Bioorganic & Medicinal Chemistry Letters 22 (2012) 3653-3655

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis of norlignans and in vitro inhibitory activity of antigen-induced degranulation

Eonjeong Park^a, Yoon Jung Yang^b, Aejin Kim^a, Jong Hwan Kwak^c, Young Hoon Jung^c, Se Chan Kang^{b,*}, In Su Kim^{a,*}

^a College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
 ^b Department of Life Science, Gachon University, Seongnam 461-701, Republic of Korea
 ^c School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea

ARTICLE INFO

Article history: Received 21 March 2012 Revised 4 April 2012 Accepted 7 April 2012 Available online 13 April 2012

Keywords: Norlignan Degranulation Allergy IgE Derivative

Mast cells and basophils play crucial roles in type I allergy induced by antigens such as foods, dust, mites, pollen, cosmetics and medicines.¹⁻³ When the human body is stimulated by antigens, B cells and plasma cells produce and release antigen-specific immunoglobulin E (IgE) antibodies that bind to high affinity IgE receptors (FceRI) on the surface membranes of mast cells or basophils.⁴ The interactions of multivalent antigens with IgE on the surfaces of mast cells lead to cross-linking of the FccRI-IgE complex, and triggers degranulation, the immediate release of granules containing histamine and serotonin as potent inflammatory mediators.⁵ These mediators induce a variety of biological processes, including inflammation of surrounding tissues, vasodilation, mucous secretion, and bronchoconstriction. β-Hexosaminidase enzyme, which is stored in the secretory granules of mast cells, is released concomitantly with histamine when mast cells are immunologically activated.⁶ The activity of β-hexosaminidase release into the medium has therefore been used as a marker of mast cell degranulation.⁷ Rat basophilic leukemia 2H3 (RBL-2H3) cells, tumor analog of mast cells, have been used as mast cell models in vitro for screening the effects of unknown compounds on histamine release and β -hexosaminidase release activity.⁸

ABSTRACT

The synthesis and biological evaluation of a series of novel norlignans are described. Norlignans were evaluated for their inhibitory activity on the release of β -hexosaminidase, a marker of degranulation, from RBL-2H3 cells induced by the IgE-antigen complex. The results showed that norlignans **4c** and **4e** potently inhibited degranulation, with IC₅₀ values of 18.3 and 17.9 μ M, respectively.

© 2012 Elsevier Ltd. All rights reserved.

Norlignans are abundant in the heartwood of many coniferous trees and in some monocotyledonous plants,⁹ and possess a wide spectrum of biological activities such as anti-cancer/anti-inflammatory,¹⁰ anti-complement,¹¹ anti-fungal activity,¹² testosterone 5α -reductase inhibition,¹³ and cyclic AMP phosphodiesterase inhibition.¹⁴

Naturally occurring norlignan are a class of natural phenolic compounds with diphenylpentane carbon skeletons ($C_6-C_5-C_6$). Hinokiresinol (**1a**), the E-isomer of nyasol (**2**), is a typical example of such a norlignan (Fig. 1). Hinokiresinol (**1a**) was first isolated from the heartwood of *Chamaecyparis obtuse* in 1965,¹⁵ and was found to display appreciable estrogen receptor binding activity¹⁶ and some antiplasmodial activity.¹⁷

We recently found that nyasol (**2**) and its derivatives, isolated from *Anemarrhena asphodeloides*, act as powerful inhibitors of antigen-induced degranulation, and have the potential to be useful therapies for allergic disorders such as asthma and atopic dermatitis.¹⁸ In view of these interesting biological activities of norlignans, we report here the inhibitory activity of hinokiresionol derivatives including synthetic intermediates on antigen-induced degranulation.

General routes for the preparation of hinokiresinol derivatives are outlined in Scheme 1. Chalcones **3a–d**, prepared from the corresponding acetophenones and aldehydes through Claisen– Schmidt condensation, were smoothly converted to β -vinyl ketones **4a–d** by the addition of Grignard reagent in the presence of Cul. The reduction of the ketones **4a–d** with NaBH₄ yielded the alcohols **5a–d**, which were reacted with 1 M HCl to produce

^{*} Corresponding authors. Tel.: +82 31 750 8826; fax: +82 31 750 8984 (S.C.K.); tel.: +82 2 961 0475; fax: +82 2 966 3885 (I.S.K.).

