

thermochimica acta

Thermochimica Acta 282/283 (1995) 297-304

Ternary chlorides in the systems CsCl/ErCl₃ and RbCl/ErCl₃¹

Dorothea Büchel^a, Jozef Krok-Kowalski^b, Hans-Joachim Seifert^{a,*}

^a Inorganic Chemistry, FB 19; University of Kassel, Heinrich-Plett-Str. 40, D-34109 Kassel, Germany

^b Institute of Physics, University of Silesia, Katowice, Poland

Abstract

The phase diagram of the system RbCl/ErCl₃ was investigated by means of DTA and the system CsCl/ErCl₃ was re-investigated. The existence of the caesium compounds Cs₃ErCl₆ (dimorphic), Cs₂ErCl₅, Cs₃Er₂Cl₇ and CsEr₂Cl₇ was confirmed. In the system RbCl/ErCl₃, there are two dimorphic, congruently melting compounds, Rb₃ErCl₆ and RbEr₂Cl₇. The incongruently melting compound Rb₂ErCl₅ (Cs₂DyCl₅ structure) is stable at temperatures higher than 348°C. The thermodynamic stabilities of the compounds were determined by solution calorimetry and e.m.f. measurements in a galvanic chlorine cell for solid electrolytes.

Keywords: Alkali metal chloride/erbium chloride systems; Phase diagrams; Ternary erbium chlorides; Thermodynamics

1. Introduction

Our systematic investigations on the stability of ternary lanthanide chlorides have revealed that in the systems $RbCl/LnCl_3$, with Ln being La-Gd[1], compounds Rb_2LnCl_5 exist, crystallizing with K_2PrCl_5 structure [2] (Y_2HfS_5 -type [3]), in which the coordination number (CN) of the Ln^{3+} against the chloride ions is 7; in the systems $RbCl/TbCl_3$ [4] and $RbCl/DyCl_3$ [5], analogous compounds do not exist. Compounds Cs_2LnCl_5 with this structure were found in the systems from Ln = La-Nd,

^{*} Corresponding author.

¹ Dedicated to Takeo Ozawa on the Occasion of his 65th Birthday.

while, beginning with Cs_2SmCl_5 [6], the 2:1 compounds have the Cs_2DyCl_5 structure with an octahedral coordination for samarium. It was now of great interest to determine with lanthanides smaller than Dy, whether compounds Rb_2LnCl_5 exist crystallizing with the Cs_2DyCl_5 structure. Therefore, we have investigated the hitherto unknown system $RbCl/ErCl_3$ and have also reinvestigated the $CsCl/ErCl_3$ system. In the $KCl/ErCl_3$ system, unsolved difficulties still exist concerning the polymorphy of K_3ErCl_6 ; we will publish this system and the $KCl/HoCl_3$ system later on.

2. Experimental

The starting compounds were ErCl₃·6H₂O, prepared by dissolving Er₂O₃ (99.9%, Fa. Heraeus, Hanau) in hydrochloric acid, and the alkali metal chlorides CsCl and RbCl (Fa. E. Mcrck, Darmstadt; quality p.A.). They were dried at 500°C.

The equipment for the thermochemical and structural investigations has been described earlier.

- (i) DTA [7]. A homemade device was used with samples either in vacuum-sealed quartz ampoules, or in open corundum crucibles, when rich in ErCl₃.
- (ii) XRD. A Philips X-ray goniometer PW 1050/25 was used for crystal powders in He atmosphere; dynamic high-temperature photos by the Simon-Guinier method.
- (iii) Solution calorimetry [8]. A homemade isoperibolic calorimeter for samples of 2-4 g, dissolved in 1.1 liter 0.01 M hydrochloric acid.
- (iv) E.m.f. measurements [9]. For the formation of the most $ErCl_3$ -rich compounds, the set-up of the cell was: (graphite + Cl_2)/ACl/A⁺-conduct diaphragm/ErCl₃ (+AEr₂Cl₇)/(graphite + Cl₂). The collected e.m.f. vs. T values were subjected to a linear regression analysis.

