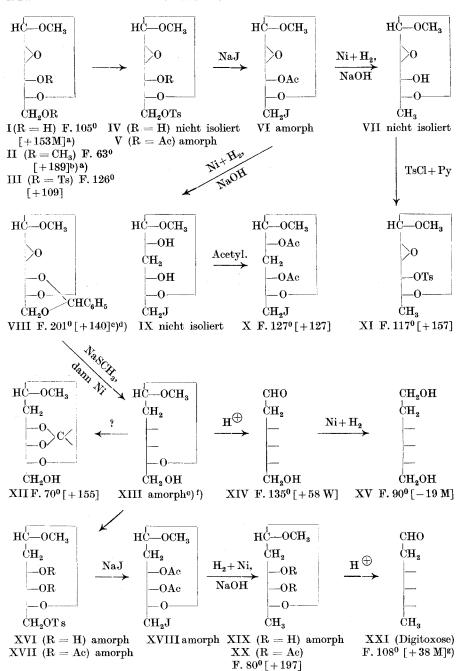
## RÉSUMÉ.

L'oxalate de d,l-menthyle p. de f. 88—88,5° à l'état brut peut être résolu en  $\alpha$ -oxalate fondant à 108,5—109° et en  $\beta$ -oxalate fondant à 106,5—107°. Le mélange à parties égales des deux formes fond à 88—88,5°. Des hypothèses rattacheraient ce dimorphisme à l'existence d'acides oxaliques cis et trans.

Laboratoires de recherches de L. Givaudan & Cie, S.A., Vernier-Genève.

Research laboratories of Givaudan-Delawanna, Inc., Delawanna, N.J. (U.S.A.).

# 158. Krystallisierte 2-Desoxy-d-allose und eine neue Synthese der d-Digitoxose<sup>1</sup>).


Desoxyzucker 16. Mitteilung<sup>2</sup>) von M. Gut und D. A. Prins. (20. VI. 47.)

In einer früheren Arbeit von Jeanloz, Prins und Reichstein<sup>t</sup>)<sup>3</sup>) wurde bereits kurz erwähnt (S. 373, Fussnote 2), dass man durch saure Hydrolyse von 2-Desoxy- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (XIII) kryst. 2-Desoxy-d-allose (XIV) erhält. Im folgenden wird die Synthese dieser neuen 2-Desoxy-hexose sowie einiger ihrer Derivate etwas eingehender beschrieben. Die Herstellung von (XIII) aus 2,3-Anhydro-4,6benzyliden- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (VIII) $^{c}$ ) $^{d}$ ) geschah nach einer früher angegebenen Vorschrifte);), die gute Ausbeuten liefert. Die Konstitution von (XIII) ist durch Abbauresultate gesichert!). Die Hydrolyse wurde mit 0,01-n.H<sub>2</sub>SO<sub>4</sub> durchgeführt und lieferte kryst. 2-Desoxy-d-allose (XIX) vom Smp. 135—136° und der spez. Drehung  $[\alpha]_{D}^{16} = +57.9^{\circ} + 2^{\circ}$  (in Wasser, ohne Mutarotation). Der neue Desoxyzucker gibt eine grüne Keller-Kiliani-Reaktion und wurde durch ein kryst. p-Nitro-phenylhydrazon charakterisiert. Das in üblicher Weise mit Bromwasser bereitete Lacton der 2-Desoxy-d-allonsäure blieb amorph, gab jedoch beim Erhitzen mit Phenylhydrazin das kryst. 2-Desoxy-d-allonsäure-phenylhydrazid. Ferner konnte (XIV) durch Hydrierung mit Raney-Nickel in Methanol leicht in 2-Desoxy-dallit (XV) übergeführt werden, der ebenfalls krystallisierte.

<sup>1)</sup> Auszug aus der Diss. M. Gut, die demnächst erscheint.

<sup>&</sup>lt;sup>2</sup>) 15. Mitteilung M. Gut, D. A. Prins, T. Reichstein, Helv. 30, 743 (1947).

<sup>3)</sup> Die mit 3)—g) bezeichneten Fussnoten siehe S. 1225.



 $Ac = CH_3CO$ —; Ts = p— $CH_3$ — $C_6H_4$   $SO_2$ —. Py = Pyridin. Die Zahlen in eckigen Klammern geben die auf ganze Grade auf- oder abgerundeten spez. Drehungen in folgenden Lösungsmitteln an: Ohne Angabe = Chloroform; M = Methanol; W = Wasser.

Weiter diente das 2-Desoxy-\alpha-methyl-d-allosid (XIII) als Ausgangsmaterial für die Bereitung der Digitoxose (XXI)g), die bereits früher auf anderem Wege<sup>1</sup>) durch Synthese gewonnen worden war. Zunächst wurde versucht, (XIII) in das 3,4-Acetonat (XII) überzuführen. Beim Schütteln von (XIII) in Aceton in Gegenwart von wasserfreiem CuSO<sub>4</sub> bildeten sich bereits ohne Zugabe von H<sub>2</sub>SO<sub>4</sub> sehr rasch reduzierende Stoffe. Wurde die Reaktion nach 6 Stunden abgebrochen, so liess sich in schlechter Ausbeute ein nicht reduzierender Stoff vom Smp. 70-72° isolieren, dessen Analysen jedoch nicht ganz auf die erwartete Formel (XII) (C<sub>10</sub>H<sub>18</sub>O<sub>5</sub>) passten. Daher wurde (XIII) partiell tosyliert und das amorphe Rohprodukt (XVI) acetvliert. Auch das Acetat (XVII) liess sich bisher nicht krystallisieren und wurde daher direkt mit NaJ in Aceton erhitzt. Zwar trat Umsetzung ein, doch blieb das rohe Jodhydrin (XVIII) ebenfalls amorph. Es wurde dann in Methanol mit Raney-Nickel unter Zutropfen von methylalkoholischer Natronlauge hydriert. Das rohe a-Methyldigitoxosid (XIX) krystallisierte nicht, hingegen liess sich dessen Diacetat (XX) krystallisieren und nach Chromatographie in analysenreiner Form fassen. Verseifung mit Ba(OH), gab das reine, aber amorphe α-Methyl-digitoxosid (XIX), das bei milder saurer Hydrolyse in kryst. d-Digitoxose (XXI) überging, die sich mit authentischem Material als identisch erwies. Aus 2,25 g (XIII) liessen sich so 0.31 g reines Acetat (XX) und 0.186 g Digitoxose (XXI) gewinnen. Die Ausbeute ist also schlecht, aber immerhin viel besser als die bei der früheren Synthese<sup>1</sup>) erzielte.

