      |
| 10    | 1g                                                       | $C_6F_6$                                                 | 54            |                                                                                                                                                                                                                                                                                                                                                                                                               | $-94^{[d]}$           |
| 11    | 1h                                                       | $C_6F_6$                                                 | 46            |                                                                                                                                                                                                                                                                                                                                                                                                               | -93 <sup>[e]</sup>    |
| 12    | 1b                                                       | $C_6F_6$                                                 | 91            |                                                                                                                                                                                                                                                                                                                                                                                                               | 97 <sup>[d]</sup>     |

[a] Performed with hydroxylamine (1 equiv), allylamine (1.5 equiv), and catalyst 1a-h (0.2 equiv) in a solvent (1M) under argon, for 24 h at room temperature. [b] Determined by <sup>1</sup>H NMR spectroscopy with 1,4-dimethoxybenzene as internal standard. [c] Determined by chiral HPLC analysis of derivatized products (see the Supporting Information). [d] Catalyst was added to the reaction mixture last. [e] At 10 mol%, catalyst 1h gave 89% ee with a 43% NMR yield in 72 h.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

# 🕅 WILEY 师



These are not the final page numbers!

enantioenriched products with moderate enantiocontrol (3 examples, 45-78% ee; Table 1, entry 1). However, this aldehyde is notorious for its ready epimerization, and preliminary efforts thus focused on the identification of a more robust aldehyde. Increased enantioselectivity was observed with the more easily handled diphenyl analogue 1b (88% ee; Table 1, entry 2), but an early screening of the substrate scope showed that this procedure was not general and was plagued by some catalyst epimerization. Unfortunately, the Ley aldehyde<sup>[9]</sup> ( $\mathbf{1c}$ ), the Garner aldehyde<sup>[10]</sup> ( $\mathbf{1d}$ ), and an aldehyde lacking an  $\alpha$  proton (1e) led to poor reactivity and enantiocontrol (Table 1, entries 3-5). The low yields obtained with these aldehyde catalysts suggest that their steric bulk has a negative impact on the preassociation step, which involves the formation of the mixed aminal I. However, the acyclic aldehyde 1f also showed poor reactivity (Table 1, entry 6), which highlights the benefits associated with the cyclic structures present in 1a and 1b. It is also worth noting that catalysts **1a-d** and **1f** had the common problem that epimerization (via enamine formation, for example) would lead to catalyst racemization. In contrast, the bicyclic aldehydes 1g and 1h possess several stereocenters embedded in a rigid bicyclic structure that could help prevent epimerization and help ensure retention of the original chirality.<sup>[11]</sup> Encouragingly, high enantioselectivities were observed with both the 6- and 5-membered bicyclic aldehydes 1g (85% ee; Table 1, entry 7) and **1h** (94% *ee*; Table 1, entry 9). Catalyst **1h** showed remarkable stability as the reaction proceeds in 72 h with high selectivity. In addition, these catalysts led to the R enantiomer of the diamine, which complements the ability of catalyst **1b** to provide access to the S enantiomer. Fortunately, two additional observations were made during this screening process that led to higher enantioselectivities with catalyst 1b. We found that addition of the catalyst last proved optimal, and higher enantioselectivities were obtained with  $C_6F_6$  as solvent. By following this revised procedure, catalyst 1b afforded the S enantiomer in 97% ee (Table 1, entry 11)!

With efficient conditions giving access to either enantiomer of the diamine motifs with catalysts 1b and 1h,<sup>[12]</sup> the applicability of this enantioselective reaction was evaluated (Table 2). Electron-rich and electron-poor benzylic hydroxylamines displayed excellent enantioselectivity with benzylallylamine as substrate (Table 2, entries 1-6). In contrast, reduced enantioselectivity was seen with two aliphatic hydroxylamines (Table 2, entries 7-9). To determine if this effect was steric or electronic in nature, the reaction of benzylhydroxylamine and methylallylamine was also performed. This reaction led to reduced enantioselectivity (56% ee; Table 2, entry 10), which suggests that the size of the allylic amine is important for high enantioselectivity. Additionally, the lower enantioselectivity could result from reduced diastereoselectivity in the formation of the mixed aminal I or from an amine-catalyzed aldehyde epimerization process (see below). To probe this, many secondary allylic amines were reacted with benzylhydroxylamine and catalysts 1b and 1h (Table 2, entries 11-20). Collectively, these results reveal