3. Results

3.1. Preparation of anhydrous compounds

For the preparation of anhydrous ErCl₃ the hexahydrate was first dehydrated to ErCl₃·H₂O by heating in a vacuum furnace from 80 to 100°C. Then the last water was removed by heating the monohydrate slowly from 120 to 250°C in an HCl stream. The product was soluble in water or methanol. Its structure was composed of strongly distorted layers; the AlCl₃-type structure was formed after melting.

The anhydrous compounds Cs_3ErCl_6 and Rb_3ErCl_6 , both with the Cs_3BiCl_6 structure, can be prepared from a solution of $ErCl_3 \cdot 6H_2O$ and Cs_2CO_3 in concentrated acetic acid by precipitation with HCl gas. We have recently described this method for ternary chlorides of trivalent iron, chromium and vanadium [10].

For Rb₃ErCl₆, 3.8 g of ErCl₃·6H₂O were dissolved at 80°C in 30 ml acetic acid. A solution of 3.4 g Rb₂CO₃ in 20 ml H₃C·COOH was added. When saturating the

solution with HCl gas, a pink precipitate was formed. This was filtered and washed with ether under exclusion of moisture: yield, 5.6 g Rb₃ErCl₆ (85%).

3.2. Phase diagrams and crystal structures

Fig. 1 illustrates the results of the DTA measurements on the systems RbCl/ErCl₃ and CsCl/ErCl₃.

The melting temperature of ErCl₃ found by measurements in a corundum crucible was 751°C; this differs distinctly from the data given in the literature, namely 764°C by Korshunov et al. [11], 791°C by Goryuskin et al. [12], and 776°C by Dworkin and Bredig [13]. In 1994 Gaune-Escard et al. [14] found by measurements of 300 mg samples in quartz cells, that ErCl₃ should have a melting point of 773°C and a phase transition at 752°C. In our own experiments, this double effect originated in a reaction of the ErCl₃ melt with SiO₂. As Fig. 2 demonstrates, we found for the first melting only one peak at 751°C. When repeating the melting process, the effect splits; the splitting becomes more pronounced the more melting cycles are run. (The reaction of ScCl₃ and SiO₂ with the formation of Sc₂Si₂O₇ is described by Polyachenok et al. [15].)

In the system RbCl/ErCl₃, two dimorphic compounds exist: Rb₃ErCl₆ and RbEr₂Cl₇. A third, incongruently melting compound, Rb₂ErCl₅, is stable from 348 to 520°C. However, the formation temperature of 348°C could be observed only in heating curves with samples of quenched melts. When cooling, the

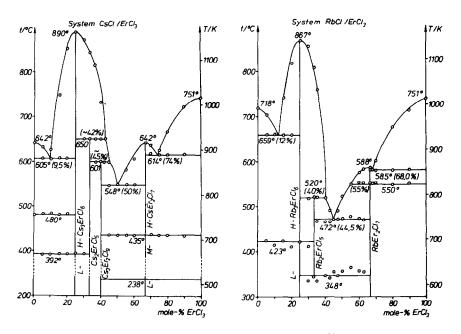


Fig. 1. The systems CsCl/ErCl₃ and RbCl/ErCl₃.

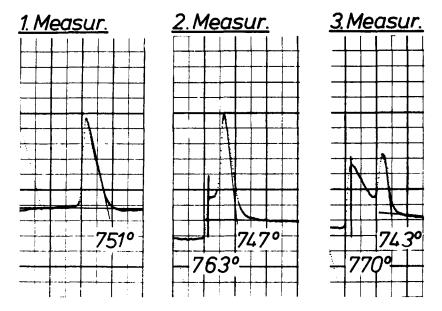


Fig. 2. Melting cycles for ErCl₃ in quartz ampoules.

decomposition does not occur in the time scale of DTA. X-ray measurements of samples cooled to ambient temperature reveal only a partial decomposition after some days.

The results of Blachnik and Selle [16] concerning the system CsCl/ErCl₃ were confirmed. In particular, we corroborate that two incongruently melting compounds exist: Cs₂ErCl₅ (peritectic temp., 650°C) and Cs₃Er₂Cl₉ (peritectic temp., 602°C).