Schliesslich wurde noch versucht, das bequem aus (VIII) zugängliche und schon früher beschriebene 2,3-Anhydro-α-methyld-allosid (I)<sup>a</sup>) zur Synthese der Digitoxose und ähnlicher Desoxyzucker zu verwenden. Die Bereitung von (I) konnte dadurch verbessert werden, dass die partielle Hydrolyse der Benzalverbindung (VIII) mit 0,01-n.H<sub>2</sub>SO<sub>4</sub> durchgeführt wurde. Unter diesen Bedingungen wird (I) fast ohne Nebenprodukte erhalten. Seine Konstitution konnte durch Überführung in den bekannten Dimethyläther (II)<sup>b</sup>)<sup>a</sup>) sowie durch Re-benzalierung zu (VIII) gesichert werden. Es steht also fest, dass bei der Hydrolyse von (VIII) keine Umlagerung eintritt. Durch Tosylierung von (I) mit ca. 3,5 Mol Tosylchlorid wurde das krystallisierte Ditosylat (III) erhalten. Da dieser Stoff zwei reaktionsfähige Stellen enthält, nämlich die Äthylenoxyd-Gruppe und

a) G. J. Robertson, H. G. Dunlop, Soc. 1938, 472.

b) D. S. Mathers, G. J. Robertson, Soc. 1933, 1077.

c) G. J. Robertson, C. F. Griffith, Soc. 1935, 1193.

d) N. K. Richtmyer, C. S. Hudson, Am. Soc. 63, 1730 (1941).

e) R. Jeanloz, D. A. Prins, T. Reichstein, Exper. 1, 336 (1945).

<sup>&</sup>lt;sup>f</sup>) R. Jeanloz, D. A. Prins, T. Reichstein, Helv. 29, 371 (1946).

g) H. Kiliani, B. 25, 2116 (1892); 31, 2454 (1898).

<sup>1)</sup> B. Iselin, T. Reichstein, Helv. 27, 1203 (1944).

die 6-ständige Tosyloxy-Gruppe, bestand die Möglichkeit, dass beide mit Natrium-methylmercaptid reagieren würden<sup>e</sup>)<sup>f</sup>)<sup>1</sup>). Beim Erwärmen von (III) mit NaSCH3 in Methanol färbte sich die Lösung jedoch sehr rasch schwarz, während bei zweimonatiger Einwirkung in der Kälte keine Umsetzung eintrat. Daher wurde (I) durch partielle Tosylierung mit 1,2 Mol Tosylchlorid ins Monotosylat (IV) übergeführt, das nicht isoliert, sondern direkt acetyliert wurde. Das acetylierte Produkte (V) liess sich nicht krystallisieren, konnte aber chromatographisch von beigemengtem Ditosylat (III) und etwas Diacetat von (I) getrennt werden. Beim Erwärmen des so gereinigten (V) mit NaJ in Aceton trat Umsetzung unter vermutlicher Bildung des Jodids (VI) ein, doch konnte auch dieser Stoff nur in amorphem Zustand erhalten werden. Er wurde ohne weitere Reinigung in Gegenwart von Raney-Nickel und methylalkoholischer Natronlauge hydriert, wobei die Reduktion nach Aufnahme von 1,1 Mol H, abgebrochen wurde. Es zeigte sich, dass unter diesen Bedingungen teilweise Hydrierung des Äthylenoxyd-Ringes und teilweise Eliminierung des Jodatoms eingetreten war und sich dementsprechend u. a. die Stoffe (IX) und (VII) gebildet hatten. Keiner von beiden wurde als solcher isoliert, doch liess sich nach Tosylierung eines Teils des rohen Hydrierungsproduktes durch Chromatographie ein krystallisierter Stoff der Bruttoformel C<sub>14</sub>H<sub>18</sub>O<sub>6</sub>S isolieren, dem vermutlich Formel (XI) zukommt. Der Rest des Hydrierungsproduktes wurde acetyliert, worauf sich nach Chromatographie eine kleine Menge eines krystallisierten Produktes der Formel C<sub>11</sub>H<sub>17</sub>O<sub>6</sub>J fassen liess, dem die Formel (X) zukommen dürfte<sup>2</sup>). Da die Ausbeute an dem interessanteren (XI) auch nur gering war, wurden diese Versuche abgebrochen.

Wir danken Herrn Prof. T. Reichstein für das Interesse, das er dieser Arbeit entgegenbrachte, und Herrn Dr. H. Reich für seine Hilfe bei der Abfassung des Manuskripts.

