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Abstract—A formal total synthesis of (—)-N-acetylneuraminic acid (Neu5Ac), the most naturally abundant sialic acid, has been
accomplished using a rigid 6,8-dioxabicyclo[3.2.1]Joctane template for stereoselective introduction of all oxygen and nitrogen
functionality. The template was obtained via a novel ketalization/ring-closing metathesis bond construction strategy, taking
advantage of an advanced intermediate in our KDN synthesis to complete the efficient assembly of Neu5Ac. © 2001 Elsevier

Science Ltd. All rights reserved.

We recently reported an efficient route to (+)-3-deoxy-
D-glycero-D-galacto-2-nonulosonic acid (KDN, Fig. 1)
exploiting the rigid 6,8-dioxabicyclo[3.2.1]octane ring
system for the rapid stereoselective introduction of all
oxygen functionality.! To further showcase the utility of
our intermolecular ketalization/intramolecular C-C
bond formation strategy for substrate desymmetriza-
tion,'? the synthesis of 5-acetamido-3,5-dideoxy-D-glyc-
ero-D-galacto-2-nonulosonic acid [N-acetylneuraminic
acid (Neu5Ac, 1), Fig. 1] has been pursued. NeuSAc
was first isolated in 1951° and has since become the
most studied member of the many known sialic acids
primarily due to its vital biological role as a terminal
residue in glycoproteins, glycolipids, and oligosaccha-
rides in cellular membranes and nerve tissue.*

The chemical synthesis of NeuSAc has been carried out
by several groups due to the fact that enzymatic synthe-
ses provide only very limited access to NeuSAc
analogs.® Each of these chemical syntheses relies on
four sugar-derived stereocenters or lengthy and low
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Figure 1. Sialic acids.
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yielding reaction sequences. The efficient total synthesis
of NeuSAc therefore remains an important goal.

Neu5SAc differs from KDN only at C-5 (Fig. 1) in the
presence of an acetamido group in place of the C-5
hydroxyl of KDN. In our retrosynthesis of NeuSAc
(Fig. 2), azidoalcohol 2, with its four axial substituents
and electron rich 3,4-dimethoxyphenyl carboxyl surro-
gate at the anomeric carbon, was seen as a suitable
precursor to 1.! Tetraacetate 3,'! a late stage KDN
intermediate, was chosen as a suitable convergency
point, requiring a double inversion at C-5 via an inter-
mediate epoxide to obtain 2. Diene 4 was previously
converted to inverted tetraacetate 3 via bis-dihydroxyla-
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Figure 2. Retrosynthetic analysis.
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Figure 3. Chemo- and regioselectivities facilitated by rigid
6,8-dioxabicyclo[3.2.1]Joctane template.

tion and selective stereochemical inversion at C-4, and
4 was obtained via a ketalization/elimination/ring-clos-
ing metathesis (RCM) sequence,'> breaking the C,
symmetry of diene diol 6.

Fig. 3 highlights the chemo- and regioselectivities
expected for hydroxyl sulfonylation (8 and 9) and epox-
ide nucleophilic ring opening (10) in the KDN and
NeuSAc intermediates. In the KDN synthesis, the rigid
6,8-dioxabicyclo[3.2.1]octane template in 8 allowed
complete selectivity for disulfonylation at the C-4 equa-
torial hydroxyl and the C-9 primary alcohol using a
dibutyltin oxide-catalyzed tosylation reaction.! For the
pursuit of Neu5Ac, the C-5 exo-hydroxyl in 9 was
expected to be more reactive towards sulfonylation
than the C-4 endo-hydroxyl, allowing selective a-epox-
ide formation. Furthermore, epoxide 10 was expected
to suffer nucleophilic attack selectively at C-5 in order
to allow a chair-like transition state via trans-diaxial
ring opening.® Each of these reactions would be depen-
dent upon the steric and conformational constraints of
the rigid 6,8-dioxabicyclo[3.2.1]Joctane ring system.

An improved route to 3' for application to the synthesis
of NeuS5Ac is shown in Scheme 1. An acid catalyzed
ketalization/selenoxide elimination sequence, starting
with diene diol 6 and ketone 7, afforded RCM precur-
sor 5 in 86% overall yield (Scheme 1). It was found that
the RCM reaction could be performed with only 1%
Grubbs’ ruthenium benzylidene catalyst” when the cata-
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Scheme 1. Synthesis of tetraacetate 3.
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Scheme 2. Synthesis of methyl glycoside 12.

lyst was added slowly to a CH,Cl, solution of triene 5
at rt, affording S5-aryl-7-vinyl-6,8-dioxabicyclo[3.2.1]-
oct-2-ene 4 in an improved yield (93%). A double
Sharpless asymmetric dihydroxylation gave 8 (Fig. 3),
and selective disulfonylation of the C-4 and C-9
hydroxyls, peracetylation, and C-4 inversion with
cesium acetate provided inverted tetraacetate 3 in 76%
overall yield.! At this point the KDN and NeuS5Ac
syntheses diverge.