The unit cells of all low-temperature compounds were determined by Meyer and coworkers from powder patterns: L-Cs₃ErCl₆ and L-Rb₃ErCl₆ [17], Cs₃BiCl₆-type (S.G. C 2/c); Cs₂ErCl₅ and Rb₂ErCl₅ [18], Cs₂DyCl₅-type (S.G. Pbnm); Cs₃Er₂Cl₉ [19], Cs₃Tl₂Cl₇-type (S.G.R3c); L-CsEr₂Cl₇ and L-RbEr₂Cl₇ [20], (S.G. Pnma).

The high-temperature modifications of the 3:1 compounds crystallize with the cubic elpasolite structure (S.G. Fm3m); lattice parameters at 500° C are: H-Cs₃ErCl₆, a = 11.535(2) Å; H-Rb₃ErCl₆, a = 11.191 (4) Å.

3.3. Solution calorimetry

All solution enthalpies were determined as the mean of three measurements. For ErCl₃, a value of -211.9(1) kJ mol⁻¹ was found (Ref. [21]: -210 to -216 kJ mol⁻¹). The values for the alkali metal chlorides were taken from previous measurements: CsCl, 18.1 (2) kJ mol⁻¹; RbCl, 17.6 (2) kJ mol⁻¹. With the solution enthalpies, $\Delta_{sol} H_{298}^{\circ}$, the enthalpies of formation from $nACl + ErCl_3$ were calculated

$$\Delta_{\rm f} H_{298}^{\circ} = [\Delta_{\rm sol} H_{298}^{\circ} ({\rm ErCl_3}) + n \Delta_{\rm sol} H_{298}^{\circ} ({\rm ACl})] - \Delta_{\rm sol} H_{298}^{\circ} (A_{\rm n} {\rm ErCl_{n+3}})$$

	$\Delta_{ m sol} H_{298}^{\circ}$	$\Delta_{\mathrm{f}}H_{298}^{\circ}$	$\Delta_{\mathrm{f}}H_{298}^{\circ}$ [16]
0.5 CsEr,Cl ₇	-166.0(1)	- 36.8	-41.9
$0.5 \mathrm{Cs_3Er_2Cl_9}$	-113.9(6)	 70.8	
Cs ₃ ErCl ₆	-63.6(3)	-94.4	-98.5
0.5 RbEr ₂ Cl ₇	-171.9(12)	-31.3	
Rb ₃ ErCl ₆	-81.7(9)	-77.4	

Table 1 Solution enthalpies/kJ mol⁻¹

The measured values for all compounds which could be prepared as pure phases are compiled in Table 1 together with some values from the paper of Blachnik and Selle [16].

3.4. E.m.f. measurements

A comprehensive description of the method was given recently [22]. The e.m.f. values were measured for the formation of each compound from ACI and the adjacent $ErCl_3$ -rich compound in a temperature range from ~ 300 to $500^{\circ}C$. In this range, the dependence of e.m.f. on T was linear. Thus, equations for the regression lines could be transformed by multiplication by -nF to the Gibbs-Helmholtz equation $\Delta_r G^{\circ} = \Delta_r H^{\circ} - T\Delta_r S^{\circ}$. By means of thermodynamic cycles, other functions could be calculated, for instance, if the free enthalpies of syn-reaction, $\Delta_s G^{\circ}$, from the two neighbouring compounds. For high-temperature modifications the temperatures of formation (decomposition) were calculated by the condition $\Delta_s G^{\circ} = 0$.

E.m.f. measurements could not be performed for the most $ErCl_3$ -rich compounds, $CsEr_2Cl_7$ and $RbEr_2Cl_7$. According to our present experiments, the e.m.f. cells break down for e.m.f. values higher than ~ 500 mV.

The Gibbs–Helmholtz equations for the reaction in the cell are listed below, together with the temperature ranges of the measurements. The range of error was smaller than 1 kJ mol^{-1} for the energy values and $0.8 \text{ J K}^{-1} \text{ mol}^{-1}$ for the entropies.