## Experimenteller Teil.

Alle Schmelzpunkte sind auf dem Kofler-Block bestimmt und korrigiert; Fehlergrenze  $\pm~2^{\circ}$ . Substanzproben zur Analyse und Drehung wurden, wenn nichts anderes erwähnt, im Hochvakuum 1-2 Stunden bei  $50^{\circ}$  getrocknet. Übliche Aufarbeitung bedeutet: Waschen mit verdünnter HCl, Sodalösung und Wasser, Trocknen über  $\mathrm{Na_2SO_4}$  und Eindampfen im Vakuum.

#### 2-Desoxy-d-allose (XIV).

4,4 g (XIII)<sup>e)</sup>f) wurden in 88 cm³ 0,01-n. H<sub>2</sub>SO<sub>4</sub> gelöst und auf 50° erhitzt. Nach 5 Minuten betrug die spez. Drehung (ber. auf (XIII)) +85°, nach 20 Minuten +39°, nach 80 Minuten +17°, nach 100 Minuten +16°. Es wurde abgekühlt, mit frisch gefälltem BaCO<sub>3</sub> neutralisiert, über wenig gewaschene Tierkohle filtriert und eingedampft. Der Rückstand wurde in absolutem Alkohol aufgenommen und die Lösung filtriert. Nach Eindampfen im Vakuum lieferte sie 4,0 g 2-Desoxy-d-allose (XIV) als farblosen Sirup,

<sup>1)</sup> A. L. Raymond, J. Biol. Chem. 107, 85 (1934).

<sup>2)</sup> Diese Formel ist nicht bewiesen, doch ist früher gezeigt worden<sup>3</sup>), dass die Hydrierung von 2,3-Anhydroderivaten des Typus (I) immer zu 3-Desoxyzuckern führt.

<sup>3)</sup> Vgl. M. Gut, D. A. Prins, T. Reichstein, Helv. 30, 743 (1947).

der nach 2-tägigem Stehen über  $P_2O_5$  im Vakuumexsikkator Krystallkeime enthielt. Beim Befeuchten mit absolutem Alkohol und Anreiben krystallisierte der Sirup durch. Nach Zugabe von mehr Alkohol und etwas Äther wurden die Krystalle abfiltriert. Sie wogen 2,7 g und stellten kleine Prismen dar, die bei  $135-136^{\circ}$  schmolzen. Die Mutterlauge wurde eingedampft, nochmals hydrolysiert und lieferte weitere 300 mg (XIV) vom gleichen Schmelzpunkt. Aus der Schmelze krystallisierte die Substanz in sechsseitigen Plättchen. Die spez. Drehung betrug  $[\alpha]_D^{1.6} = +57,9^{\circ} \pm 2^{\circ}$  (c = 1,175 in Wasser) (nach 7 Minuten, nach 5 Stunden ebenso).

```
58,50 mg Subst. zu 4,9801 cm³; l=1 dm; \alpha_{\rm D}^{16}=+0.78^{\rm 0}\pm0.01^{\rm 0}
```

Zur Analyse wurde 4 Tage über  $P_2O_5$  getrocknet und im Schweinehen eingewogen; kein Gewichtsverlust.

```
3,940 mg Subst. gaben 6,317 mg CO_2 und 2,559 mg H_2O (E. T. H.) C_6H_{12}O_5 (164,16) Ber. C 43,90 H 7,37% Gef. ,, 43,75 ,, 7,28%
```

Bei der Keller-Kiliani-Reaktion bildete sich zuerst ein kirschroter Ring, der sich langsam bräunte. Die obere Schicht wurde schwach grünlich, der Ring immer dicker. Nach 4 Stunden trat vollständige Verkohlung ein.

```
2-Desoxy-d-allose-p-nitrophenylhydrazon.
```

100 mg 2-Desoxy-d-allose (XIV) vom Smp. 135—136° wurden in 2 cm³ Methanol gelöst, mit der Lösung von 94 mg p-Nitrophenylhydrazin in 2 cm³ Methanol versetzt und 5 Minuten gekocht. Dann wurde im Vakuum eingedampft und der Rückstand in wenig Äthanol gelöst. Nach zweitägigem Stehen bei 0° hatten sich gelbe Prismen ausgeschieden, die nach zweimaligem Umkrystallisieren aus Alkohol-Äther 45 mg wogen und bei 61—62° (Zers.) schmolzen. Die spez. Drehung betrug  $[\alpha]_D^{13} = -54.6° \pm 5°$  (c = 1,135 in Methanol) (abgelesen nach 10 Minuten).

```
11,457 mg Subst. zu 1,0094 cm³; l=0.5 dm; \alpha_{\rm D}^{13}=-0.31^0\pm0.03^0 3,972 mg Subst. gaben 6,97 mg CO<sub>2</sub> und 2,09 mg H<sub>2</sub>O (F. W.) 4,622 mg Subst. gaben 0,583 cm³ N<sub>2</sub> (19°, 725 mm) (F. W.) C<sub>12</sub>H<sub>17</sub>O<sub>6</sub>N<sub>3</sub> (299,28) Ber. C 48,15 H 5,73 N 14,04% Gef. ,, 47,89 ,, 5,88 ,, 14,07%
```

2-Desoxy-d-allonsäure-phenylhydrazid.