With multigram quantities of 3 in hand, methanolysis
of tetraacetate 3 proceeded readily employing NaOMe
(0.25 equiv.) in MeOH (99%, Scheme 2). Selective
protection of the C-8 and C-9 hydroxyls of the resulting
tetraol 11 was best achieved under basic conditions
using 1,3-dichlorotetraisopropyl disiloxane (1.5 equiv.)
and imidazole (3 equiv.) in DMF, affording the tetra-
isopropyl disiloxane 9 (90%).8 Selective sulfonylation
using p-toluenesulfonyl chloride (2.1 equiv.) and tri-
ethyl amine (4.2 equiv.) with catalytic 4-dimethyl-
aminopyridine gave a C-5 tosylate that could be
displaced by the C-4 hydroxyl using NaOMe (4.2
equiv.) in MeOH to provide epoxide 10 (74%).%-'° After
some experimentation, it was found that epoxide
azidolysis could best be accomplished using sodium
azide (10.6 equiv.) and magnesium sulfate (2.1 equiv.)
in DMF (0.1 M) at 90-95°C, giving azidoalcohol 2
(59%).!" Without magnesium sulfate, only 50% conver-
sion could be achieved after 2 days, giving a 2:1 ratio of
epoxide opening regioisomers. Methanolysis of 2 pro-
ceeded readily employing Amberlite IR-120 (plus) acid
resin,'? providing methyl glycoside 12 after removal of
the TIPS group and peracetylation.

To complete the synthesis of NeuSAc, oxidative cleav-
age of the 3,4-dimethoxyphenyl carboxyl surrogate was
achieved using RuO,, formed in situ by adding a cata-
lytic amount of RuCl;-:3H,0 (0.05 equiv.) to a 2:2:3
CCl,/CH;CN/H,O mixture containing 12 and NalO,
(12 equiv.),! providing azidoNeu5Ac derivative 13
(66%, Scheme 3). Reductive acetylation of the azide in
13 gave 14 (69%),>® which has been previously con-
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Scheme 3. Completion of the formal synthesis of NeuSAc.

verted to NeuSAc 1 using IN aq. sodium hydroxide
followed by acidification with aq. HCI (70%).13*¢ The
'H NMR, TLC R,, IR, MS, and optical rotation data
for 14 matched those reported in the literature.'>'* The
formal total synthesis of NeuS5Ac has thus been
achieved in 9.3% overall yield from diene diol 6
employing our convergent ketalization/ring-closing
metathesis strategy and exploiting the resulting rigid
6,8-dioxabicyclo[3.2.1]octane template. The develop-
ment and application of this strategy to other natural
products and ring systems is currently being explored.
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Data for 14: '"H NMR (CDCly) 6 5.41 (dd, J=4, 2 Hz,
1H), 5.31 (d, J=10 Hz, 1H), 5.25 (ddd, J=11.5, 10.5, 5
Hz, 1H), 5.23 (ddd, J=7.5, 2.5, 2 Hz, 1H), 4.81 (dd,
J=12.5, 2.5 Hz, 1H), 4.13 (ddd, J=10.5, 10.5, 10 Hz,
1H), 4.12 (dd, J=12.5, 7.5 Hz, 1H), 3.93 (dd, J=10.5, 2.5
Hz, 1H), 3.82 (s, 3H), 3.27 (s, 3H), 2.44 (dd, J=13, 5 Hz,
1H), 2.15 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H),
1.89 (s, 3H), 1.89 (dd, J=13, 11.5 Hz, 1H); 3C NMR
(CDCly) ¢ 171.0 (C), 170.7 (C), 170.6 (C), 170.2 (O),
170.1 (C), 167.3 (C), 98.9 (C), 72.0 (CH), 71.7 (CH), 68.8
(CH), 68.4 (CH), 62.4 (CH,), 52.7 (CH;), 51.3 (CH,),
49.3 (CH), 37.3 (CH,), 23.2 (CH;), 21.0 (CH;), 20.9
(CH;), 20.8 (CH;x2); IR (thin film) 1745, 1664, 1541,
1371, 1225, 1038 cm™'; [«]Z —-12° (¢=0.67, CHCl,); mp
131-133°C; HRMS (ESI) caled. for C,;H5;0,5NaN (M+
Na*) 528.1693, found 528.1675.



	Formal synthesis of (-)-N-acetylneuraminic acid (Neu5Ac) via desymmetrization by ring-closing metathesis
	Acknowledgements
	References