Table 2. Scope of asymmetric hydroamination with chiral aldehydes<sup>[a]</sup>

| R <sup>1</sup> NOH<br>H | + , R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\underbrace{ \begin{array}{c} Ph \\ Ph \\ eff $ | R <sup>1</sup> N <sup>.OH</sup><br> |                          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|
| Entry                   | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yield<br>[%] <sup>[b]</sup>         | ee<br>[%] <sup>[c]</sup> |
|                         | R <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I<br>N <sub>. Bn</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [,0]                                | [/0]                     |
| 1                       | $R^{3} = H(2a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91                                  | 97                       |
| 2                       | $R^{3} = H(2a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                  | -88                      |
| 3                       | $R^3 = Cl(2b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81                                  | 94                       |
| 4                       | $R^3 = OMe (2c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 86                                  | 92                       |
| -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                          |
| 5                       | $R^{1} = 3,5 - (CF_{3})_{2}R^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3n (2d) 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82                                  | 82                       |
| 6                       | $R^{1} = 3,5 - (CF_{3})_{2}R^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3n (2d) 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                  | -92                      |
| /                       | $\mathbf{R}^{1} = i \operatorname{Pr} \left( 2 \mathbf{e} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                  | 60<br>71                 |
| 8                       | $R^{1} = (CH_{2})_{3}Ph (CH_{2})_{3$ | $\begin{array}{c} (21) \\ (25) \\ (1) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25) \\ (25$                                                           | 63                                  | /1                       |
| 9                       | $\mathbf{R} = (\mathbf{C}\mathbf{H}_2)_3\mathbf{P}\mathbf{n} \ (\mathbf{R}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (21) IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                  | -//                      |
| 10                      | $\mathbf{R}^2 = \mathbf{Me} (\mathbf{2g})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91                                  | 56                       |
| 11                      | $\mathbf{R}^2 = $ allyl ( <b>2h</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85                                  | 82                       |
| 12                      | $\mathbf{R}^2 = $ allyl ( <b>2h</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76                                  | -88                      |
| 13                      | $R^2 = p - NO_2 Bn$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2i) 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83                                  | 95                       |
| 14                      | $R^2 = BrBn (2j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81                                  | 90                       |
| 15                      | $R^2 = CH_2CH(O)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Et)_2(2k)$ 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62                                  | 60                       |
| 16                      | $R^2 = CH_2CH(O)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $Et_{2}(2k)$ 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51                                  | -88                      |
| 17                      | $R^2 = CH_2CO_2Et$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t (21) 1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75                                  | 72                       |
| 18                      | $R^2 = CH_2CO_2Et$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t(21) 1h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71                                  | -91                      |
| 19                      | $\mathbf{R}^2 = (\mathbf{CH}_2)\mathbf{CO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me(2m) \qquad 1b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                  | 82                       |
| 20                      | $\mathbf{R}^2 = (\mathbf{CH}_2)\mathbf{CO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $Me(2m) \qquad 1h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 66                                  | -90                      |

[a] Performed with hydroxylamine (1 equiv), allylamine (1.5 equiv), and catalyst (0.2 equiv) in solvent (1 M) under argon, for 24 h with catalyst **1b** (and 72 h with **1h**) at room temperature. [b] Yields of the isolated product. [c] Determined by chiral HPLC analysis of derivatized products (see the Supporting Information).

that the enantioselectivities obtained with catalyst **1b** are quite sensitive to the structure of the allylic amine (Table 2, entries 10, 11, 13, 15, 17, and 19), and that the lowest enantioselectivities are observed with the least nucleophilic amines (60-95% ee; Table 2, entries 15 and 17 vs. 19). In contrast, **1h** afforded the enantiomeric products reliably in high enantioselectivities (88–91% ee; Table 2, entries 12, 16, 18, and 20). Overall, the enantioselectivities obtained are, in many cases, the highest obtained for intermolecular hydroaminations of unactivated alkenes by any method<sup>[7i,j]</sup> (including metal-catalyzed reactions) and clearly validate the tethering strategy as an effective method in asymmetric organocatalysis.