100 mg 2-Desoxy-d-allose (XIV) vom Smp. 135—136° wurden in 1,7 cm³ Wasser gelöst und mit 45 mm³ Br₂ versetzt¹). Das Gemisch blieb unter gelegentlichem Umschwenken 24 Stunden im Dunkeln stehen, dann wurde das überschüssige Brom im Vakuum abgesaugt und die Lösung mit frisch gefälltem Silbercarbonat neutralisiert. Es wurde filtriert, das Filtrat mit H₂S behandelt, über etwas gewaschene Tierkohle filtriert und eingedampft. Der Rückstand wurde zur Lactonisierung 45 Min. im Hochvakuum auf 75° erwärmt, nach Abkühlung in 1 cm³ absolutem Alkohol gelöst, mit 105 mm³ Phenylhydrazin versetzt, das Lösungsmittel verdampft und der Rückstand 45 Minuten auf 90° erwärmt. Hierauf wurde mit etwas Alkohol und Äther verrieben und in den Eiskasten gestellt, wobei nach 3 Tagen Krystallisation eintrat. Die Krystalle wurden aus Alkohol-Äther umkrystallisiert und lieferten 45 mg farblose Prismen vom Smp. 112—113° (Sintern bei 103°). Aus den Mutterlaugen wurden noch 15 mg Krystalle der gleichen Reinheit erhalten.

```
Die spez. Drehung betrug [\alpha]_D^{16}=-12,5^0\pm2^0 (c = 0,859 in Methanol). 22,01 mg Subst. zu 2,5050 cm³; l=1 dm; \alpha_D^{16}=-0,11^0\pm0,02^0
```

<sup>1)</sup> Zur Methodik vgl. C. W. Shoppee, T. Reichstein, Helv. 23, 990 (1940).

Zur Analyse wurde 3 Stunden bei 80° getrocknet und im Schweinchen eingewogen.

```
3,813 mg Subst. gaben 7,45 mg CO<sub>2</sub> und 2,25 mg H<sub>2</sub>O (F. W.) 3,713 mg Subst. gaben 0,345 cm<sup>3</sup> N<sub>2</sub> (20<sup>0</sup>; 736 mm) (F. W.) C_{12}H_{18}O_5N_2 (270,28) Ber. C 53,32 H 6,71 N 10,37% Gef. ,, 53,32 ,, 6,60 ,, 10,48%
```

### 2-Desoxy-d-allit (XV).

300 mg 2-Desoxy-d-allose (XIV) vom Smp.  $135-136^{\circ}$  wurden in 10 cm³ Methanol gelöst und nach Zugabe des aus 400 mg Ni-Al-Legierung bereiteten Raney-Nickels 16 Stunden bei 50° und 110-120 Atm. Wasserstoffdruck hydriert. Hierauf wurde die Flüssigkeit vom Katalysator abfiltriert und im Vakuum eingedampft. Der Rückstand (300 mg) krystallisierte nach 1-stündigem Stehen. Zweimaliges Umkrystallisieren aus Alkohol-Äther lieferte 200 mg farblose Prismen vom Smp.  $90-91^{\circ}$ , die Fehling'sche Lösung nicht reduzierten. Die spez. Drehung betrug  $[\alpha]_{\rm D}^{16}=-19,0^{\circ}\pm2^{\circ}$  (c = 2,259 in Methanol).

```
56,60 mg Subst. zu 2,5050 cm³; l=1 dm; \alpha_{\rm D}^{16}=-0.43^{\rm 0}\pm0.02^{\rm 0}
```

Zur Analyse wurde 10 Minuten im Vakuum geschmolzen (Schweinchen).

```
3,771 mg Subst. gaben 6,00 mg \rm CO_2 und 2,87 mg \rm H_2O (F. W.) \rm C_6H_{14}O_5 (166,17) Ber. C 43,37 H 8,49% Gef. ,, 43,42 ,, 8,52%
```

2-Desoxy-3, 4-isopropyliden- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (XII)?

100 mg frisch destilliertes 2-Desoxy- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (XIII)e)t) wurden in 100 cm³ trockenem Aceton unter Erwärmen gelöst, 1 g wasserfreies CuSO<sub>4</sub> zugefügt und das Gemisch 6 Stunden auf der Maschine geschüttelt. Dann wurde vom nunmehr blaugefärbten CuSO<sub>4</sub> abfiltriert, das Filtrat mit wenig Pottasche versetzt und zur Neutralisation nochmals 30 Minuten geschüttelt. Nach Abfiltrieren des K<sub>2</sub>CO<sub>3</sub> wurde die Lösung zur Trockne gedampft und der Sirup bei 0,01 mm Druck bis 90° Badtemperatur im Molekularkolben destilliert. Das 100 mg wiegende farblose Destillat, das Fehling'sche Lösung reduzierte, krystallisierte nach einigen Tagen teilweise, doch gelang es auch durch mehrmaliges Umkrystallisieren nicht, die Krystalle von anhaftendem Sirup zu befreien. Zur weiteren Reinigung wurde die gesamte Menge über 3 g Al<sub>2</sub>O<sub>3</sub> chromatographiert. Die mit Benzol und Benzol-Äther (5:1) abgelösten Anteile gaben aus Äther 30 mg farblose Prismen vom Smp. 70—72°, die Fehling'sche Lösung nicht reduzierten. Die spez. Drehung betrug [ $\alpha$ ]  $\frac{18}{D}$  = +154,9°  $\pm$  3° (c = 0,775 in Chloroform).

```
7,821 mg Subst. zu 1,0094 cm³; l=1 dm; \alpha_{\rm D}^{18}=+1,20^{\rm 0}\pm0,02^{\rm 0} 3,591 mg Subst. gaben 7,33 mg CO<sub>2</sub> und 2,45 mg H<sub>2</sub>O (F. W.) 3,683 mg Subst. gaben 4,651 mg AgJ (F. W.) C<sub>10</sub>H<sub>18</sub>O<sub>5</sub> (218,24) Ber. C 55,03 H 8,31 - OCH<sub>3</sub> 14,22% Gef. ,, 55,70 ,, 7,64 ,, 14,69%
```