E-mail addresses: sckang73@gachon.ac.kr (S.C. Kang), insukim@khu.ac.kr (I.S. Kim).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.bmcl.2012.04.033

Figure 1. Structures of hinokiresinol (1a) and nyasol (2).

hinokiresinol derivatives **1a**–**d** with high *trans*-stereoselectivity (*trans:cis* = 20 > 1). The structures of synthesized compounds were

determined by the characterization of spectroscopic data (¹H and ¹³C NMR) and mass spectroscopy analysis.

The inhibitory activity of antigen-induced degranulation by synthesized norlignans was tested in an in vitro β -hexosaminidase release inhibition assay using RBL-2H3 cells stimulated by DNP-BSA, according to described protocols,¹⁹ and the results of their inhibitory activities are summarized in Figure 2. 1,3-Bis(4-hydroxyphenyl)pent-4-en-1-one (**4a**) inhibited 50% of β -hexosaminidase release activity at a concentration of 34.6 μ M. On the other hand, compound **4b** with a conversion of the bis-hydroxyl groups in **4a** to bis-methoxy groups had lower activity

Scheme 1. Strategy for the synthesis of hinokiresinol derivatives.

Figure 2. Structures and inhibitory activities of norlignans (1a-d, 4a-d, and 5a-d) and ketotifene (6) on β-hexosaminidase release from RBL-2H3 cells stimulated by DNP-BSA.

Figure 3. Structures and inhibitory activities of compounds 4e and 4f on β -hexosaminidase release from RBL-2H3 cells stimulated by DNP-BSA.

(IC₅₀ = 88.5 μM). The alcohols **5a** and **5b**, prepared from the corresponding compounds **4a** and **4b**, showed no activity, even though at a high concentration (>200 μM). Hinokiresinol (**1a**) and dimethylhinokiresinol (**1b**) were relatively less effective than norlignan **4a** for β-hexosaminidase release inhibition. To investigate the effects of B-ring substituents of **4a**, *m*-hydroxylated derivatives (**1c**, **4c** and **5c**) and *m*-methoxylated derivatives (**1d**, **4d** and **5d**) were examined for inhibitory activity of β-hexosaminidase release. As shown in Figure 2, norlignan **4c** displayed the most potent activity (IC₅₀ = 18.3 μM) among the tested norlignans. The activity of **4c** was about twofold stronger than that of second-generation H₁-antihistamine ketotifen (**6**, IC₅₀ = 35.2 μM), used to treat allergic conjunctivitis.²⁰

To further explore the effects of the *m*-hydroxyl moiety on the B-ring and the *p*-hydroxyl moiety on the A-ring, we examined the β -hexosaminidase release inhibitory activity of compounds **4e** and **4f**, as shown in Figure 3. Interestingly, compound **4e** with *m*-methoxy group on B-ring showed comparable activity (IC₅₀ = 17.9 µM), whereas **4f** with *p*-methoxy group on A-ring was significantly less biologically active (IC₅₀ = 90.5 µM). Hence, these results indicate that β -vinyl ketone structures with a *p*-hydroxyl moiety on A-ring and *m*-substituted groups (OH or OMe) on the B-ring are crucial for inhibitory activity of β -hexosamini-dase release.

In conclusion, we synthesized various norlignans and evaluated their inhibitory activities against β -hexosaminidase release from RBL-2H3 cells stimulated by DNP-BSA. In general, the β -vinyl ketone series were more potent than the β -vinyl alcohol and hinokiresinol series. In particular, β -vinyl ketones **4c** and **4e** showed about twofold stronger inhibitory activity than the well-known anti-allergic drug ketotifen. These results show that β -vinyl ketones represent a new class of strong β -hexosaminidase release inhibitors. Further synthesis and biological evaluation of functionalized β -vinyl ketones are currently under way to elucidate their potential therapeutic uses.

Acknowledgments

This work was supported by National Research Foundation of Korea (No. 2010-0002465) funded by the Ministry of Education, Science and Technology.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmcl. 2012.04.033.