The enantioselectivity trend highlighted above for aldehyde **1b** suggests that catalyst epimerization occurs under the reaction conditions. To probe this, the aldehyde was separately exposed to catalytic amounts of each reagent and the enantiopurity of the catalyst was determined after 24 h (Figure 1). Both experiments showed significant epimeriza-

## COMMUNICATION



Figure 1. Probing the source of epimerization for catalyst 1b.

tion, with benzylallylamine (25 mol%) leading to almost complete racemization and benzylhydroxylamine (25 mol%) leading to recovered aldehyde in 66% ee. Control experiments also showed that no epimerization of the catalyst occurred simply upon stirring in benzene or hexafluorobenzene. In agreement with this, the highest enantioselectivities observed with catalyst 1b involve the fastest reactions.<sup>[13]</sup>

With less nucleophilic amines, catalyst racemization is a competing side reaction, leading to formation of the desired adduct in 60 and 72% ee (Table 2, entries 15 and 17). Because aldehyde 1b epimerizes over time, even if stored neat under argon at reduced temperatures (7-14 d, depending on the batch), oxidation of the commercially available alcohol precursor prior to each reaction proved a reliable experimental procedure. In contrast, catalyst 1h is more robust, because of its bicyclic nature, and affords the enantiomeric products in high ee (Table 2, entries 16 and 18). In agreement with this observation, the nitrone derived from 1h proved remarkably stable toward epimerization in the presence of either excess hydroxyla-

mine or amine (NMR spectra are provided in Figure S1 of the Supporting Information).

The proposed mechanism is presented in Figure 2, and has been thoroughly examined for the related racemic reactions involving  $\alpha$ -benzyloxyacetaldehyde.<sup>[14]</sup> Condensation of the hydroxylamine and the aldehyde precatalyst affords a nitrone, which is rapidly attacked by an allylic amine to form a transient, chiral mixed aminal I (likely with high stereocontrol). This stereocenter is then efficiently transferred<sup>[5,15]</sup> through the bicyclic transition state associated with a Cope-type hydroamination. With  $\alpha$ -benzyl-

oxyacetaldehyde, the latter step was shown to be rate determining.<sup>[14]</sup> Thus it is not clear if, in this system, the stereoinduction results from the stereoselective formation of aminal I because of a preference for one of the two diastereomeric transition states for the Cope-type hydroamination, or from the synergy between these two steps. Experiments are underway to determine the origin of enantioinduction in this system.

In summary, we have shown that aldehydes catalyze the intermolecular hydroamination of unactivated alkenes in high enantiomeric excess. Both enantiomers of the hydroamination products containing the 1,2-diamine motif can be synthesized in high enantioselectivity by using two different chiral aldehydes catalysts. This work highlights the fact that simple chiral a-oxygenated aldehydes are effective organocatalysts capable of efficiently inducing asymmetry through temporary intramolecularity. Advanced scope, further catalyst design, and mechanistic insights will be presented in due course.

#### **Experimental Section**

A round-bottom flask (5 mL) was charged with a stirring bar, hydroxylamine (1 equiv; typically 1 mmol), degassed solvent (1.0 M with respect to hydroxylamine), amine (1.5 equiv), and lastly, catalyst (0.2 equiv). The reaction was stirred at room temperature for 24-72 h. The crude reaction mixture was concentrated under reduced pressure and purified by flash column chromatography to give the corresponding N,N-dialkylhydroxylamine products. To determine the ee, the hydroamination product (2a-2m; 1 equiv) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (0.5 M) then 1,1'-carbonyldiimidazole (CDI; 1.5-2.5 equiv) was added and the reaction stirred for 3-24 h. After completion, the reaction mixture was concentrated under reduced pressure, purified by column chromatography and analyzed by HPLC with an appropriate chiral column. See the Supporting Information for details.