Cs compounds

Reaction
$$\text{CsCl} + \text{M-Cs}_{0.5} \text{ErCl}_{3.5} = \text{Cs}_{1.5} \text{ErCl}_{4.5}$$
 $(T = 580 - 630 \, \text{K})$
 $\Delta_{\text{r}} G^{\circ}/\text{kJ} \, \text{mol}^{-1} = -30.0 - 0.0102 \, T/\text{K}$
Reaction $0.5 \text{CsCl} + \text{Cs}_{1.5} \text{ErCl}_{4.5} = \text{Cs}_{2} \text{ErCl}_{5}$ $(T = 580 - 640 \, \text{K})$
 $\Delta_{\text{r}} G^{\circ}/\text{kJ} \, \text{mol}^{-1} = -9.5 - 0.0072 \, T/\text{K}$
Reaction $\text{CsCl} + \text{Cs}_{2} \text{ErCl}_{5} = \text{L-Cs}_{3} \text{ErCl}_{6}$ $(T = 580 - 610 \, \text{K})$
 $\Delta_{\text{r}} G^{\circ}/\text{kJ} \, \text{mol}^{-1} = -18.2 - 0.0073 \, T/\text{K}$

Rb compounds

Reaction 1.5RbCl + L-Rb_{0.5}ErCl_{3.5} = Rb₂ErCl₅ (
$$T = 560-640 \text{ K}$$
)
 $\Delta_r G^{\circ}/\text{kJ mol}^{-1} = -21.0 - 0.0303 \text{ T/K}$

Reaction RbCl + Rb₂ErCl₅ = L-Rb₃ErCl₆
$$(T = 560-640 \text{ K})$$


$$\Delta_r G^{\circ}/kJ \text{ mol}^{-1} = -23.9 - 0.0017 \ T/K$$

From both reactions, the Gibbs-Helmholtz relation for the formation of Rb₂ErCl₅ from its two neighbouring compounds ('syn-reaction') can be calculated:

Reaction
$${}^2/{}_5\text{Rb}_{0.5}\text{ErCl}_{3.5} + {}^3/{}_5\text{Rb}_3\text{ErCl}_6 = \text{Rb}_2\text{ErCl}_5$$

 $\Delta_8 G^\circ = 6.0 - 0.0111 \ T/\text{K}; \ \Delta_8 H^\circ = 6.0 \ \text{kJ mol}^{-1}; \ \Delta_8 S^\circ = 11.1 \ \text{J K}^{-1} \ \text{mol}^{-1}$

The enthalpy for this reaction is positive (endothermic reaction). At 539 K (266°C), $\Delta_S G^\circ = 0$. Below this temperature, Rb₂ErCl₅ is no longer stable.

In Fig. 3 the enthalpies from e.m.f. measurements are compared with those from solution calorimetry.

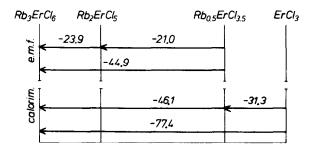


Fig. 3. Enthalpies in kJ mol⁻¹ from e.m.f. measurements and solution calorimetry for reactions $nACl + A_xErCl_{3+x} = A_{(n+x)}ErCl_{(3+x+n)}$.

4. Discussion

As pointed out in the introduction the main purpose of these investigations was to find out which differences appear on going from the DyCl₃ systems [5] to the analogous ErCl₃ systems.

- (1) In the system CsCl/ErCl₃, there is an additional incongruently melting compound, Cs₃Er₂Cl₉. In this ennea-chloride, isolated pairs of face-sharing ErCl₆ octahedra exist. Such double octahedra [Er₂Cl₉]³⁻ are less deformable than isolated octahedra. Therefore, they are only formed if the radius ratio $r_{\rm Ln}^{3+}/r_{\rm Cl}^{-}$ is near to the ideal value for six ligands, i.e. 0.41. With $r_{\rm Er}^{3+}=0.881$ Å [23] and $r_{\rm Cl}^{-}=1.81$ Å, the ratio is 0.49. An analogous Rb compound does not exist because the Rb⁺ ion is too small to surrounded by the necessary twelve Cl⁻ ions. With the bigger Br⁻ ion, there is an ennea-bromide with Sm³⁺ (r=0.964 Å) [24].
- (2) In the Rb system a compound Rb₂ErCl₅ exists having the Cs₂DyCl₅ structure with corner-connected [ErCl₄Cl_{2/2}] octahedra. The analogous compounds with Dy and Tb do not exist, while Rb₂GdCl₅ crystallizes in the K₂PrCl₅ type with CN7 for Ln³⁺.