References and notes

- 1. Stevens, R. L.; Austen, K. F. Immunol. Today 1989, 10, 381.
- Wuthrich, B. Int. Arch. Allergy Appl. Immunol. 1989, 90, 3.
 Bruhns, P.: Fremont, S.: Daeron, M. Curr. Opin. Immunol. 2005, 17, 662.
- Gould, H. J.; Sutton, B. J.; Beavil, A. J.; Beavil, R. L.; McCloskey, N.; Coker, H. A.;
- Fear, D.; Smurthwaite, L. Annu. Rev. Immunol. 2003, 21, 579.
 (a) Metcalfe. D. D.; Baram. D.; Mekori, Y. A. Physiol. Rev. 1997, 77, 1033; (b)
- Corry, D. B.; Kheradmand, F. *Nature* **1999**, *402*, B18. 6. Lobe, T. E.; Schwartz, M. Z.; Richardson, C. J.; Rassin, D. K.; Gourley, W. K.;
- Srivastava, S. K.; Storozuk, R. B. J. Pediatr. Surg. 1983, 18, 449.
- Matsuda, H.; Morikawa, T.; Ueda, K.; Managi, H.; Yoshikawa, M. Bioorg. Med. Chem. 2002, 10, 3123.
- 8. Choi, O. H.; Adelstein, R. S.; Beaven, M. A. J. Biol. Chem. 1994, 269, 536.
- 9. Suzuki, T.; Umezawa, T. J. Wood Sci. 2007, 53, 273.
- (a) Wróbel, A.; Eklund, P.; Bobrowska-Hägerstrand, M.; Hägerstrand, H. Anticancer Res. **2010**, 30, 4423; (b) Song, M.-C.; Yang, H.-J.; Han, M.-W.; Kim, D.-K.; Kwon, B.-M.; Lee, K.-T.; Baek, N.-I. J. Appl. Biol. Chem. **2008**, 51, 66.
- Min, B.-S.; Oh, S.-R.; Ahn, K.-S.; Kim, J.-H.; Lee, J.; Kim, D.-Y.; Kim, E.-H.; Lee, H.-K. Planta Med. 2004, 70, 1210.
- 12. lida, Y.; Oh, K.-B.; Saito, M.; Matsuoka, H.; Kurata, H.; Natsume, M.; Abe, H. J. Agric. Food Chem. **1999**, 47, 584.
- 13. Matsuda, H.; Sato, N.; Yamazaki, M.; Naruto, S.; Kubo, M. *Biol. Pharm. Bull.* **2001**, 24, 586.
- Nikaido, T.; Ohmoto, T.; Noguchi, H.; Kinoshita, T.; Saitoh, H.; Sankawa, U. Planta Med. 1981, 43, 18.
- Hirose, Y.; Oishi, N.; Nagaki, H.; Nakatsuka, T. Tetrahedron Lett. 1965, 6, 3665.
 Minami, E.; Taki, M.; Takaishi, S.; Iijima, Y.; Tsutsumi, S.; Akiyama, T. Chem. Pharm. Bull. 2000. 48, 389.
- (a) Lassen, P. R.; Skytte, D. M.; Hemmingsen, L.; Nielsen, S. F.; Freedman, T. B.; Nafie, L. A.; Christensen, S. B. *J. Nat. Prod.* **2005**, *68*, 1603; (b) Skytte, D. M.; Nielsen, S. F.; Chen, M.; Zhai, L.; Olsen, C. E.; Christensen, S. B. *J. Med. Chem.* **2006**, *49*, 436.
- 18. (a) Bak, J. P.; Kim, J. B.; Park, J. H.; Yang, Y. J.; Kim, I. S.; Choung, E. S.; Kang, S. C. *J. Korean Soc. Appl. Biol. Chem.* **2011**, *54*, 367; (b) The IC₅₀ value of natural nyasol (2), isolated from Anemarrhena asphodeloides, on β-hexosaminidase release inhibition is 11.5 µM.
- 19. Choi, O. H.; Kim, J. H.; Kinet, J. P. Nature 1996, 380, 634.
- Kidd, M.; McKenzie, S. H.; Steven, I.; Cooper, C.; Lanz, R. Br. J. Ophthalmol. 2003, 87, 1206.