Figure 2. Enantioselective hydroamination by temporary intramolecularity, with stereocontrol originating from a transient stereocenter formed by a stereoselective 1,2-addition reaction.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

www.chemeuri.org These are not the final page numbers! **77** 



A EUROPEAN JOURNAL

#### Acknowledgements

Support from NSERC, the University of Ottawa, the Canadian Foundation for Innovation and the Ontario Ministry of Research and Innovation is gratefully acknowledged. The donors of The American Chemical Society Petroleum Research Fund are also acknowledged for support of related research efforts. D.J.S. thanks NSERC for postgraduate scholarships. M.J.M. thanks Boehringer Ingelheim (Canada) Ltd. for a collaborative graduate scholarship.

**Keywords:** asymmetric catalysis • hydroamination hydroxylamines • tethered reactions • vicinal diamines

- For an excellent review, see: a) K. L. Tan, ACS Catal. 2011, 1, 877– 886; see also: b) R. Pascal, Eur. J. Org. Chem. 2003, 1813–1824; c) M. I. Page, W. P. Jencks, Proc. Natl. Acad. Sci. USA 1971, 68, 1678–1683; for recent examples, see: d) R. B. Bedford, S. J. Coles, M. B. Hursthouse, M. E. Limmert, Angew. Chem. 2003, 115, 116– 118; Angew. Chem. Int. Ed. 2003, 42, 112–114; e) T. E. Lightburn, M. T. Dombrowski, K. L. Tan, J. Am. Chem. Soc. 2008, 130, 9210– 9211; f) C. U. Grünanger, B. Breit, Angew. Chem. 2008, 120, 7456– 7459; Angew. Chem. Int. Ed. 2008, 47, 7346–7349; g) X. Sun, A. D. Worthy, K. L. Tan, Angew. Chem. 2011, 123, 8317–8321; Angew. Chem. Int. Ed. 2011, 50, 8167–8171; h) A. D. Worthy, X. Sun, K. L. Tan, J. Am. Chem. Soc. 2012, 134, 7321–7324.
- [2] Several carbonyl compounds have been reported as catalysts operating via hemiacetal intermediates. For ester and alcohol hydrolysis, see: a) V. T. Wieland, F. Jaenicke, Justus Liebigs Ann. Chem. 1956, 599, 125-130; b) V.T. Wieland, R. Lambert, H.U. Lang, G. Schramm, Justus Liebigs Ann. Chem. 1956, 597, 181-195; c) B. Capon, R. Capon, Chem. Commun. (London) 1965, 502-503; d) R. W. Hay, L. Main, Aust. J. Chem. 1968, 21, 155-169; e) F. M. Menger, L. G. Whitesell, J. Am. Chem. Soc. 1985, 107, 707; f) F. M. Menger, R. A. Persichetti, J. Org. Chem. 1987, 52, 3451-3452; g) T. Sammakia, T. B. Hurley, J. Am. Chem. Soc. 1996, 118, 8967-8968; h) T. Sammakia, T. B. Hurley, J. Org. Chem. 1999, 64, 4652-4664; i) T. Sammakia, T. B. Hurley, J. Org. Chem. 2000, 65, 974-978; for amide hydrolysis, see: j) R. Pascal, M. Lasperas, J. Taillades, A. Commeyras, New J. Chem. 1987, 11, 235-244; k) M. Ghosh, J. L. Conroy, C. T. Seto, Angew. Chem. 1999, 111, 575-578; Angew. Chem. Int. Ed. 1999, 38, 514-516; for nitrile hydration, see: 1) R. Pascal, J. Taillades, A. Commeyras, Bull. Soc. Chim. Fr. II 1978, 3-4, 177-184; m) R. Pascal, J. Taillades, A. Commeyras, Tetrahedron 1978, 34, 2275-2281; n) R. Pascal, J. Taillades, A. Commeyras, Tetrahedron 1980, 36, 2999-3008; o) R. Sola, J. Taillades, J. Brugidou, A. Commeyras, New J. Chem. 1989, 13, 881-889; p) Z. Tadros, P. H. Lagriffoul, L. Mion, J. Taillades, A. Commeyras, J. Chem. Soc. Chem. Commun. 1991, 1373-1375; q) M. Paventi, F. L. Chubb, J. T. Edward, Can J. Chem. 1987, 65, 2114-2117; r) M. Paventi, T. J. Edward, Can J. Chem. 1987, 65, 282-289.
- [3] M. J. MacDonald, D. J. Schipper, P. J. Ng, J. Moran, A. M. Beauchemin, J. Am. Chem. Soc. 2011, 133, 20100–20103.
- [4] This work was based on pioneering work by Knight et al. on a stoichiometric variant of this reactivity providing access to cyclic 1,2,5 oxadiazinanes: a) M. B. Gravestock, D. W. Knight, S. R. Thornton, J. Chem. Soc. Chem. Commun. 1993, 169–171; b) K. E. Bell, M. P. Coogan, M. B. Gravestock, D. W. Knight, S. R. Thornton, Tetrahedron Lett. 1997, 38, 8545–8548; c) M. B. Gravestock, D. W. Knight, K. M. Abdul Malik, S. R. Thornton, J. Chem. Soc. Perkin Trans. 1 2000, 3292–3305; for an excellent review on Cope-type hydroaminations, see: d) N. J. Cooper, D. W. Knight, Tetrahedron 2004, 60, 243–269 (please note that such reactions are also referred to as reverse Cope cyclizations or reverse Cope eliminations in the literature). Intermolecular variants of this reaction are scarce. For examples with alkenes, see: e) A. M. Beauchemin, J. Moran, M.-E. Lebrun, C. Séguin, E. Dimitrijevic, L. Zhang, S. I. Gorelsky, Angew.