Dass bei der obigen Reaktion auch reduzierende Stoffe entstehen, könnte daher rühren, dass die durch Hydrolyse des  ${\rm CuSO_4}$  entstandene Acidität schon genügt, um das 2-Desoxy-glykosid zu hydrolysieren. Das würde auch die schlechte Ausbeute bei dieser Reaktion erklären. Eventuell würde die Zugabe von Methanol zum Reaktionsgemisch bessere Resultate ergeben, indem dann hydrolysiertes Material wieder glykosidifiziert würde.

```
2-Desoxy-3, 4-diacetyl-\alpha-methyl-d-allomethylosid-\langle 1,5 \rangle (XX).
```

2,25 g (XIII)<sup>e) f)</sup> wurden in 30 cm<sup>3</sup> Pyridin gelöst, auf 0° abgekühlt, mit der eiskalten Lösung von 2,65 g Tosylchlorid (= 1,1 Mol) in 10 cm<sup>3</sup> Pyridin versetzt und 6 Stunden bei 18° stehen gelassen. Dann wurden 4,5 cm<sup>3</sup> Acetanhydrid zugefügt und weitere 18 Stunden bei Raumtemperatur stehen gelassen. Hierauf wurde der Überschuss an Tosyl-

chlorid und Acetanhydrid durch Zugabe von I cm<sup>3</sup> Wasser und 2-stündiges Stehen zerstört, das Gemisch mit eiskalter 2-n. Salzsäure bis zur kongosauren Reaktion versetzt und mit Chloroform ausgeschüttelt. Die Chloroformlösung wurde mit Eis versetzt, neutral gewaschen, über Natriumsulfat getrocknet und eingedampft. Der sirupöse Rückstand (XVII) wog 4,0 g (= 75% der Theorie) und wurde in rohem Zustand mit 3 g Natriumjodid und 20 cm<sup>3</sup> Aceton 2 Stunden im Bombenrohr auf 80° erhitzt. Das ausgeschiedene Natriumtosylat wurde abfiltriert (1 g = 54% der Theorie), das Filtrat im Vakuum zur Trockne gedampft, der Rückstand in Äther aufgenommen, die ätherische Lösung mit Wasser, Natriumthiosulfatlösung, verdünnter Sodalösung und Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft. Der verbleibende amorphe Rückstand (XVIII) wog 4,0 g. Er wurde in 40 cm3 Methanol gelöst und mit dem aus 3 g Ni-Al-Legierung bereiteten Raney-Nickel unter Zutropfen von 15 cm<sup>3</sup> 4-proz. methanolischer Natronlauge hydriert¹). Die Wasserstoffaufnahme betrug 210 cm³ (ber. 241 cm³). Dann wurde vom Katalysator abfiltriert und das Filtrat mit wenig Wasser versetzt, mit CO<sub>2</sub> neutralisiert und im Vakuum eingedampft. Nach Aufnehmen in ca. 40 cm³ absolutem Alkohol wurde von anorganischen Anteilen abfiltriert und wieder im Vakuum zur Trockne gedampft. Als Rückstand blieben 2,5 g Sirup (XIX), die mit Pyridin-Acetanhydrid über Nacht bei Raumtemperatur acetyliert wurden. Das nach üblicher Aufarbeitung erhaltene amorphe Acetat (XX) gab nach Anreiben mit Äther farblose Prismen vom Smp. 55-756, der sich weder durch Umkrystallisieren noch durch Destillation im Molekularkolben verbessern liess. Daher wurde die gesamte Menge über 50 g Al<sub>2</sub>O<sub>3</sub> chromatographiert. Die mit Benzol-Petroläther eluierten Fraktionen gaben nach Umkrystallisieren aus Äther-Petroläther 310 mg farblose Prismen vom Smp. 80°. Zur Analyse und Drehung wurde eine Probe bei 0,02 mm und 65-85° Badtemperatur im Molekularkolben destilliert und nochmals aus Äther-Petroläther umkrystallisiert. Die spez. Drehung betrug  $[\alpha]_D^{18}$  $+196,6^{\circ} \pm 2^{\circ}$  (e = 1,211 in Chloroform).

```
3,700 mg Subst. gaben 7,233 mg CO<sub>2</sub> und 2,471 mg \rm H_2O (E. T. H.)  
\rm C_{11}H_{18}O_6 (246,25) Ber. C 53,65 H 7,37%  
Gef. ,, 53,35 ,, 7,47%
```

 $\alpha$ -Methyl-d-digitoxosid- $\langle 1,5 \rangle$  (XIX).

300 mg α-Methyl-d-digitoxosid-〈1,5〉-diacetat (XX) vom Smp. 79—80° wurden in 15 cm³ 10-proz. methanolischer Ba(OH)<sub>2</sub>·8 H<sub>2</sub>O-Lösung gelöst und 3 Stunden bei 20° stehen gelassen. Hierauf wurde kurz aufgekocht, mit CO<sub>2</sub> neutralisiert, das BaCO<sub>3</sub> abfiltriert, das Filtrat im Vakuum auf ca. 10 cm³ eingeengt und mit dem gleichen Volumen Aceton versetzt. Nach erneuter Filtration und Nachwaschen mit Aceton wurde wieder eingedampft, der Rückstand mit wenig absolutem Alkohol verflüssigt, erneut mit Aceton versetzt, bis keine weitere Fällung eintrat, und die filtrierte Lösung im Vakuum eingedampft. Der Rückstand lieferte bei der Destillation im Molekularkolben bei 0,01 mm und 60° 120 mg farblosen Sirup (XIX), der nicht krystallisierte. Die Keller-Kiliani-Reaktion war hellgrün am Ring, die obere Schicht nach 3 Minuten blaugrün, nach 15 Minuten blassgrün. Zur Analyse wurde eine kleine Probe nochmals im Röhrchen destilliert.

d-Digitoxose (XXI).