As can be seen from the e.m.f. measurements, the Gibbs function for the syn-reaction $0.2\text{RbEr}_2\text{Cl}_7 + 0.6\text{Rb}_3\text{ErCl}_6 = \text{Rb}_2\text{ErCl}_5$ is zero at 266°C. Above this temperature, the endothermic enthalpy $\Delta_s H^\circ = 6.0 \text{ kJ mol}^{-1}$ is compensated by a sufficiently high $(-T\Delta S)$ term so that $\Delta_s G$ becomes < 0. This is the equilibrium temperature of formation for the high-temperature phase Rb_2ErCl_5 . This solid state reaction is strongly kinetically hindered so that in the time scale of DTA (heating rate 2 K min⁻¹) the reaction temperature is found at 348°C. In the cooling period, the decomposition does not occur at all: the cooling product is metastable Rb_2ErCl_5 . We have found the same feature for many other systems with such 'reconstructive phase reactions' [25].

The $\Delta_S H^{\circ}$ values of all other syn-reactions are negative therefore, these compounds should be stable down to T = 0 K if no anomalies in heat capacities occur at low temperature.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Their help is gratefully acknowledged.

References

- [1] H.J. Seifert, J. Sandrock and G. Thiel, Z. Anorg. Allg. Chem., 598/599 (1991) 307.
- [2] G. Meyer and E. Hüttl, Z. Anorg. Allg. Chem., 497 (1983) 191.
- [3] W. Jeitschko and P.C. Donohue, Acta Crystallogr. Sect. B, 31 (1975) 1890.
- [4] S. Mitra, J. Uebach and H.J. Seifert, J. Solid State Chem., 115 (1995) 484.
- [5] H.J. Seifert and R. Krämer, Z. Anorg. Allg. Chem., 620 (1994) 1453.

- [6] G. Thiel and H.J. Seifert, Thermochim. Acta, 133 (1988) 275.
- [7] H.J. Seifert and G. Thiel, Thermochim. Acta, 20 (1977) 244.
- [8] G. Thiel and H.J. Seifert, Thermochim. Acta, 22 (1978) 363.
- [9] H.J. Seifert and G. Thiel, J. Chem. Thermodyn., 14 (1982) 1159.
- [10] M. Prien, G. Koske and H.J. Seifert, Z. Anorg. Allg. Chem., 620 (1994) 1943.
- [11] B.G. Korshunov, D.V. Drobot, I.E. Galchenko and Z.N. Shevtsova, Zh. Neorg. Khim., 11 (1965) 4
- [12] V.F. Goryushkin, S.A. Zalymova and A.I. Poshevneva, Zh. Neorg. Khim., 35 (1990) 3081.
- [13] A.S. Dworkin and M.A. Bredig, High Temp. Sci., 3 (1971) 81.
- [14] M. Gaune-Escard, L. Rycerz, W. Szczepaniak and A. Bogacz, J. Alloys Comp., 204 (1994) 193.
- [15] L.D. Polyachenok, L.D. Nazarov and O.G. Polyachenok, Russ. J. Phys. Chem., 52 (1978) 1021.
- [16] B. Blachnik and D. Selle, Z. Anorg. Allg. Chem., 454 (1979) 90.
- [17] H. Mattfeld and G. Meyer, Z. Anorg. Allg. Chem., 618 (1992) 13.
- [18] G. Meyer, J. Soose, A. Moritz, V. Vitt and T. Holljes, Z. Anorg. Allg. Chem., 521 (1985) 161.
- [19] G. Meyer and A. Schönemund, Mater. Res. Bull., 15 (1980) 89.
- [20] G. Meyer, P. Ax, A. Cromm and H. Linzmeier, J. Less-Common Metals, 98 (1984) 323.
- [21] J. Burgess and J. Kijowski, Adv. Inorg. Chem. Radiochem., 24 (1981) 57.
- [22] H.J. Seifert, H. Fink and B. Baumgartner, J. Solid State Chem., 107 (1991) 19.
- [23] R.D. Shannon and C.T. Prewitt, Acta Crystallogr. Sect. B, 25 (1969) 925.
- [24] M. Alsmann and H.J. Seifert, J. Therm. Anal., in press.
- [25] H.J. Seifert, J. Therm. Anal., 35 (1989) 1879.