*Chem.* **2008**, *120*, 1432–1435; *Angew. Chem. Int. Ed.* **2008**, *47*, 1410–1413; f) J. Moran, S. I. Gorelsky, E. Dimitrijevic, M.-E. Lebrun, A.-C. Bédard, C. Séguin, A. M. Beauchemin, *J. Am. Chem. Soc.* **2008**, *130*, 17893–17906; g) S.-B. Zhao, E. Bilodeau, V. Lemieux, A. M. Beauchemin, *Org. Lett.* **2012**, *14*, 5082–5085.

- [5] a) F. Diederich, P. J. Stang, Templated Organic Synthesis, Wiley-VCH, Chichester, 2000; b) M. Bols, T. Skrydstrup, Chem. Rev. 1995, 95, 1253–1277; c) L. Fensterbank, M. Malacria, S. Sieburt, Synthesis 1997, 813–854; d) D. R. Gauthier, Jr., K. S. Zandi, K. J. Shea, Tetrahedron 1998, 54, 2289–2338; for a review of reactions with chiral tethers, see; e) T. Sugimura, Eur. J. Org. Chem. 2004, 1185–1192; typically, such chiral tethers are not easily cleavable; for an exception, see: f) S. Faure, S. P. Blane, O. Piva, J. P. Pete, Tetrahedron Lett. 1997, 38, 1045–1048; g) S. Faure, S. Piva-Le-Blanc, C. Bertrand, J. P. Pete, R. Faure, O. Piva, J. Org. Chem. 2002, 67, 1061–1070.
- [6] Asymmetric hydroamination reactions have been studied predominantly in intramolecular systems. For reviews, see: a) A. L. Reznichenko, K. C. Hultzsch in *Chiral Amine Synthesis: Methods, Developments and Applications* (Ed.: T. Nugent), Wiley-VCH, Weinheim, 2010, pp. 341–375; b) S. R. Chemler, Org. Biomol. Chem. 2009, 7, 3009–3019; c) G. Zi, *Dalton Trans.* 2009, 9101–9109; d) I. Aillaud, J. Collin, J. Hannedouche, E. Schulz, *Dalton Trans.* 2007, 5105–5118; e) K. C. Hultzsch, Adv. Synth. Catal. 2005, 347, 367–391; f) K. C. Hultzsch, Org. Biomol. Chem. 2005, 3, 1819–1824; g) K. C. Hultzsch, D. V. Gribkov, F. Hampel, J. Organomet. Chem. 2005, 690, 4441–4452; h) P. W. Roesky, T. E. Müller, Angew. Chem. 2003, 115, 2812–2814; Angew. Chem. Int. Ed. 2003, 42, 2708–2710; for a leading review on hydroamination, see: i) T. E. Muller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795–3892, and reviews cited therein.
- [7] For examples of enantioselective intermolecular hydroamination in biased systems, see: a) R. Dorta, P. Egli, F. Zürcher, A. Togni, J. Am. Chem. Soc. 1997, 119, 10857-10858; b) M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9546-9547; c) O. Löber, M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 4366-4367; d) M. Utsunomiya, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 14286-14287; e) K. Li, P. N. Horton, M. B. Hursthouse, K. K. Hii, J. Organomet. Chem. 2003, 665, 250-257; f) A. Hu, M. Ogasawara, T. Sakamoto, A. Okada, K. Nakajima, T. Takahashi, W. Lin, Adv. Synth. Catal. 2006, 348, 2051-2056; g) J. Zhou, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 12220-12221; h) S. Pan, K. Endo, T. Shibata, Org. Lett. 2012, 14, 780-783; for examples of enantioselective intermolecular hydroamination in unbiased systems, see: i) Z. Zhang, S. D. Lee, R. A. Widenhoefer, J. Am. Chem. Soc. 2009, 131, 5372-5373; j) A. L. Reznichenko, N. H. Nguyen, K. C. Hultzsch, Angew. Chem. 2010, 122, 9168-9171; Angew. Chem. Int. Ed. 2010, 49, 8984-8987.
