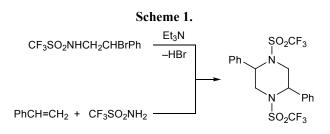
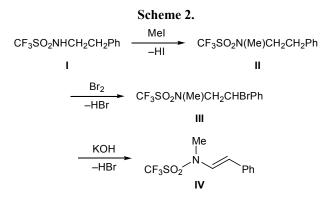
SHORT COMMUNICATIONS N-Methyl-N-(2-phenylethenyl)trifluoromethanesulfonamide


B. A. Shainyan and I. V. Ushakova

Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: bagrat@irioch.irk.ru


Received June 21, 2011

DOI: 10.1134/S107042801201023X

There are only a few published data on N-alkenylsubstituted sulfonamides of the general formula $R^{1}SO_{2}N(R^{2})-C(R^{3})=CR^{4}R^{5}$. Hydrostannylation of *N*-tosyl-substituted ynamines TsN(Bzl)C=CSiMe₃ [1] and $TsN(Bzl)C \equiv CH [2]$ led to the corresponding *N*-tosyl enamines TsN(Bzl)C(SnBu₃)=CHSiMe₃ [1] and TsN(Bzl)C(SnBu₃)=CH₂, and coupling of the latter with various organic halogen compounds RX afforded N-benzyl-N-(1-R-vinyl)-p-toluenesulfonamides $TsN(Bzl)C(R)=CH_2$; N-alkenylsultams were synthesized from N-alkynyl precursors [3]. Unsaturated derivatives of trifluoromethanesulfonamide containing a $CF_3SO_2N(R)CH=CHR'$ fragment were not reported so far. With a view to obtain N-(2-phenylethenyl)trifluoromethanesulfonamide CF₃SO₂NHCH=CHPh we previously synthesized N-(2-phenylethyl)trifluoromethanesulfonamide whose bromination gave N-(2-bromo-2-phenylethyl)trifluoromethanesulfonamide, and the latter was subjected to dehydrobromination by the action of triethylamine [4]. Unexpectedly, the product of this reaction was 2,5-diphenyl-1,4bis(trifluoromethylsulfonyl)piperazine (Scheme 1); its ¹H and ¹³C NMR spectra and melting point were identical to those of a sample synthesized by us previously from styrene and trifluoromethanesulfonamide (its structure was proved by X-ray analysis [5]).

Obviously, dehydrohalogenation may be accompanied by heterocyclization process only when the initial trifluoromethanesulfonamide contains an NH proton. To rule out this possibility N-(2-phenylethyl)-trifluoromethanesulfonamide (I) was preliminarily subjected to methylation with methyl iodide. N-Methyl-N-(2-phenylethyl)trifluoromethanesulfonamide (II) thus formed was brominated to N-(2-bromo-2-phenyl-ethyl)-N-methyltrifluoromethanesulfonamide (III), and dehydrobromination of the latter with alcoholic alkali afforded N-methyl-N-[(E)-2-phenylethenyl]trifluoromethanesulfonamide (IV) (Scheme 2) as the first representative of N-alkenyl-substituted trifluoromethanesulfonamide derivatives.

According to the NMR data, the reaction was not accompanied by side processes. The purity of intermediate products **II** and **III** was checked by ¹H NMR spectroscopy, and the structure of compound **IV** was confirmed by its ¹H, ¹³C, and ¹⁹F NMR spectra and elemental analysis. *trans* Configuration of the double bond in molecule **IV** followed from the coupling constant ${}^{3}J_{\text{HH}} = 14.4$ Hz. By comparing the ¹H and ¹³C NMR spectra of compound **IV** and styrene the following substituent shielding constants of the *N*-methyltrifluoromethanesulfonamide moiety CF₃SO₂N(Me) for olefinic protons and carbons were determined: ¹H NMR: $\sigma_{gem} = 1.35$, $\sigma_{cis} = -0.3$ ppm; ¹³C NMR: $\sigma_{\alpha} = 10.7$, $\sigma_{\beta} = -20.8$ ppm; signals were assigned using the ¹H–¹³C HSQC and HMBC techniques.