60 mg (XIX) (Sirup) wurden in 2 cm³ 0,02-n.  $\rm H_2SO_4$  gelöst und 25 Minuten auf 60° erwärmt. Hierauf wurde mit frisch gefälltem  $\rm BaCO_3$  neutralisiert, abgekühlt, über wenig gewaschene Tierkohle filtriert, das Filtrat bei 30–35° im Vakuum eingedampft, der Rückstand in wenig Methanol aufgenommen und die Lösung filtriert und eingedampft.

M. Busch, H. Stöve, B. 49, 1063 (1916); P. A. Levene, J. Compton, J. Biol. Chem. 111, 325 (1935).

Der erhaltene Sirup wurde in wenig Aceton gelöst, mit der gleichen Menge Äther versetzt und von den letzten Resten anorganischen Materials über eine Spur Kohle abfiltriert. Nach dem Eindampfen wurde ein farbloser Sirup erhalten (45 mg), der Fehling'sche Lösung reduzierte. Umkrystallisieren aus wenig Aceton unter allmählichem Zusatz von Äther gab 33 mg farblose derbe Prismen vom Smp.  $108-111^{0}$  bzw.  $102-109^{0}$  nach starkem Verreiben. Natürliche Digitoxose<sup>g</sup>) sowie die Mischprobe schmolzen gleich. Die Keller-Kiliani-Reaktion war positiv, und zwar wurde die zuerst kornblumenblaue Farbe der oberen Schicht nach 5 Minuten grasgrün. Die spez. Drehung betrug  $[\alpha]_{\rm D}^{15}=+38,1^{0}\pm2^{0}$  (c = 1,025 in Methanol) (abgelesen nach 10 Minuten).

10,346 mg zu 1,0094 cm³; 
$$l = 1$$
 dm;  $\alpha_D^{15} = +0.39^0 \pm 0.02^0$ 

Zur Analyse wurde 2 Tage über  $\mathrm{P_2O_5}$ im Vakuum getrocknet und im Schweinchen eingewogen.

3,760 mg Subst. gaben 6,70 mg CO<sub>2</sub> und 2,73 mg H<sub>2</sub>O (F. W.) 
$$C_6H_{12}O_4$$
 (148,16) Ber. C 48,64 H 8,16% Gef. ,, 48,63 ,, 8,13%

2, 3-Anhydro- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (I).

5,0 g 2,3-Anhydro-4,6-benzyliden- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (VIII)<sup>c</sup>)<sup>d</sup>) wurden in 30 cm³ Methanol suspendiert und nach Zugabe von 100 cm³ 0,01-n.  $\rm H_2SO_4$  2 Stunden unter Rückfluss gekocht. Dann wurde die klare Lösung im Vakuum auf ca. 75 cm³ eingeengt, hierauf mit überschüssiger  $\rm Ba(OH)_2$ -Lösung versetzt und der Überschuss mit  $\rm CO_2$  neutralisiert. Nach Abnutschen von  $\rm BaSO_4$  und  $\rm BaCO_3$  wurde das Filtrat im Vakuum auf 30 cm³ eingeengt, dann mehrmals mit Chloroform ausgezogen und hierauf die wässrige Phase im Vakuum zur Trockne eingedampft. Zur Entfernung von anorganischen Anteilen wurde der Sirup in wenig absolutem Alkohol gelöst, von Ungelöstem abfiltriert und eingedampft, wobei 3,3 g farblose Gallerte erhalten wurden, die über Nacht krystallisierte. Die Krystalle schmolzen bei  $104-107^{\circ}$  und die spez. Drehung betrug [ $\alpha$ ] $_{\rm D}^{16}=+154,2^{\circ}\pm2^{\circ}$  (c = 1,251 in Methanol). Robertson und Dunlop³) geben einen Smp. von  $105-107^{\circ}$  und die spez. Drehung [ $\alpha$ ] $_{\rm D}^{15}=+153^{\circ}$  (in Methanol) an.

```
2,3-Anhydro-\alpha-methyl-d-allosid-\langle 1,5 \rangle-4,6-dimethyläther (II).
```

 $100~{\rm mg}$  (I) vom Smp.  $104-107^{o}$  wurden im Hochvakuum getrocknet und anschliessend zweimal nach  $Purdie^{1}$ ) methyliert. Die übliche Aufarbeitung ergab 110 mg Methyläther (II), der nach Umkrystallisieren aus Äther-Petroläther 95 mg farblose Prismen vom Smp.  $62-64^{o}$  lieferte. Die spez. Drehung betrug  $[\alpha]_{\rm D}^{16}=+187,6^{o}\pm2^{o}$  (c = 0,938 in CHCl<sub>3</sub>). Diese Werte stehen in guter Übereinstimmung mit den Angaben von Mathers und  $Robertson^{b}$ ) und von Robertson und  $Dunlop^{a}$ ).

```
2,3-Anhydro-4,6-benzyliden-\alpha-methyl-d-allosid-\langle 1,5 \rangle (VIII) aus (I).
```

200 mg (I) vom Smp.  $104-107^{\rm 0}$  wurden nach Trocknen im Vakuum über  $\rm P_2O_5$  mit 1,5 cm³ Benzaldehyd und 0,5 g ZnCl<sub>2</sub> ins Benzalderivat übergeführt. Das Rohprodukt (150 mg) wurde aus Methanol umkrystallisiert und lieferte 110 mg lange Nadeln vom Smp.  $200-201^{\rm 0}$ , die sich nach Mischprobe und Drehung mit (VIII)c)d) als identisch erwiesen.

```
2,3-Anhydro-4,6-ditosyl-\alpha-methyl-d-allosid\langle 1,5 \rangle (III).
```

1 g (I) vom Smp. 104—107° wurden in 10 cm³ Pyridin gelöst, mit 3,8 g Tosylchlorid versetzt, 16 Stunden bei 18° stehen gelassen und dann noch 1 Stunde auf 60° erwärmt. Nach dem Abkühlen wurden 0,5 cm³ Wasser zugegeben und nochmals 2 Stunden stehengelassen. Dann wurde mit Chloroform ausgeschüttelt, die Lösungen neutral gewaschen,

<sup>&</sup>lt;sup>1</sup>) T. Purdie, J. C. Irvine, Soc. **83**, 1021 (1903).

getrocknet und abgedampft. Der Rückstand gab nach zweimaligem Umkrystallisieren aus Benzol-Äther 2,5 g farblose Prismen vom Smp. 126—127°, die mit dem im nächsten Versuch beschriebenen Analysenpräparat identisch waren.