- [8] D. Lucet, T. Le Gall, C. Mioskowski, Angew. Chem. 1998, 110, 2724–2772; Angew. Chem. Int. Ed. 1998, 37, 2580–2627.
- [9] S. V. Ley, P. Michel, Synthesis 2004, 147-150.
- [10] P. Garner, J. M. Park, Org. Synth. 1991, 70, 18-26.
- [11] For reviews on asymmetric synthesis by using memory of chirality, see: a) T. Kawabata, K. Fuji, *Top. Stereochem.* 2003, 23, 175; b) H. Zhao, D. C. Hsu, P. R. Carlier, *Synthesis* 2005, 1; c) T. Kawabata in *Asymmetric Synthesis and Application of α-Amino Acids* (Eds.: V. A. Soloshonok, K. Izawa), American Chemical Society, Washington, DC, m 2009, pp. 31–56.
- [12] Catalyst 1b was prepared from D-mannitol in two steps: a) N. Sydorenko, R. P. Hsung, E. L. Vera, *Org. Lett.* 2006, *8*, 2611–2614; catalyst 1h was prepared from D-mannose in three steps: b) D. H. R. Barton, S. D. Gero, B. Quiclet-Sire, M. Samadi, *Tetrahedron: Asymmetry* 1994, *5*, 2123–2136.
- [13] The increased selectivities observed with  $C_6F_6$  as solvent are also consistent with this hypothesis because reactions in  $C_6F_6$  are somewhat faster. For a recent report in which higher enantioselectivities observed in  $C_6F_6$  are rationalized by DFT calculations, see: A. Lattanzi, C. De Fusco, A. Russo, A. Poater, L. Cavallo, *Chem. Commun.* **2012**, *48*, 1650–1652.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

**F** These are not the final page numbers!

<sup>4 -</sup>

www.chemeurj.org

## COMMUNICATION

- [14] N. Guimond, M. J. MacDonald, V. Lemieux, A. M. Beauchemin, J. Am. Chem. Soc. 2012, 134, 16571-16577.
- [15] For a leading review, see: a) D. Seebach, A. R. Sting, M. Hoffman, Angew. Chem. 1996, 108, 2881-2921; Angew. Chem. Int. Ed. Engl.

1996, 35, 2708-2748; for a review of reactions with chiral tethers, see: b) T. Sugimura, Eur. J. Org. Chem. 2004, 1185-1192.

> Received: September 28, 2012 Published online:



### CHEMISTRY

#### A EUROPEAN JOURNAL

#### Organocatalyzed Hydroamination -

Highly Enantioselective Intermolecular Hydroamination of Allylic Amines with Chiral Aldehydes as Tethering Catalysts



**Chirally LinkedIn**: Chiral aldehydes are effective tethering catalysts for enantioselective intermolecular hydroamination, which provides access to vicinal diamine motifs in good yields and excellent enantioselectivities (see scheme). This work highlights simple chiral  $\alpha$ -oxygenated aldehydes as effective organocatalysts capable of efficiently inducing asymmetry through transient intramolecularity.