N-Methyl-N-(2-phenylethyl)trifluoromethanesulfonamide (II). Methyl iodide, 1.86 ml (0.03 mol), was added dropwise to a mixture of 2.53 g (0.01 mol) of N-(2-phenylethyl)trifluoromethanesulfonamide (I) (prepared according to [4]), 10 ml of N,N-dimethylformamide, and 5.5 g (0.04 mol) of potassium carbonate, the mixture was stirred for 2 h at 25°C, the precipitate was filtered off and washed with a small amount of DMF, the filtrate was evaporated, and the residue was distilled under reduced pressure. Yield 75%, bp 102°C (0.5 mm). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 2.98 t (2H, PhCH₂, J = 7.6 Hz), 3.03 s (3H, NCH₃), 3.60 br.s (2H, NCH₂), 7.25 m (2H, *m*-H), 7.30 m (1H, *p*-H), 7.36 m (2H, *o*-H). ¹³C NMR spectrum (CDCl₃), δ_{C} , ppm: 34.87 (PhCH₂), 35.58 (NCH₃), 52.40 (NCH₂), 120.16 q (CF₃, J_{CF} = 323.8 Hz), $126.90 (C^{p}), 128.70 (C^{m}), 128.72 (C^{o}), 137.02 (C^{i}).$ ¹⁹F NMR spectrum (CDCl₃): $\delta_{\rm F}$ –75.29 ppm.

N-(2-Bromo-2-phenylethyl)-*N*-(methyl)trifluoromethanesulfonamide (III). Compound II, 1.6 g (6 mmol), was dissolved in 10 ml of carbon tetrachloride, and 0.5 ml (0.01 mol) of bromine was added dropwise over a period of 3 h under stirring and UV irradiation. The product was isolated by vacuum distillation. Yield 59%, bp 92°C (0.5 mm). ¹H NMR spectrum (DMSO-*d*₆), δ , ppm: 3.01 s (3H, NCH₃), 3.99 br.s (1H, NCH₂), 4.10 d.d (1H, NCH₂, *J* = 14.0, 8.0 Hz), 5.53 t (1H, CHBr, *J* = 7.6 Hz), 7.39 m (3H, *m*-H, *p*-H), 7.55 d (2H, *o*-H, *J* = 7.1 Hz). ¹³C NMR spectrum (DMSO-*d*₆), δ_{C} , ppm: 35.54 (NCH₃), 50.26 (NCH₂), 56.01 (CHBr), 119.73 q (CF₃, *J*_{CF} = 324.7 Hz), 128.09 (C^o), 128.76 (C^m), 129.08 (C^p), 138.05 (Cⁱ). ¹⁹F NMR spectrum (CDCl₃): δ_{F} –76.03 ppm.

N-Methyl-N-[(E)-2-phenylethenyl]trifluoromethanesulfonamide (IV). Compound III, 0.83 g (2.4 mmol), was added dropwise over a period of 1 h under stirring to a solution of 0.39 g (7 mmol) of potassium hydroxide in 10 ml of anhydrous methanol. The product was isolated by vacuum distillation. Yield 49%, bp 80-82°C (0.5 mm). ¹H NMR spectrum (DMSO-*d*₆), δ, ppm: 3.34 s (3H, NCH₃), 6.43 d (1H, PhCH=, J = 14.4 Hz), 7.17 d (1H, NCH=, J =14.4 Hz), 7.22 t (1H, p-H, J = 7.3 Hz), 7.31 t (2H, m-H, J = 7.5 Hz), 7.41 d (2H, o-H, J = 7.5 Hz). ¹³C NMR spectrum (DMSO- d_6), δ_C , ppm: 34.21 (NCH₃), 115.87 (PhCH=), 119.48 q (CF₃, J_{CF} = 325.5 Hz), 124.82 (NCH=), 125.90 (C^m), 127.33 (C^p), 128.72 (C^o), 134.66 (Cⁱ). ¹⁹F NMR spectrum (CDCl₃): δ_F -74.43 ppm. Found, %: C 44.98; H 3.06; N 5.13; S 11.50. C₁₀H₁₀F₃NO₂S. Calculated, %: C 45.28; H 3.80; N 5.28; S 12.09.

The NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 (¹H), 100 (¹³C), or 386 MHz (¹⁹F); the chemical shifts are given relative to tetramethylsilane (¹H, ¹³C) or CCl₃F (¹⁹F).

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 10-03-00110).

REFERENCES

- 1. Minière, S. and Cintrat, J.-C., Synthesis, 2001, p. 705.
- 2. Minière, S. and Cintrat, J.-C., J. Org. Chem., 2001, vol. 66, p. 7385.
- Hirano, S., Tanaka, R., Urabe, H., and Sato, F., Org. Lett., 2004, vol. 6, p. 727.
- Shainyan, B.A. and Sterkhova, I.V., Russ. J. Org. Chem., 2010, vol. 46, p. 1743.
- Shainyan, B.A., Moskalik, M.Yu., Starke, I., and Schilde, U., *Tetrahedron*, 2010, vol. 66, p. 8383.