## Einwirkung von NaSCH3.

- a) 100 mg 2,3-Anhydro-4,6-ditosyl- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (III) wurden in eine aus 2 cm³ absolutem Methanol, 100 mg Natrium und 200 mg Methylmercaptan bereitete NaSCH<sub>3</sub>-Lösung eingetragen und das Gemisch während 5 Min. zum Sieden erhitzt, wobei es sich sofort schwarz färbte. Aus diesem Grunde wurde auf eine Aufarbeitung verzichtet.
- b) 100 mg (III) wurden mit der oben erwähnten Lösung versetzt und 2 Monate bei Raumtemperatur stehengelassen. Hierauf wurde das Methanol im Vakuum abgedampft, der Rückstand 3mal mit je 10 cm³ Chloroform ausgezogen und die Chloroformlösungen zweimal mit Wasser gewaschen, über Natriumsulfat getrocknet und eingedampft. Es wurden 95 mg eines farblosen Sirups erhalten, der sogleich krystallisierte. Nach zweimaligem Umkrystallisieren aus Aceton-Äther resultierten 85 mg farblose Prismen, die nach Smp. (126-127°) und Mischprobe mit dem Ausgangsmaterial (III) identisch waren.
  - 2, 3-Anhydro-4-acetyl-6-tosyl- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (V) und 2, 3-Anhydro-4, 6-ditosyl- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  (III) aus (I).
- 3,0 g (I) vom Smp. 104-107° wurden in 25 cm³ Pyridin gelöst, die Lösung auf 00 gekühlt, unter Umschwenken mit 4 g Tosylchlorid (= 1,2 Mol) versetzt und 3 Stunden bei 18 <sup>0</sup>stehen gelassen. Nach Kühlung auf 0<sup>0</sup> wurden 6 cm<sup>3</sup> Essigsäure-anhydrid zugegeben und weitere 3 Stunden bei Raumtemperatur stehengelassen. Eventuell noch unverbrauchtes Tosylchlorid und Acetanhydrid wurden durch 2-stündige Einwirkung von 0,5 cm<sup>3</sup> Wasser zerstört. Nach Zugabe von mehr Wasser wurde mit Chloroform extrahiert, die Lösung neutral gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Der sirupöse Rückstand (6 g) wurde mit der 25-fachen Menge Al<sub>2</sub>O<sub>3</sub> chromatographiert. Mit Benzol-Petroläther (1:4) wurden 700 mg sirupöse Fraktionen erhalten, die schwefelfrei waren und wahrscheinlich zur Hauptsache aus 2,3-Anhydro-4,6-diacetyl- $\alpha$ -methyl-d-allosid- $\langle 1,5 \rangle$  bestanden. Die mit Benzol-Petroläther (1:1) und Benzol eluierten Fraktionen wogen 3,6 g, waren ebenfalls amorph, enthielten jedoch Schwefel. Sie bestanden zur Hauptsache aus (V) und wurden ohne weitere Reinigung weiterverarbeitet. Mit Benzol-Äther-Gemischen wurden 1,3 g eluiert, die nach Umkrystallisieren aus Benzol-Äther bei 126-127° schmolzen. Diese Substanz stellte das oben beschriebene Ditosylat (III) dar. Die spez. Drehung betrug  $[\alpha]_D^{17} = +108,6^0 \pm 2^0$  (c = 1,179 in Chloroform).

```
29,60 mg Subst. zu 2,5112 cm³; l=1\,{\rm dm};~\alpha_{\rm D}^{17}=+1,28^0\pm0.02^0
```

Zur Analyse wurde eine Probe nochmals aus Benzol-Äther umkrystallisiert.

3,752 mg Subst. gaben 7,242 mg  $\rm CO_2$  und 1,705 mg  $\rm H_2O$  (E. T. H.) 4,433 mg Subst. verbr. 1,776 cm³ 0,02-n. KJO₃ ( $\it B\"urger$ ) (E. T. H.)

 $C_{21}H_{24}O_9S_2$  (484,52) Ber. C 52,08 H 4,99 S 13,23% Gef. ,, 52,67 ,, 5,09 ,, 12,84%

- 2, 3-Anhydro-4-tosyl- $\alpha$ -methyl-d-allomethylosid- $\langle 1,5 \rangle$  (XI) und 3-Desoxy-2, 4-diacetyl-6-jod- $\alpha$ -methyl-d-glucosid- $\langle 1,5 \rangle$  (X) aus (V).
- 3,8 sirupöses, chromatographisch gereinigtes (V) wurden mit 3 g NaJ und 15 cm<sup>3</sup> Aceton im Bombenrohr 4 Stunden auf 80° erhitzt. Das krystallin ausgeschiedene Natriumtosylat wurde abfiltriert und wog 1,4 g (= 70% der Theorie). Das Filtrat wurde zur Trockne gedampft, der Rückstand in Äther aufgenommen und die ätherische Lösung mit Wasser, Natriumthiosulfat-Lösung, verdünnter Sodalösung und Wasser gewaschen, über Natriumsulfat getrocknet und abgedampft. Der amorphe Rückstand (VI) wog 3,3 g. Er wurde in 15 cm<sup>3</sup> Methanol gelöst und mit dem *Raney*-Nickel aus 1,0 g Ni-Al-Legierung

unter Zutropfen von 4-proz. methanolischer Natronlauge hydriert<sup>1</sup>)<sup>2</sup>). Die Wasserstoffaufnahme wurde bei 250 cm<sup>3</sup> (= 1,1 Mol) abgestoppt. Nun wurde vom Katalysator abfiltriert, das Filtrat mit wenig Wasser versetzt, mit  $CO_2$  neutralisiert, Methanol und Wasser im Vakuum verjagt und der Rückstand in viel Essigester aufgenommen. Nach Filtration von wenig Ungelöstem wurde bei  $20-30^{\circ}$  im Vakuum eingedampft. Als Rückstand blieben 1,6 g gelber Sirup (A) (Gemisch von (IX) und (VII)).

a) 0,8 g dieses Sirups wurden in 3 cm³ absolutem Pyridin gelöst und nach Zugabe von 1,5 g Tosylchlorid über Nacht bei Raumtemperatur stehen gelassen. Am andern Tag wurde ½ Stunde auf 50° erwärmt, abgekühlt und unverbrauchtes Tosylchlorid durch 2-stündige Einwirkung von 3 Tropfen Wasser zerstört. Nach Zugabe von mehr Wasser wurde mit Chloroform ausgeschüttelt, neutral gewaschen, über Natriumsulfat getrocknet und im Vakuum eingedampft. Der sirupöse Rückstand wurde mit der 30-fachen Menge  $Al_2O_3$  chromatographiert, wobei mit Benzol-Petroläther (1:1) und mit reinem Benzol nach Umkrystallisieren aus Äther-Petroläther 50 mg farblose Prismen vom Smp. 117–118° erhalten wurden. Zur Analyse und Drehung wurde nochmals aus Äther-Petroläther umkrystallisiert (Smp. unverändert). Die spez. Drehung betrug  $[\alpha]_D^{15} = +157,1° \pm 2°$  (c = 1,197 in Chloroform).

```
11,957 mg Subst. zu 0,9991 cm³; l=1 dm; \alpha_{\rm D}^{15}=+1,88^0\pm0,02^0 2,570 mg Subst. gaben 5,030 mg CO<sub>2</sub> und 1,367 mg H<sub>2</sub>O (E. T. H.) 2,915 mg Subst. verbr. 0,926 cm³ 0,02-n. KJO<sub>3</sub> (Bürger) (E. T. H.) C<sub>14</sub>H<sub>18</sub>O<sub>6</sub>S (314,35) Ber. C 53,49 H 5,77 S 10,20% Gef. ,, 53,41 ,, 5,95 ,, 10,18%
```

Der Analyse nach handelt es sich bei diesem Stoff um das 2,3-Anhydro-4-tosyl- $\alpha$ -methyl-d-allomethylosid- $\langle 1,5 \rangle$  (XI). Die späteren Benzol- sowie die Benzol-Äther-Eluate lieferten 200 mg farblose Prismen, die nach Schmelzpunkt und Mischprobe mit dem oben beschriebenen Ditosylat (III) identisch waren. Alle weiter erhaltenen Eluate blieben sirupös und wurden nicht weiter untersucht.

b) 0,8 g Sirup (A) wurden mit Pyridin-Acetanhydrid über Nacht bei Raumtemperatur acetyliert. Das nach üblicher Aufarbeitung erhaltene amorphe Acetat (X) wurde mit der 30-fachen Menge  ${\rm Al_2O_3}$  chromatographiert, wobei mit Benzol-Petroläther (1:9) nach Umkrystallisieren aus Äther-Petroläther 160 mg Prismen vom Smp. 123—1270 erhalten wurden. Zur Drehung und Analyse wurden sie bei 0,005 mm und 900 Badtemperatur sublimiert und hierauf nochmals aus Äther-Petroläther umkrystallisiert. Es wurden 150 mg feine farblose Nadeln (X) vom Smp. 127—1280 erhalten. Die spez. Drehung betrug  $[\alpha]_{\rm D}^{21}=+127,40\pm20$  (c = 0,918 in Chloroform).

```
23,00 mg Subst. zu 2,5050 cm³; l=1 dm; \alpha_{\rm D}^{21}=+1,17^0\pm0,02^0 3,751 mg Subst. gaben 4,88 mg CO<sub>2</sub> und 1,51 mg H<sub>2</sub>O (F. W.) 4,342 mg Subst. verbr. 3,489 cm<sub>3</sub> 0,02-n. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (F. W.) C<sub>11</sub>H<sub>17</sub>O<sub>6</sub>J (372,17) Ber. C 35,50 H 4,60 J 34,10% Gef. ,, 35,50 ,, 4,51 ,, 34,00%
```

Die nachfolgenden Fraktionen konnten nicht krystallisiert werden und wurden nicht weiter untersucht.

Die Mikroanalysen wurden teils im mikroanalytischen Laboratorium der Eidg. Techn. Hochschule, Zürich (Leitung  $W.\ Manser$ ) (E.T.H.), teils im mikroanalytischen Laboratorium von  $F.\ Weiser$ , Basel (F. W.), ausgeführt.

Pharmazeutische Anstalt der Universität Basel.

<sup>&</sup>lt;sup>1</sup>) M. Busch, H. Stöve, B. **49**, 1063 (1916).

<sup>&</sup>lt;sup>2</sup>) P. A. Levene, J. Compton, J. Biol. Chem. 111, 325 (1935).